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ABSTRACT:

A procedure is developed, implemented and tested to detect deformations in a bored tunnel. Deformations can occur after construction
of the tunnel is finished, i.e. between two measurement epochs, but also deformations of the completed tunnel with respect to the design
model are considered. For this procedure first the tunnel model is fitted to a point cloud consisting of several registered terrestrial
laser scans using a linearized iterative least squares approach. This results in approximately optimal values for the tunnel model.
Then deformations with respect to this tunnel model or between epochs are determined by means of a statistical testing procedure.
Results performed together with the municipality of Rotterdam show that the studied tunnel is not so much ovalizing as a whole after
construction, as was expected, but rather that single tunnel segments show different deviation patterns.

1. INTRODUCTION

In Rotterdam a new means of public transport to The Hague is
under construction, named RandstadRail. For this new light rail
connection, a tunnel is to be bored in the north of Rotterdam.
The department Landmeten en Vastgoedinformatie (LV) of Ge-
meentewerken Rotterdam (GW) performs measurements for the
construction of this tunnel. Besides the conventional tachymetric
measurements, e.g. (Kontogianni and Stiros, 2003), and leveling,
LV wants to use terrestrial laser scanning for the determination of
tunnel deformations. With tachymetry small deformations can
be detected with high precision but only for a few selected po-
sitions due to the largely manual measurement process. Laser
scanning, on the other hand, is best suited for measurements over
areas, but offers less precision. The hypothesis is that the large
number of points measured can compensate for the reduced preci-
sion and allows studying the deformation over the complete tun-
nel surface. Little knowledge exists about the possibilities of de-
formation analysis with terrestrial laser scanning, (Tsakiri et al.,
2006), therefore the research described in this report has been per-
formed. Tunnel measurements with terrestrial laser scanning is
also discussed in (Schulz and Ingensand, 2004). Tunnel surface
observations can also be performed by photogrammetric means,
e.g. using the system (Dibit, 2006), or combined with laser scan-
ning (Paar et al., 2005). Using laser scanning alone has the po-
tential of allowing fast measurements, covering the entire tunnel
surface, eventually extracting deformations, all without the need
for elaborated calibration tasks.

An inventory of existing laser scanners (Lemmens, 2004; POB,
2006) shows that a phase-based scanner is most efficient for mea-
surements in the RandstadRail bore tunnel. This type of scanner
measures fast, i.e. with measurement rates of more than 100000
points per second. Phase based scanners also exhibit better pre-
cisions compared to scanners measuring range based on pulse
round trip time. However, measurement range is comparatively
short, typically up to 50m. The high measurement speed results
in a high point density. The scans were obtained from fixed scan
locations. Alternatively the scanning can be performed by a mov-
ing scanner (Blug et al., 2005).

The method that is set up for the deformation analysis estimates
an analytical model of the object. For a bored tunnel this is typi-
cally a circular cylinder or a more complex model (e.g., an elliptic
cylinder) that follows the ideal construction plan. The parameters
of the model are estimated by model fitting using least squares ad-

justment. The differences between the scan data and the model
are an indication for the deformation of the tunnel with respect to
the construction plan. Besides, scan data collected at two differ-
ent epochs are compared to show changes in time. The scan data
is partitioned into cells with the raster laid out over the object.
For both scans the same partitioning is used. For each cell a grid
point is determined by adjustment of the scan data using a simple
model, which is a local approximation of the overall analytical
model. Using a stability test it is tested whether two correspond-
ing grid points have been stable in time. A measurement setup
for deformation detection with laser scanning is made and a test
measurement is performed in the 2nd Heinenoordtunnel. Then a
method is drawn up for the deformation analysis and this is put
into practice on the collected data. Data is processed by software
belonging to the laser scanner and by a computational program
written in Matlab.

In Sec. 2 the methodology is presented, comprising cylinder fit-
ting and deformation analysis. Sec. 3 describes the data acquisi-
tion and processing. In the last section conclusions are drawn for
both the analysis of the Heinenoordtunnel and the methodology
used, while future work for improving the process is identified.

