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ABSTRACT

For automatic processing of point clouds their segmentation is one of the most important processes. The methods based
on curvature and other higher level derivatives often lead to over segmentation, which later needs a lot of manual editing.
We present a method for segmentation of point clouds using smoothness constraint, which finds smoothly connected areas
in point clouds. It uses only local surface normals and point connectivity which can be enforced using either k-nearest
or fixed distance neighbours. The presented method requires a small number of intuitive parameters, which provide a
tradeoff between under- and over-segmentation. The application of the presented algorithm on industrial point clouds
shows its effectiveness compared to curvature based approaches.

1 INTRODUCTION

1.1 Problem statement

Segmentation is the process of labeling each measurement
in a point cloud, so that the points belonging to the same
surface or region are given the same label. For the problem
of industrial reconstruction the point cloud is usually ac-
quired using a laser scanner. Unlike structured light based
instruments which provide 2 1

2D data, most of the laser
scanners provide an unstructured point cloud. Even in the
case of 2 1

2D range images, once two or more such images
have been registered, the resulting data loses its 2 1

2D char-
acter and has to be represented as an unstructured 3D point
cloud. Based on these observations the presented method
would work only with unstructured point clouds, and other
data representations can be easily converted to this format
if required.

1.2 Previous work

Different approaches for segmentation suggested in litera-
ture differ mainly in the method or criterion used to mea-
sure the similarity between a given set of points and hence
for making the grouping decisions. Once such a similar-
ity measure has been defined, segments can be obtained by
grouping together the points whose similarity measure is
within given thresholds and which are spatially connected.
Most of the segmentation methods presented in the liter-
ature are for depth-maps as due to their 2 1

2D nature op-
erations from traditional image processing can be directly
applied.

Three main varieties of range segmentation algorithms are
discussed below:

1.2.1 Edge-based segmentation Edge based segmen-
tation algorithms have two main stages: edge detection

which outlines the borders of different regions, followed
by the grouping of the points inside the boundaries giving
the final segments. Edges in a given depth map are defined
by the points where changes in the local surface proper-
ties exceed a given threshold. The local surface properties
mostly used are surface normals, gradients, principal cur-
vatures, or higher order derivatives. Some of the typical
variations on the edge-based segmentation techniques are
reported by Bhanu et al. (1986); Sappa and Devy (2001);
Wani and Arabnia (2003).

1.2.2 Surface-based segmentation The surface based
segmentation methods use local surface properties as a sim-
ilarity measure and merge together the points which are
spatially close and have similar surface properties. These
methods are relatively less sensitive to the noise in the data,
and usually perform better when compared to edge based
methods.

For surface based segmentation methods two approaches
are possible: bottom-up and top-down. Bottom up ap-
proaches start from some seed-pixels and grow the seg-
ments from there based on the given similarity criterion.
The selection of the seed points is important because the
final segmentation results are dependent on it. Top-down
methods start by assigning all the pixels to one group and
fitting a single surface to it. Then as long as a chosen figure
of merit for fitting is higher than a threshold they keep on
subdividing the region Parvin and Medioni (1986); Xiang
and Wang (2004). Most of the reported methods for range
segmentation use a bottom-up strategy.

1.2.3 Scanline-based segmentation The third category
of range segmentation methods is based on scan-line group-
ing. In the case of range images each row can be con-
sidered a scan-line, which can be treated independently
of other scan-lines in the first stage. A scan-line group-
ing based segmentation method is presented by Jiang et al.
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(1996) for the extraction of planar segments from the range
image. It uses the fact that a scan line on any 3D plane
makes a 3D line. It detects the line segments in the first
stage, followed by the grouping of the adjacent lines with
similar properties to form planar segments. Some typical
variations on this method are presented by Natonek (1998)
and Khalifa et al. (2003). Sithole and Vosselman (2003)
have used profiles in different directions for the segmen-
tation of air-borne laser scanner data. These profiles are
generated by collecting points within a cylindrical volume
around a given direction.

