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ABSTRACT:

In this paper we show how based on a number of different techniques it is possible to fully automatically generate basic ingredients for
high quality visualizations of urban areas characterized by vertical facade planes from nothing but uncalibrated wide-baseline image
sequences without using any markers or ground control. At the core of our algorithms are least-squares matching, projective geometry
based reconstruction, robust estimation based on random sample consensus – RANSAC, auto-calibration, projective and Euclidean
bundle adjustment, plane to plane homographies, as well as the robust estimation of image mosaics. Results for the Hradschin in
Prague, Czechia, and Plaza Real in Barcelona, Spain, show the potential and shortcomings of the employed algorithms.

1. INTRODUCTION

Recent years have seen a couple of approaches for the fully au-
tomatic generation of three-dimensional (3D) Euclidean models
from uncalibrated image sequences, among the most advanced
of which are (Pollefeys, Van Gool, Vergauwen, Verbiest, Cor-
nelis, and Tops, 2004) and (Lhuillier and Quan, 2005). The ap-
proaches usually consist of the robust estimation of a projective
reconstruction and n-fold correspondences followed by calibra-
tion and possibly dense depth estimation, all usually restricted to
small images with a short baseline, e.g., from a video camera.

Opposed to this, we aim at applications where higher image res-
olutions in the range of several Megapixels are given as input,
obtained, e.g., from consumer digital cameras in the range of sev-
eral hundred US $. Because of the lower frame rates (one image
can usually be taken on a sustained basis about every second on
average) and higher data volumes per image it is natural to take
images with a wider baseline making the matching of points be-
tween the images severely more difficult. Therefore, we show
how employing high precision to become more reliable it is pos-
sible to obtain 3D reconstructions of rather difficult scenes with
many occlusions and partly close to no 3D structure.

The focus of this paper is on urban scenes. Therefore, it is rea-
sonable to use at least partly for the modeling and visualization of
the scenes planes, particularly the vertical planes of the facades.
As larger parts of our scenes are assumed to be captured in at
least three images, it becomes on one hand necessary to fuse the
information from the individual images on the detected planes.
Yet, on the other hand, it gives us the opportunity, to separate by
means of consensus between pixels taken from different images
the information on the plane from off-plane information, allow-
ing us to generate a “cleaned” version of the image on the plane
without many of the occlusions in the individual images. This
part has been inspired by (Wang, Totaro, Taillandier, Hanson,
and Teller, 2002) and (B̈ohm, 2004). Yet, opposed to the lat-
ter, we fully automatically and robustly generate the planes and
from them the two-dimensional (2D) homographies, i.e., plane to
plane mappings. We also integrate the planes into our 3D model
and generate visualizations from it.

Impressive results in terms of visualization of urban scenes have
been shown by (Debevec, Taylor, and Malik, 1996) by taking the
image from the (real) camera closest to the current (virtual) view-
point, though the 3D model employed has been generated manu-
ally. Then, there is work for architectural scenes which goes far

beyond what we are presenting here in the sense that much more
knowledge about the structures and regularities of urban scenes is
used. The most sophisticated example today is probably (Dick,
Torr, and Cipolla, 2004) employing a statistical generative model
based on Markov Chain Monte Carlo (MCMC) sampling. Closer
to our work as it is more geometry-based is (Werner and Zis-
serman, 2002). Yet, compared to our work they employ perpen-
dicular vanishing points for auto-calibration and 3D reasoning
which restricts the work as given to scenes with three perpendic-
ular main directions. They have also only shown results for image
triplets.

In the remainder of this paper, we first present our approach for
3D reconstruction from wide-baseline image sequences (cf. Sec-
tion 2.). The obtained 3D Euclidean model is the basis for deriv-
ing vertical facade planes. For them facade images at least partly
“cleaned” from occlusions are computed by means of median or
consensus between the pixels projected onto the planes from dif-
ferent camera positions (cf. Section 3.). In Section 4. we present
additional results and we end up with conclusions.

2. 3D RECONSTRUCTION

Our approach is aiming at wide-baseline image sequences made
up of images of several Megapixels. We make the following as-
sumptions for 3D reconstruction:

� The camera constant (principal distance) is constant. Yet
this is not as restrictive as it may sound because we found
that the influence of auto-focusing that one cannot switch
off for some cameras we use can mostly be neglected for
the distances typical for urban applications. We also assume
that the principal point is close to the image center. This is
the case for practically all digital cameras, and would only
not hold if parts of images were taken.

� The images are expected in the form of a sequence, with at
least three-fold overlap for all images.

� The camera is not to be rotated around the axis of the ob-
jective between consecutive images, though rotations below
�20� usually do not degrade the result considerably.