2. METHODOLOGY

2.1 Cylinder fitting

Observations in scanner coordinates The original measure-
ments of a terrestrial laser scanning device are angles and ranges,
also termed distances. For each three dimensional object point
p◦

i the angles in the spherical coordinate system αi and βi and
the distance di are measured. Therefore

p
◦

i = di(cos αi cos βi, sin αi cos βi, sin βi)
> (1)

While the measurement precision mα and mβ of the angles are
only depending on the device itself, the distance precision md

also depends on the material properties of the reflecting surface,
its extent, and the incidence angle of the laser ray on the surface.
The measurements are performed in the spherical coordinate sys-
tem local to the scanner, but a translation t and a rotation R is ap-
plied to the points in the registration process. In the following it is
assumed that a set of object or observation points pi = t+R ·p◦

i

is given in a common spherical coordinate system.
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Cylinder parameterization Cylinders in 3D have five degrees
of freedom, one for the radius r and four for the axis, which can
be divided into two parameters for the direction and two for the
position. Let p̄ be the barycenter of the observation points pi, or
any other convenient fixed point in the vicinity of the measured
points. With the unit vector of the cylinder axis direction

a = (cos λ cos φ, sin λ cos φ, sin φ)>, (2)

the position of the cylinder axis is fixed by specifying the point
on the cylinder axis most close to p̄ as

c = p̄ + u · nu + v · nv (3)

in an orthonormal basis (a,nu,nv) of R
3, where nu and nv are

defined by e.g.

nu = (− sin λ cos φ, cos λ cos φ, 0)> (4)

nv = (− cos λ sin φ,− sin λ sin φ, cos φ)>.

The five cylinder parameters are then r, λ, φ, u, v. This parame-
terization is similar to the one proposed in (Lukács et al., 1997).

Observation equations. In least squares adjustment (Teunis-
sen, 2000a) the measurement errors in the original observations
are minimized. In this case these errors are eα,i, eβ,i, and er,i.
In order to formulate this minimization problem, the observations
are expressed as functions of the parameters. Therefore, the un-
known location of the point pi on the cylinder has to be intro-
duced as parameter in the adjustment, too. Using cylindrical co-
ordinates, two numbers (y, θ) are used for specifying a location,
y, along the axis and a rotation, θ, around it. A point q on the
cylinder skin is expressed as

q = c + (y · a + r cos θ · nu + r sin θ · nv) (5)

Each observation (ri, αi, βi) gives the following contribution to
the observation equations:
0

@

ri + er,i

αi + eα,i

βi + eβ,i

1

A = f(x), with x = (r, φ, λ, u, v, yi, θi) (6)

Here f : R
7 → R

3 describes the non-linear cylindrical model
in the parameterization of above. For each object point consist-
ing of three measurements two parameters are introduced, lead-
ing to a redundancy of n − 5, where n is the number of mea-
sured points. The advantage of the above formulas is that the
original observations are used, allowing proper error modeling.
These equations can be simplified if instead of the original ob-
servations (ri, αi, βi) the Cartesian coordinates (xi, yi, zi) of pi

are used. In that case however, the covariance matrix of each
point becomes a full matrix, whereas it is only a diagonal ma-
trix when using the original observations (assuming independent
measurements). The disadvantage of the above equations is that
with laser scanning millions of points are measured which leads
to a normal equation system with a dimension of two times the
number of points plus five.

Reducing the observation space. In order to keep the number
of parameters small, a simpler adjustment is performed. Not the
measurement errors, but the distances of the measured points to
the cylinder are minimized. For this end the cylinder is defined
as zero set of

e(p) = ‖(p − c) × a‖ − r, (7)

see also Fig. 1. Here ‖ · ‖ denotes vector length and × the vector
cross product. The length of the vector (p−c)×a is equal to the
area of the parallelogram spanned by vectors a and p− c, which
is in turn equal to the rectangle with the same base and height.
Using a, which is a unit vector, as base, this area becomes equal
to the height (only differing in the units meter and m2, respec-
tively). It is concluded that the length ‖(p − c) × a‖ equals the
distance of p to the cylinder axis. For a point on the cylinder skin
this value is exactly the radius r. The value e(p) is not only an
algebraic distance measure, as it is in fact the value of an implicit
function, but it specifies the Euclidean distance of p to the cylin-
der as well. This means that e(p) is the length of the vector from
p to its orthogonal projection onto the cylinder.