A comparison of methods for finding planar segments in
range images was done by Hoover et al. (1996). Based
on his comparison framework, two methods for segmen-
tation of range images into curved regions were compared
by Powell et al. (1998). The first segmentation method
of Besl and Jain (1988) (hereafter named BJ method) has
two stages. The first stage of coarse segmentation is based
on estimating the mean and Gaussian curvature for each
point and using their signs for classification into 8 differ-
ent surface types. This rough segmentation is refined by
the second step of region growing, which is based on fit-
ting bivariate polynomial surfaces. The comparison found
the BJ method to result in severe over-segmentation even
on very simple scenes with low noise. The major reason
for this failure was the error in the estimation of principal
curvatures from the noisy range data. The BJ segmenta-
tion method has 38 different parameters, 10 of which were
iteratively optimized to get the best possible results. The
speed of this method was very slow, and even on range
images which do not have a high cost for searching the
neighborhood points, it took more than 6 hours.

The second segmentation method used for the comparison
was by Jiang et al. (1996) (hereafter JBM method). This
method also consists of two stages. In the first stage the
scan lines of the range image are segmented into a set of
curves by using a splitting method. In the second stage
these edges are grouped together to make surfaces. This
method has 10 parameters and the comparison found it to
perform much better than the BJ method, both in terms of
time (30 seconds compared to 6 hours of the BJ method)
and the quality of results.

Looking at the comparison, the JBM method would be a
good choice for the segmentation of industrial scenes, but
there are some serious limitations. First of all, the method
is based on the grouping of scan lines which do not exist
for unstructured point clouds. For airborne laser scanner
data similar scan lines created by collecting and joining
points in a tubular volume have been used by Sithole and
Vosselman (2003) for segmentation, but there the data is
2 1

2D . Extensions of this idea for 3D point clouds would
require choosing a few preferred directions for scan-lines,
making the results of segmentation orientation dependent.

1.3 Problems with existing methods

We observed the following problems with existing seg-
mentation techniques as applied to our problem of process-
ing industrial point clouds:

Point cloud

Normals + residual
calculation

Region growing

Segmentation

Figure 1: Flowchart of the segmentation algorithm.

1. Many approaches are tailored only for planar surfaces,
which are too limiting for industrial scenes.

2. Although principal curvature based approaches can
handle curved objects, the unreliable estimation of the
curvature from noisy point clouds leads to high rates
of over-segmentation. Furthermore, the objects like
torus and sphere are always over-segmented because
they are not one of the 8 different surface classes iden-
tifiable based on the signs of the principal curvatures.
The sensitivity of curvature estimates from range data
has been analyzed in Trucco and Fisher (1995), where
it is suggested that at least for planar segmentation of
range data principal curvatures should not be used.

3. Many segmentation methods have a large number of
parameters, whose meaning and effects on final seg-
mentation are not always clear. Most of the compar-
isons used separate iterative optimization methods to
find the best set of parameters.

4. Most of the methods are tailored for application to
2 1

2D range images. Sometimes their extension to 3D
unstructured point clouds is quite simple like replace-
ment of 8-neighbors with k-nearest neighbors. But
in other cases, like defining scan lines for 3D point
clouds, there is no straight forward extension, and
most approaches introduce new limitations.

5. There are some model-based approaches to segmenta-
tion which segment and recognize surface types at the
same time Marshall et al. (2001). These approaches
do not fit in our pipeline of separate segmentation and
object recognition through Hough transform and thus
cannot be applied to our problem.

1.4 Objectives and motivation

Noting these weaknesses we decided to develop a sim-
ple segmentation strategy that follows the following guide-
lines:
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1. We will assume a raw unstructured 3D point cloud
as the input to the algorithm. Although the assump-
tions about structure of data (range image, TIN etc)
can make the job of neighbor search faster, they at the
same time make the algorithm less general purpose.