Our basic idea to obtain a reliable result is to strive for a very high
precision in the range of0:05 to 0:3 pixels by means of least-
squares matching and bundle adjustment. If this value is higher
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or lower depends in first instance on scene geometry and geomet-
rical quality / stability of the camera, but in second instance also
on lighting conditions, etc. The overall reasoning is that it is (ex-
tremely) unlikely that a larger number of non-homologous points
conspire to achieve a highly precise result by chance.

Based on this idea we start using Förstner points (F̈orstner and
Gülch, 1987). They are matched via cross-correlation. In color
images the coefficient for the channel where the variance is max-
imum is taken. To avoid multiple, i.e., indecisive matches (e.g.,
upper right corners of windows on larger facades can look very
similar), we match the result in the search image back into the
given image and only accept it, if the original position is found
to be the maximum again. Point pairs checked via correlation are
then refined via least-squares matching with an affine geometrical
model. The latter is also used for three- and more-fold images. In
all cases we compute the complete covariance information.

The highly precise points are the basis for a projective recon-
struction employing fundamental matricesF and trifocal tensors
T (Hartley and Zisserman, 2003). If calibration information is
available, we use (Nistér, 2004) to determine the Euclidean 3D
structure for image pairs. As in spite of our efforts to obtain reli-
able matches we obtain partly less than 20% of correct homolo-
gous points for difficult scenes, we employ Random Sample Con-
sensus – RANSAC (Fischler and Bolles, 1981) for the estimation
of F andT . Because we do not only have rather low numbers of
correct matches (inliers), but as these inliers are also partly very
unevenly distributed over the image and thus not all of them lead
to a correct model, i.e., a model representing all inliers with the
inherent, yet unknown geometric precision, we employ a vari-
ant of the locally optimized RANSAC scheme of (Chum, Matas,
and Kittler, 2003). While they take a larger number, i.e., 50%,
of random samples from the maximum set of inliers derived at a
certain stage to derive an improved estimate, we take the whole
maximum set and employ robust bundle adjustment (Hartley and
Zisserman, 2003; Mikhail, Bethel, and McGlone, 2001). The lat-
ter is done for two iterations, always using the outcome of the
bundle adjustment to derive new sets of inliers.

The employed bundle adjustment is suitable for the projective as
well as the Euclidean case. We model radial distortion with a
cubic and a quartic term. Bundle adjustment takes into account
the full covariance information derived by least-squares match-
ing. We estimate the precision of the residuals and use them in
two ways to make the adjustment robust: First, we reweight the
observations based on the ratio of the size of the residual and its
variance. Second, after convergence we throw out all points with
a ratio beyond three, a value found empirically.

As our images are in the range of several up to possibly tens of
Megapixels, it is important to initially restrict the search space
for matching. Yet, because we do not want to restrict the user
more than given in the assumptions at the begin of the section,
we cannot assume that the movement is only vertically or hori-
zontally or that it is even in a certain range. Particularly for urban
scenes with very close and far away objects disparities can be
rather large, in the extreme case exceeding the image size. We
thus take as initial search space the full image, but reduce the im-
age in a pyramid and do the first search on a pyramid level with
a size of approximately100 � 100 pixels. Here, full search can
be done efficiently. Matching and projective reconstruction lead
to fundamental matrices and thus epipolar lines on the highest
level, restricting the search on the next level considerably. Once
trifocal tensors have been determined, the search space becomes
a small area in the third image. Trifocal tensors are computed for
the second highest level in all cases and additionally on the third
highest level if the image size exceeds one Megapixel.

To orient whole sequences, we link triplets based on 3D homo-
graphies computed from projection matrices for images common
between triplets. (E.g., the triplets(1; 2; 3) and(2; 3; 4) have the
images2 and3 in common.) Additionally, we project already
known 3D points into the newly linked image to generatei + 1-
fold points, with i being the current number of images a point
is visible in. After these steps we bundle adjust the sequence.
Once all projection matrices and 3D points have been computed,
we track the points generated on the second or third highest level
of the pyramid down to the original resolution again via least-
squares matching in all images.

If no calibration information has been given, we auto-calibrate
the camera employing the approach proposed in (Pollefeys,
Van Gool, Vergauwen, Verbiest, Cornelis, and Tops, 2004). It
constrains the solution to reasonable values for the parameters,
e.g., the principal point corresponds to the center of the image
and the camera constant is somewhere in-between one third and
three. Auto-calibration is done only once a high quality projective
reconstruction has been obtained on the original resolution via
projective bundle adjustment. We found that the latter is manda-
tory, as lower precisions lead to incoherent implicit calibrations
of the projective reconstructions, often leading to unacceptable
results. Finally, we employ Euclidean bundle adjustment to ob-
tain a highly-precise calibrated 3D model consisting of points and
projection matrices including full covariance information.