Figure 1. Cylinder definition with vector product.

Without measurement errors this distance would be zero always,
but in a real situation only its expectancy becomes zero and this
distance is written as 0+ei. The “observation” equation therefore
takes the following form

0 + ei = ‖(pi − c) × a‖ − r (8)

In this form only the five parameters (r, λ, φ, u, v) describing
the cylinder remain to be estimated. A further simplification is
reached by over-parameterizing the cylinder by specifying a =
(ax, ay, az) and c = (cx, cy, cz) and introducing two additional
constraints (or highly weighted observation equations) of the fol-
lowing form:

1 + ea = ‖a‖ and 0 + ey = cy (9)

The first equation specifies that the axis vector must be a unit vec-
tor and the second equation fixes one coordinate of the point on
the cylinder axis. The y-coordinate is chosen because the cylinder
axis is roughly aligned with the y-axis of the coordinate system.

Reduction justification. The different methods presented above
(adjusting the observations, minimizing the orthogonal distances,
and minimizing the orthogonal distances with over-parameteriza-
tion) were compared numerically using up to 10000 points and an
identity matrix as weight matrix. For the examples encountered
in this tunnel study no significant difference could be found, i.e.
the results are equal up to the 7th digit. While it appears intu-
itively that minimizing the orthogonal distances of the points to
the cylinder surface on the one hand, and minimizing the mea-
surement errors on the other hand, should lead to the same results,
the authors note that this is not proven within this paper.

Initial guess of the tunnel parameters. For performing the ad-
justment the above observation equations have to be linearized,
(Teunissen, 2000a). For initialization of the linearization algo-
rithm approximate values for the cylinder parameters have to be
computed first. For this purpose normal vectors ni in the mea-
sured points pi are estimated by fitting that plane to the e.g. 10
nearest neighbors of each pi, that minimizes the orthogonal dis-
tances of the points in the least square sense. The normal vec-
tors of a cylinder describe a great circle on the unit sphere with
the carrier plane orthogonal to the cylinder axis. The direction
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of the cylinder axis is therefore approximated by fitting a plane
through the normal vectors ni (i.e. the points on the unit sphere).
To ensure that a great circle and not a small circle is obtained
the origin should also be included in this fitting procedure with a
weight equal to the number of normal vectors. The normal vector
again of this plane gives a good first approximation for the cylin-
der axis a. For the examples in this study taking the barycentre
of the observation points pi as approximate value of c proofed
to be sufficient in all cases. An approximate tunnel radius r was
known from the tunnel design to be 3m.

Stop criterion. While adjusting the observations into the mo-
del, that parameters of the model are sought for that minimize the
distance of the observations to the model space with respect to the
variance-covariance metric. This implies that for a least squares
solution of a model adjustment, the residuals ê of the observa-
tions are perpendicular to the model, that is ê ⊥ A · x̂. A good
reliable criterion, (Teunissen, 1990), for a linearized adjustment
is therefore

‖(xk+1 − xk)> · Q−1
xk

· (xk+1 − xk)‖ < ε, (10)

where xk denotes the values of the model parameters after the i-th
iteration, and Qxk

it’s VC-matrix. The threshold value ε should
be chosen small enough. Here, a value of ε = 1 · 10−8 is used.

2.2 Deformation analysis.

The deformation analysis method can be separated into two parts.
The first part consists of comparing the tunnel data in some epoch
with an idealized model, i.e. a cylinder. The second part is a
method to test whether (artificial) deformation occurred between
two epochs of tunnel measurements.

For comparing the actual tunnel data to an idealized model, the
data is fit to the model and the resulting residuals are analyzed.
Deformation between two epochs is determined in a number of
steps:
• Transform tunnel data of both epochs into a suited, in our case
cylindrical, coordinate system, in such a way that all deformation
occurs along one range coordinate.
• Interpolate data from both epochs to a regular grid in the two
domain coordinates in this coordinate system
• Test whether the differences in range coordinate at a grid point
between the two epochs is relevant given the propagated accuracy
of the interpolated points.