2. We will use only surface normals as they can be reli-
ably estimated even in the presence of noise (provided
the neighborhood is sufficiently big to average out ef-
fects of noise).

3. The algorithm should allow the user to choose be-
tween the degree of over and under-segmentation by
changing a few parameters. In our modeling pipeline
the segmentation is followed by the stage of object
recognition, which processes each segment separately.
That stage can detect multiple objects in one segment
(under segmentation), but if an object is split into mul-
tiple segments (over-segmentation), its detection and
correction would be more difficult.

4. The algorithm should have a low time and space com-
plexity. Furthermore, we aim to use a minimum num-
ber of parameters having a physically intuitive mean-
ing.

2 SEGMENTATION ALGORITHM

As stated earlier the basic purpose of the presented seg-
mentation algorithm is to subdivide the input point cloud
into meaningful subsets, while avoiding both under and
over-segmentation with a preference for under-segmentation.

The segmentation method has two steps, Normal estima-
tion and region growing. The details of these steps are
given in algorithm 1 and further explained below. See also
Figure 1.

2.1 Normal estimation

The normal for each point is estimated by fitting a plane to
some neighboring points (Figure 2(c)). This neighborhood
can be specified in two different methods.

K nearest neighbors (KNN) In this method for a given
point we select the k points from the point cloud hav-
ing the minimum distance. The distance metric used
can be Euclidean, Manhattan, or any other distance
metric obeying the triangle inequality.

As the number of points k is fixed, the method adapts
the area of interest (AOI) according to the point den-
sity. Assuming that the point density is an indicator
of the measurement noise (which is usually the case
as for a given laser scanner the density falls down in-
versely with the distance and the angle of incidence),
this results in overall better estimation of the normals
as a bigger AOI is used in the areas of lower point
density (Figure 2(a) and 2(b)). Moreover, this method
always uses the given number of points and avoids
degenerate cases (e.g. a point having no neighbors).

Algorithm 1 Segment a given point cloud using smooth-
ness constraint

Inputs: Point cloud = {P}, point normals {N}, residu-
als {r}, neighbor finding function Ω(.), residual thresh-
old rth, angle threshold θth

Initialize Region List {R} ← Φ, Available points list
{A} ← {1 · · ·Pcount}
while {A} is not empty do

Current region {Rc} ← ∅, Current seeds{Sc} ← Φ
Point with minimum residual in {A} → Pmin

Pmin
insert→ {Sc}&{Rc}

Pmin
remove→ {A}

for i = 0 to size({Sc}) do
Find nearest neighbors of current seed point
{Bc} ← Ω(Sc{i})
for j = 0 to size({Bc}) do

Current neighbor point Pj ← Bc{j}
if {A} contains Pj and
cos−1 (|〈N{Sc{i}},N{Pj}〉|) < θth then

Pj
insert→ {Rc}

Pj
remove→ {A}

if r{Pj} < rth then
Pj

insert→ {Sc}
end if

end if
end for

end for
Add current region to global segment list {Rc}

insert→
{R}

end while
Sort {Rc} according to the size of the region.
Return {Rc}

Search for KNN can be optimized using different space
partitioning strategies like k-d trees Arya et al. (1998);
Goodman and O’Rourke (1997).

Fixed distance neighbors (FDN) This method uses a given
fixed AOI, and for each query point, selects all the
points within this area. The distance metric used is
usually Euclidean but can be changed similar to KNN.
For FDN search the number of points changes accord-
ing to the density of the point cloud. As the number
of points is directly proportional to the density of the
points in the neighborhood, this method does not have
the adaptive behavior of KNN.

Compared to KNN, here the number of points is less
in the areas of low density (high noise) and as a result
the estimation of the normals is on the whole contains
more noise.