An example is given in Figures 1 and 2 showing a part of the
Hradschin in Prague, Czechia. The back-projection error of the
calibrated bundle is�0 = 0:16 pixels in the given 2 Megapixel
images and several hundred six-fold points have been computed.
One can see that the right angles in the center of the building have
been derived very accurately.

Figure 1. Six images of the Hradschin in Prague, Czechia

3. PLANES AND IMAGES ON PLANES

Having obtained a 3D Euclidean model, we assume that an urban
scene consists of a considerable number of vertical lines. We can
thus orient the model vertically based on the vertical vanishing
point derived from the vertical lines and the given calibration in-
formation. The vertical vanishing point is detected robustly again
using RANSAC, the user only providing the information if the
camera has been been very approximately held horizontally or
vertically, thus, avoiding to mix up the vertical with a horizontal
vanishing point. After detecting the vanishing point, we polish
it by means of least-squares adjustment. To make the computa-
tion of the vertical direction more robust, we compute vanishing
points for a couple, usually if possible five images, derive from
all of them the vertical direction of the whole model employing
the known rotation of the individual camera, and then finally take
the medians inx- andy-direction as the vertical direction.
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Figure 2. 3D points (red) and cameras (green pyramids, the tip
symbolizing the projection center and the base giving the direc-
tion of the camera) derived from the images given in Figure 1

The vertically oriented model is the basis for the determination of
vertical facade planes using once again RANSAC. For this step
one threshold defining the maximum allowed distance of points
from the plane has to be given by the user. This is due to the fact
that we could determine meaningful thresholds for approximat-
ing planes from the covariance matrices via model selection, but
this would only take into account the measurement accuracy and
not the semantically important construction precision of facade
planes.

To make it more robust and precise, we employ the covariance in-
formation of the 3D points computed by bundle adjustment by not
counting the number of inliers as for standard RANSAC, but test-
ing the distances to a hypothesized plane based on the geometric
robust information criterion – GRIC (Torr, 1997). Additionally,
we check, if the planes are at least approximately vertical and we
allow only a limited overlap of about five percent between the
planes. The latter is needed, because of points situated on inter-
section lines between planes.

From the parameters for the facade planes as well as the projec-
tion matrices we compute homographies between the planes and
the images. A mapping by a homographyH between homologous
pointsx andx’ in homogeneous coordinates on a given plane and
the image plane of a camera, respectively, is given by

x0 = Hx : (1)

If the camera is parameterized as

P =

 
P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

!
(2)

and the plane, the points lie on, with

� = (nT; d)T ; (3)

and if we parameterize the plane in 2D by setting theZ-
component of the plane to zero,H is determined as

H =

 
Hi1

Hi2

Hi3

!
=

 
Pi1 � �1 � Pi3=�3
Pi2 � �2 � Pi3=�3
Pi4 � �4 � Pi3=�3

!
: (4)

For the actual mapping of images to a plane one needs to know
from which images a plane can be seen from. For it, the informa-
tion is employed, which 3D points have led to a particular plane,
as for the 3D points it is known from which images they were
derived. The plane is thought to be visible from the union of the
sets of images of all 3D points belonging to a plane. We compute
an average image as well as the bias in brightness for each image
in comparison to it, also accounting for radial distortion.

The final step is the generation of facade images “cleaned” from
artifacts generated by occlusions. The basic information are the
projected images normalized via the determined biases in bright-
ness. The cleaning is done by two means, first by sorting the
(gray- or color) values and taking the median and second by uti-
lizing the basic idea of (B̈ohm, 2004). The latter consists in de-
termining an optimum value by means of the consensus between
the values for a particular pixel. As (Böhm, 2004) we do not
randomly select the values as in RANSAC, but we take the value
for a pixel for each image it can be seen from as the estimate and
then take as the inliers all, which consent with it. The final result
is the average of the inliers.

Results for our running example are given in Figures 3 and 4.
From the former one can see that the planes fit nicely to the
points. The latter shows the advantages of median and consen-
sus over simple averaging where, e.g., the flag pole at the right
hand side is shown several times as a ghost image. The different
characteristics of median and consensus are shown more in detail
in the additional example in the next section.