Cylindrical coordinates. Before the start of the deformation
analysis all data was registered to a common xyz Cartesian coor-
dinate system. As deformations of the tunnel wall are looked for,
a coordinate system is required that allows expressing the loca-
tion of a point on the tunnel wall by two domain coordinates, and
the ‘signal‘ at that location as a third, range, coordinate.

y

r

θ

Figure 2. Cylindrical (y, θ, r) coordinates.

This is achieved by the coordinate system of Fig. 2. Here, ‘y‘ de-
notes the distance along the tunnel axis, ‘θ‘ the angle in a plane
perpendicular to the tunnel axis, and ‘r‘ the distance in this plane
to the tunnel axis. Now, after fixing the axes origins, any loca-
tion on the tunnel wall can be expressed as a pair (y0, θ0), while

the ‘signal‘ at that location is given by the third coordinate, the
distance r0 to the tunnel axis. The coordinate transformation

y = y, θ = arctan z/x, r =
p

x2 + z2 (11)

transforms Cartesian xyz coordinates into cylindrical coordinates
with cylinder axis y.

Interpolation of the distance to the tunnel axis. Using this
coordinate system a grid on the tunnel wall is defined in terms of
the (y, θ) coordinates. Within a grid cell

[y0 − ∆y, y0 + ∆y] × [θ0 − ∆θ, θ0 + ∆θ],

the tunnel wall is assumed to be flat. A value r̂0 at location
(y0, θ0) is obtained by averaging all observations within the grid
cell. Except for the value r̂0 itself also its precision σ2

r̂ is obtained
as, (Teunissen, 2000a),

σ2
r̂ = (A>

G · Q−1
y · AG)−1, (12)

with Qy = σpoint · Im the VC-matrix of the measurements,

and AG
m×1

= (1, 1, . . . , 1)> the model matrix that reflects that the

average of all m observations was taken. It should be noted that
strictly speaking not an interpolation, which is always less precise
than the underlying observations, but an adjustment is performed.

Testing for deformation. Once the difference r̂1 − r̂2 in dis-
tance to the cylinder axis is determined between two epochs 1
and 2 for each grid point, it remains to be found out if such a dif-
ference is just due to measurement noise, or if a real deformation
took place. This can be tested for by a stability test, (Teunissen,
2000b). In a stability test the A-model AS = (1, 1)> models the
situation of no deformation, which implies that r̂1 and r̂2 are two
observations of the same attribute rS . Solving the system

E{

„

r1

r2

«

} = AS · rS ; Qy =

„

σ2
r̂1

0
0 σ2

r̂2

«

, (13)

gives the adjusted, common distance

r̂S = (A>

S · Q−1
y · A)−1 · A> · Q−1

y ·

„

r1

r2

«

, (14)

together with the vector ê of epoch-wise residuals:

ê =

„

r1

r2

«

−

„

r̂S

r̂S

«

. (15)

It remains to test the zero hypothesis H0, that states that the size
of the remaining residuals is acceptable, given the accuracy of the
observations and the assumption that no deformation took place.
The test quantity T q = ê> · Q−1

y · ê, with q = m − n = 1 the
degrees of freedom, has, under the zero hypothesis, a chi-square
distribution:

H0 : T q ∼ χ2(q, 0) (16)

The test quantity is tested against a critical value κα, where α
denotes the reliability level of the test. If Tq > kα, the test states
that deformation took place.

In this testing framework easily other tests can be used instead of
the stability test (Teunissen, 2000b). If, e.g., several epochs of
data are available, one can decide to actually model a deformation
and test whether this model effectively describes the deformation
signal as found in the measurements. It is also common practice
to test whether an extension of a model by an extra parameter
gives a relevant improvement of the model fit.
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Figure 3. Left: photograph of the 2e Heinenoordtunnel. Right: laser scan, colored by intensity, from red to blue. Clearly visible is the
low reflectivity of the asphalt in contrast to the high reflectivity of the road markers.