This method is more suitable if the density of the
points does not change a lot throughout the data. Sim-
ilar to KNN there are optimized methods for doing
FDN searching Goodman and O’Rourke (1997); Willard
(1985)

One of the above described methods for neighborhood search
are also used during the stage of region growing (Section 2.2).
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Figure 2: (a-b)Adaptive change in selection area for k-
neighbors for different point densities (a) hight density,
50 KNN (b) low density, 50 KNN (c) Normal estima-
tion by fitting a plane to the points in the neighborhood
(d)Residual of the plane fitting gives an approximation to
the local surface curvature

2.1.1 Plane fitting To fit any surface to a set of given
points, in a least squares sense, we want to find that set
of parameters that minimizes the sum of squares of the or-
thogonal distances of the points from the estimated surface.
In general this is a nonlinear least squares problem, but as
shown below, in case of planes this can be reduced to an
eigenvalue problem.

The plane can be parameterized with its normal n =
(
nx ny nz

)
,

and its distance from the origin ρ. This is also called Hesse
normal form of the plane. The distance of any given point
p =

(
px py pz

)
from the plane is given by n · p − ρ

provided n · n = 1. This is a constrained problem and can
be solved using Lagrange multipliers. The solution results
in an eigen-value problem for more discussion see Hoppe
et al. (1992).

2.1.2 Residual as approximate curvature The resid-
ual in the plane fitting can arise either from noise or from
nonconformity of the neighborhood of a point to the planar
model. The second case hints that the residual can be used
to find areas of high curvature. Of course we do not get the
principal curvatures and their direction from this approx-
imation, but still the edges and the areas of high surface
normal variation can be detected based on high residual
values of plane fitting.

To check the relationship between curvature and residual
of plane fitting we generated data consisting of cylinders
of different radii. The normals for these cylinders were
estimated by fitting planes to 40 k-nearest neighbors, and
then plotted against 1

r2 (Figure 2(d)). There we see that for
the case of no noise the residuals are quite similar to 1

r2 ex-

(a) (b) (c)

Figure 3: Comparison of segmentation for a toroidal sur-
face (a) point cloud (b) segmentation using presented ap-
proach (c)curvature based segmentation

cept a difference of scale. In the presence of noise the trend
remains the same but in addition to a scale factor there is
also a shift related to the amount of noise. This supports
our idea of using residuals of plane fitting as indicator of
areas of high curvature. The regions of high curvature are
detected by introduction of rth in Algorithm 1.

In Figure 4(a), 4(e), 4(g) we show the residual of plane
fitting as color. As expected the areas on edges and points
of high curvature have higher residuals.

2.2 Region growing

The next step in the segmentation process is region grow-
ing. This stage uses the point normals and their residu-
als, in accordance with user specified parameters to group
points belonging to the smooth surfaces. This grouping
tries to avoid over-segmentation at the cost of under-segmentation.

This stage is based on the enforcement of these two con-
straints.

Local connectivity The points in a segment should be lo-
cally connected. This constraint would be enforced
by using only the neighboring points (through KNN
or FDN) during region growing.

Surface smoothness The points in a segment should lo-
cally make a smooth surface, whose normals do not
vary “too much” from each other. This constraint
would be enforced by having a threshold (θth) on the
angles between the current seed point and the points
added to the region. Additionally, a threshold on resid-
ual values rth makes sure that smooth areas are bro-
ken on the edges.

The process of region growing proceeds in the following
steps.

1. Specify a residual threshold rth. Alternatively, cal-
culate this threshold automatically using a specified
percentile of the sorted residuals (95+% can be a rep-
resentative number).

2. Define a smoothness threshold in terms of the angle
between the normals of the current seed and its neigh-
bors. If the smoothness angle threshold is expressed
in radians it can be enforced through dot product as
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follows ‖np · ns‖ > cos(θth). As the direction of
normal vector has a 180o ambiguity we have to take
the absolute value of the dot product.

3. If all the points have been already segmented go to
step 7. Otherwise select the point with the minimum
residual as the current seed.

4. Select the neighboring points of the current seed. Use
KNN or FDN with the specified parameters for this
purpose. The points that satisfy condition 2 add them
to current region. The points whose residuals are less
than rth add them to the list of potential seed points.