4. ADDITIONAL RESULTS

In Figure 8 ten images out of a whole set of 29 uncalibrated im-
ages of Plaza Real in Barcelona, Spain, are shown, taken with
a Sony P 100 5 Megapixel camera. The basic idea was to walk
around the fountain in the center of Plaza Real. From them a 3D
model is computed (cf. Figure 5) with�0 = 0:18 pixels after bun-
dle adjustment. As we did not mark our positions when taking the
images, the circle around the fountain is more a spiral and could
not be closed as the first and last image did not match. Because
of this and the fact that larger parts of the facade are planar, it is
interesting how well the start (upper left corner) and the end (left
side of the sequence) fit together after error accumulation over 29
images. Also the right angles have been determined very well in
spite of the relatively large areas where we could not match due
to occlusions mostly by the palm trees.

In Figures 6 and 7 additional visualizations are given, in Figure
6 from two actual camera positions (image 11, cf. also Figure 8
upper left image, and 26) and in the second from a position above
one of the facade planes. The facade image for the right facade
in Figure 5 derived from the ten images given in Figure 8 is given
in Figure 9. First, the average image shown at the bottom makes
clear by means of the circular streaks how large the influence of
radial distortion is for some of the images. (Please note that the
images with the largest distortions look from the side onto the
plane, strongly amplifying the effect.) Overall, one can see that
the average is not acceptable. This is due to the ghost images of
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Figure 3. 3D points, colored according to the pixels, facade planes and cameras (green pyramids; cf. Figure 2) derived from the images
given in Figure 1 and the 3D model in Figure 2

Figure 4. Facade image derived from the six images given in Figure 1 – left: average; center: median; right: consensus

Figure 5. 3D points (red), facade planes, and cameras (medium
sized circle around the fountain in the center) derived from noth-
ing but uncalibrated images, ten of them showing the facade on
the right hand side given in Figure 8.

the occluding objects, but also because of a not precise enough es-
timation of the bias of the brightness between the average image
and the individual images. The latter stems from the unmodeled
occlusions which lead to estimating wrong biases from pixels rep-

resenting different objects. The latter problem could only be dealt
with by robustly recursively estimating biases and occluding ob-
jects, which is non-trivial and on our agenda for further research.

Figure 7. 3D points, colored according to the pixels, facade
planes and cameras (green pyramids; cf. Figure 2) from a view
above the facade on the right hand side in Figure 5
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Figure 6. 3D points, colored according to the pixels, facade planes and cameras (green pyramids; cf. Figure 2) from the view of image
11 (left; cf. also Figure 8 upper left image) and 26 (right)

Opposed to the average, both the median and the consensus do
much better, even though both are not able to penetrate the vege-
tation in many instances. If the vegetation is dense, this is not pos-
sible at all, but the problem could partly be alleviated by means
of more images from different positions. Concerning median and
consensus, there are minor, yet characteristic differences. One
of the largest can be seen left of the center. The first leaf of the
palm tree to the left is mostly eliminated by the consensus, but not
by the median, as the former uses redundant information from a
larger number of images.

5. CONCLUSIONS

We have shown how combining projective reconstruction with
robust techniques and bundle adjustment including covariance in-
formation can be used to fully automatically generate textured 3D
models of urban scenes from nothing but (possibly uncalibrated)
perspective images also for larger numbers of wide-baseline im-
ages. These still incomplete 3D models can be the basis for high
quality visualizations. Though, at the moment lots of additional
manual efforts are needed for a practically satisfying outcome.

One way to proceed is to add detailed geometry by employing
semantic information, e.g., by 3D extraction of the windows on
the facades (Mayer and Reznik, 2006). After a least-squares fit of
the derived planes to all inliers, it will be meaningful to compare
the achieved results to ground truth information.

A scientifically interesting path is the SIFT operator (Lowe,
2004) or similar for matching wide-baseline images, as it can
deal with orientation and scale differences. The combination with
least-squares matching could lead to a broader scope. Though,
first tests show that for our limited setup assuming only weak
rotation (�20�) and scale difference (�30%), we outperform
(Lowe, 2004) as we have a more limited search space.

We have experimented with plane sweeping (Baillard and Zis-
serman, 1999; Werner and Zisserman, 2002), here based on least-
squares, to improve the plane parameters derived by RANSAC,
but found that for stronger occlusions it is difficult to estimate the
bias in brightness. Robust estimation combining, e.g., consensus,
with bias determination could be a way to proceed.

Finally, we want to make better use of the information of the
planes, e.g., by extending and intersecting planes and checking
the newly created planes via homographies, thereby closing gaps.
We also plan to employ the intersection lines to improve the deter-
mination of the vertical direction, which can be weak for models
where mostly walls in one horizontal direction are visible, such
as for the Hradschin example.
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Böhm, J., 2004. Multi Image Fusion for Occlusion-Free Façade Tex-
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Figure 8. Ten images of Plaza Real in Barcelona from which the facade images given in Figure 9 have been derived

Figure 9. Facade image derived from the ten images given in Figure 8 – bottom: average; center: median; top: consensus
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