3. PROCESSING THE TUNNEL DATA

3.1 Measurement setup.

During the measurement project in the 2nd Heinenoordtunnel,
two times a length of 100m tunnel were scanned. This scanning
had to be done during one night due to traffic regulations. There-
fore a careful measurement setup was designed before the actual
scanning took place. In order to reduce a possible influence of
systematic errors scanner positions were approximately the same
in both epochs. Distances between scanner positions were not
equal but varied from 5m to 25m in order to have a dataset with
different measurement distances to the tunnel surface. Four sub-
sets of the data will be analyzed. Subset 1 has an average along-
tunnel-axis distance of 5m and is covered by one scan. Subset 2
is immediately around a scanner position. Subset 3 is in the mid-
dle of two scan positions with a distance of 12m to the scanner
positions on either side, and subset 4 has a distance of 15m to the
used scanner positions. Each subset has a width of 4.5m.

Choice of scanner As mentioned in the introduction, phase
scanners surpass pulse round trip time scanners in speed and point
density, which is in the case of limited access to the object of im-
portance, at the cost of lower maximum range. However, the
elongated geometry of a tunnel leads to low incidence angles and
deterioration in precision for long ranges anyway. The setup of
the scanner positions was such that the maximal distance of an
object point to the scanner was no more than 15m. The choice
for the Leica HDS4500 was based on the availability of the in-
strument. The maximum used range was set to 20m, and given
the tunnel diameter of 7.6m this leads to an incidence angle as low
as 10◦. The data collection of the 2nd Heinenoordtunnel showed
that in 20min about 40m of tunnel can be scanned.

Artificial deformations After having scanned the tunnel for
the first time, artificial deformations were put against the tun-
nel wall, see Fig. 4. The deformations consist of a foam plate
of 30×40×3cm, of a thin wooden plank of 10cm wide and 2cm
thick, Fig. 4, left, and of several plastic caps and lids of a maximal
diameter of 13cm, Fig. 4, right.

3.2 Data quality description.

Two times, a length of 100m tunnel is scanned, see also Fig. 3.
The time between the two measurements is only a few hours, dur-
ing which the artificial deformations were placed. The data from
the different scan positions and two different epochs were reg-
istered using the program Cyclone (Leica Geosystems, 2005).

Figure 4. Artificial deformations placed against the tunnel wall.

According to the software, the registration accuracy is global and
equals σR = 3mm. The accuracy of a single measurement equals
σM = 7mm, as stated by the HDS4500 specifications (Leica Ge-
osystems, 2006). By combining σR and σM via

σ2
P = σ2

M + σ2
R, (17)

a single point precision σP = 7.6mm is obtained after registration.

After registration, data clearly not belonging to the cylindrical
part of the tunnel surface was manually removed, like data from
the road surface, see Fig. 3. This step is a source of possible errors
and should be improved in future. Especially points reflected on
the joints between the concrete segments and by the grip holes
within the segments were only partly removed. These grip holes
are used by the tunnel building machine to place the concrete
segments. It is however not trivial to remove grip hole data, as
the grip holes increase very smoothly in depth and are smoothly
joined to the actual segment surface.

After registration and filtering 2× four subsets of data of 4.5m
tunnel length, each covering three neighboring tunnel rings of
1.5m each, were analyzed. A single subset consist of 1 million
data points on average.

3.3 Results of the cylinder fitting.

Using 1% of the available data, i.e. using ±10 000 points per
subset, the cylinder parameters p, a and r were estimated in a
linearized least squares adjustment, as described above, for all
four subsets. Thinning out was performed by a function imple-
mented in Cyclone. In all cases, the stop criterion was met after
about 5 iteration steps. The results for the cylinder radius r for
the data of the first epoch are given in Table 1.
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subset 1 subset 2 subset 3 subset 4
Initial r 3.7587 3.7577 3.7663 3.7649
One iteration r 3.7825 3.7885 3.7945 3.7956
# iterations 5 4 5 4
Final r 3.7952 3.7943 3.8056 3.8046
Final σr 0.00016 - - -

Table 1. Estimated cylinder parameters in meter.