5. If the potential seed point list is not empty, set the
current seed to the next available seed, and go to step
4.

6. Add the current region to the segmentation and go to
step 3.

7. Return the segmentation result

Region growing tries to group points belonging to smooth
surface patches together. Although, we want to avoid over-
segmentation but still we do not want the whole point cloud
coming out as one segment. The inclusion of residual thresh-
old (rth) makes sure, that we can strike a balance between
the above mentioned extremes. As rth → 0 we go towards
more segments with the extreme case being each point be-
longing to one segment. Similarly as rth → ∞ we have
less segments and the extreme case of the whole point be-
longing to one segment.

We can differentiate between the following cases which
may lead to the start of a new segment during the process
of region growing.

Step edge A step edge is defined by two planes which
have the same orientation but different offset from the
origin. The segmentation algorithm leads to their sep-
aration provided the offset between planes is greater
than the AOI for the neighborhood search. For KNN
this depends both on the value k and point density,
while for FDN it is equal to the fixed distance speci-
fied by the user.

Intersection edge A intersection edge is defined by the
intersection of two surfaces, whose surface normal at
the intersection line make an angle greater than the
given threshold (cos−1 n1 ·n2 > θcurv). An example
of such an edge would be the edge coming from the
intersection of the two planar sides of a box.
The surfaces on both side of the edge would be seg-
mented because of the smoothness constraint (θth).
Additionally the points on the edge would be marked
unsuitable for inclusion in the next generation seeds,
as they will have residuals greater than rth.

The effectiveness of the method to detect smoothly vary-
ing surface patches is shown best in Figure 3. While the
method of curvature based segmentation leads to high over-
segmentation (Figure 3(c)), our method divides the data in
only one segment (Figure 3(b).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Results of segmentation (a) residuals of data set
1 (b) segmentation 1 (c) data set 2 (d) segmentation 2 (e)
residuals of data set 3 (f) segmentation 3 (g) residuals 4
(h)segmentation 4

3 RESULTS

The presented algorithm was applied to four sets of point
clouds acquired from four industrial sites. The results are
shown in Figure 4. For these results the θth was set to
15o and 30 nearest neighbors were used (k = 30); rth

was automatically calculated by the 98th percentile of the
plane fitting residuals. In the results we see both goals
of grouping smooth areas and avoiding over-segmentation
have been successfully achieved. There are areas where
large under-segmentation occurred, but it can be explained
based on the values the parameters θth and rth.

For example in Figure 4(d) a whole U-section of pipe is
segmented as one region, because it is smoothly connected.
Similarly in Figure 4(h) the L-junctions of pipes have been
grouped as one region rather than being split into two pipes
and one curve. As for the presented results the residual
threshold rth was calculated using the percentile method,
it leads to data dependent values. In Figure 5 we took two
segments from the results of Figure 4(f) and segmented
them again. As now the data is more limited the threshold
rth is lower and more strict. This leads to segmentation
having more regions along with some over-segmentation.
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Figure 5: Effects of changing rth on the final segmenta-
tion. Two segments are re-segmented but with lower rth

resulting in more segments

Thus by choosing a proper value for rth the required bal-
ance between under and over-segmentation can be achieved.

4 CONCLUSIONS

A segmentation algorithm for dividing a given unstruc-
tured 3D point cloud into a set of smooth surface patches
has been presented. The algorithm uses only surface nor-
mals as a measure of local geometry, which are estimated
by fitting a plane to the neighborhood of the point. As fit-
ting of higher order surfaces to noisy point clouds is quite
error prone, we approximate the local curvature by the
residual of plane fitting. The method has two parameters
(θth and rth), which have intuitively clear meaning. Both
k nearest neighbor and fixed distance neighbor variations
of the algorithm are possible. The results on point clouds
acquired from industrial sites were presented that show the
effectiveness of the method and its ability to choose be-
tween under-segmentation and over-segmentation.
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