In all cases the estimated radius differs only 5mm with the de-
signed radius. Except for the actual parameters itself, the adjust-
ment procedure gives the variance-covariance matrix Qx̂ of the
estimated parameter vector x̂ as well. Table 1 gives as an exam-
ple the value of the radius standard deviation as σr = 0.16mm.
This value seems optimistic however. It is expected that the error
description will be more realistic if the cylinder constraints, as in-
troduced in Equation 8, will be incorporated using a constrained
adjustment by means of Lagrange multipliers.

For this adjustment all points on the tunnel wall had an equal ob-
servation accuracy of σP = ±7.6mm. This part of the procedure
should be improved in future as this error model is too much sim-
plified: points far away from the scanner have a relative bad in-
cidence angle. When this is encoded in the VC-matrix, these ob-
servations will get lower weights. This may have the drawback
that mainly the points near the scanner are used in determining
the cylinder parameters, although it is numerically difficult to fit
an elongated cylinder through a small strip of observations.

3.4 Deviations from the tunnel model

[m]y

z

x

Figure 5. Residuals in m after fitting of a cylindrical model to the
tunnel data. In each single segment gripper holes can be detected.
Some offset seems to occur in the segments on the bottom right
while the segment in the bottom left corner looks damaged.

In Fig. 5 the residuals of the scan points after adjustment to a
cylindrical model are shown. These are the residuals from Subset
3 in the first epoch. Clearly the three different tunnel rings are
visible, but it is not easy to distinguish the individual segments,
cf. Fig. 3, except for the dark blue segment in the bottom right of
the figure. On the other hand, larger residuals of upto 3cm due to
the presence of gripper holes are present at regular distance in the
residual image. On the bottom left, near coordinates (40.5, 34.0),
a strongly deviating segment is visible. Probably this segment
was placed in a bad way during construction of the tunnel.

Results from the other subsets are similar: different rings are visi-
ble, while several local deviations from the adjusted tunnel model

are clearly visible. For Subset 4, the deviation pattern is more dif-
fuse, see Fig. 6. As deviations are here more global it is not clear
if they are caused by actual deformation. Especially the pressure
of the soil above cannot be used for explanation as the defor-
mation pattern would have to be exactly the other way around.
A possible explanation for the periodicity of 360 degrees is an
eccentricity error due to a (unexpected) biased estimation of the
cylinder position. Another error source could be registration er-
rors considering that the point density is lowest in that area of
either scan.

→ θ

↑ r

Figure 6. Scatterplot of (θ, r) values of Subset 4 residuals after
adjustment in a cylinder model. The red line indicates the tunnel
radius as found by the fitting procedure.

3.5 Deformation between two epochs.

To test for changes between the two measurement epochs, 1 % of
the data from both epochs was interpolated to a regular grid of 15
× 15cm along the tunnel wall. Interpolation is in cylindrical co-
ordinates w.r.t. the tunnel model as estimated from the data from
the first epoch. Using a level of significance of α = .05, all grid
points from all four subsets were tested for stability in the radius
direction r. In Fig. 7 the test quantities Tq are given for subset 2.

It turns out that for the second subset 3.0% of the grid points are
rejected by the stability test. Large test quantities, clearly indi-
cating deformation, can be found at location A, were the foam
plate was placed between the two epochs and to a smaller ex-
tend at location B, the position of the wooden plank. Plastic lids
and caps were placed near location C, but these were only partly
found, due to the large grid size of 15cm in comparison to the
small maximal diameter of 13cm of the lids and caps.

Except for the placed, artificial deformations, the stability test
found instabilities at several other grid points. It appears that
many ‘instabilities’ occur adjacent to missing grid points. These
type I errors are caused by the grip holes in the concrete segments.
Even a small registration error can cause relative high differences
between corresponding grid points in the two epochs. From Fig. 5
it is concluded, as expected, that near the grip holes larger residu-
als with the cylindrical model occur. If two grip holes do not ex-
actly match, the larger residuals will contribute to partly different
grid points in the two epochs, thereby causing high test statistics.
The occurrence of missing adjacent grid points is either caused
by the preprocessing step, where strongly deviating points were
manually removed or by scan shadows from the grid holes, com-
pare also Fig. 3. Of course, the choice of scanner position, which
was not strictly the same between the two epoches, has an influ-
ence on this procedure. Especially for surfaces where the simple
local model does not fit to the real situation, i.e. around the grip
holes, the inclusion or neglection of one point has a strong impact
on the estimated parameter(s). With different scanner positions it
naturally happens that the number of points measured in the grip
holes varies between the epochs.

4. CONCLUSIONS AND FUTURE WORK

This report describes one of the first investigations of the possi-
bilities of deformation analysis with laser scanning. It shows that
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Figure 7. Results of the stability test. Test quantity per grid point.
The larger artificial deformations A and B (the foam and wooden
planks) were found back by the testing procedure. Moreover, the
procedure finds several other ‘deformations’ near the grip holes,
but this are errors caused by registration mismatches.

good possibilities exist for the application of geodetic deforma-
tion analysis on terrestrial laser scanning data. The method and
computational program developed are able to detect deformations
in laser scanning data. Nevertheless, method and software have
to be developed further before extensive used in practice. Laser
scanning can definitely be used for making as-built visualizations
and the determination of the tunnel deformations with respect to
the design. This research shows that laser scanning is a good sup-
plement of the present measurement techniques that are used by
the municipality of Rotterdam.

From the performed deformation analysis it appears that the 2nd

Heinenoordtunnel has not become oval. It does, however, show
systematic deviations from the design model. The rings of the
tunnel are tilted with respect to the estimated cylinder model
which was adjusted over three rings. While each ring apparently
fits well to a cylinder model, the axes of the individual rings do
not coincide with one line. These results were obtained by visual
analysis of the residual pattern. It is advisable to further investi-
gate the scan data for the presence of such patterns.

Application of the deformation analysis on the scan data of the
2nd Heinenoordtunnel shows that all deformations larger than
15mm in radial direction are being detected by the stability test.
It remains to be studied if using a higher point density allows
reducing this value further, or if registration errors and correla-
tion within the data hinders improving the results. It is expected
that reduction of the grid size, coupled with analyzing of more
scan points will decrease the smallest deformations that can be
detected by this method.

This analysis however also reveals two problems. Firstly, some-
times points are incorrectly marked as being deformed. One of
the reasons for this is inaccuracies in the registration of the scans.
Secondly, the used stochastic model is not an appropriate descrip-
tion of reality. The measurement accuracy of the phase-based
scanner is not constant but it decreases with distance.

It is desired to investigate the registration methods that are im-
plemented in the processing software of the scanners, in order to
know how the scans are registered and how accurate this is done.

Besides that, the results of the deformation analysis will be im-
proved when the behavior of the scanner accuracy is known.

However, on the methodology side gain can be made as well. The
current testing method only takes grid point deformation into ac-
count, although there is clearly spatial correlation in the defor-
mation near locations A and B in Fig. 7. Therefore it is recom-
mended to extend the testing procedure by a spatial component.

It can be argued that it is not necessary to actually model and fit
the cylindrical tunnel model to the data for detecting deformation
between the epochs: when considering at least two epochs, the
tunnel cancels out when considering deviations. Here the model-
ing was done anyway, because study of deviations from the tunnel
model was one of the project targets. Additionally a fitted model
helps in laying out a grid for analysis.

All approaches considered have in common that they will bene-
fit from an improved stochastic model. The registration error is
now taken uniformly, although the error is much stronger away
from the tie points(/elements), especially for scans of elongated
scenes, like tunnels. Also the scan point error is taken uniformly,
although it is already known that this error at least varies with
intensity and incidence angle. Fig. 3 shows that these two param-
eters are both relevant in this setting.

ACKNOWLEDGMENTS

The authors would like to thank Theo Koster, Lennard Huisman
and Frank Kenselaar from Gemeentewerken Rotterdam for the
fruitful cooperation. Moreover Peter Teunissen and the reviewers
are thanked for useful remarks.

REFERENCES
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