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ABSTRACT: 
 
Camera calibration has always been an essential component of photogrammetric measurement, with self-calibration nowadays being 
an integral and routinely applied operation within photogrammetric triangulation, especially in high-accuracy close-range 
measurement. With the very rapid growth in adoption of off-the-shelf digital cameras for a host of new 3D measurement 
applications, however, there are many situations where the geometry of the image network will not support robust recovery of 
camera parameters via on-the-job calibration. For this reason, stand-alone camera calibration has again emerged as an important 
issue in close-range photogrammetry, and it also remains a topic of research interest in computer vision. This paper overviews the 
current approaches adopted for camera calibration in close-range photogrammetry and computer vision, and discusses operational 
aspects for self-calibration. Also, the results of camera calibrations using different algorithms are summarized. Finally, the impact of 
chromatic aberration on modelled radial distortion is touched upon to highlight the fact that there are still issues of research interest 
in the photogrammetric calibration of consumer-grade digital cameras.   
 
 

1. INTRODUCTION 

Accurate camera calibration and orientation procedures are a 
necessary prerequisite for the extraction of precise and reliable 
3D metric information from images. A camera is considered 
calibrated if the principal distance, principal point offset and 
lens distortion parameters are known. In many applications, 
especially in computer vision (CV), only the focal length is 
recovered while for precise photogrammetric measurements all 
the calibration parameters are generally employed. Various 
algorithms for camera calibration have been reported over the 
years in the photogrammetry and CV literature. The algorithms 
are generally based on perspective or projective camera models, 
with the most popular approach being the well-known self-
calibrating bundle adjustment, which was first introduced to 
close-range photogrammetry in the early 1970s. Analytical 
camera calibration was a major topic of research interest in 
photogrammetry over the next decade, though in research terms 
is attracts less attention today. 
 
One plausible reason for camera calibration not being a current 
‘hot’ research topic is certainly that analytical self-calibration in 
many respects reached maturity in the mid 1980s. Self-
calibration was also of research interest in the early days of 
digital cameras, but maturity could be said to have again been 
reached in the mid 1990s with the development of fully 
automated vision metrology systems (e.g. Ganci & Handley, 
1998). In such systems, calibration parameters are essentially 
viewed as ‘nuisance parameters’, which are necessary but not of 
any great interest in their own right. This has recently changed, 
however, with the application of consumer-grade digital 
cameras to a host of measurement tasks in which the network 
geometry is not conducive to self-calibration. These include 
accident reconstruction and some heritage recording projects, 
for example. There is consequently a renewed interest in stand-
alone photogrammetric calibration approaches, especially fully 
automatic calibration. 

Camera calibration continues to be an area of active research 
within the CV community, with a perhaps unfortunate 
characteristic of much of the work being that it pays too little 
heed to previous findings from photogrammetry. Part of this 
might well be explained in terms of a lack of emphasis on (and 
interest in) accuracy aspects, and a basic premise that nothing 
whatever needs to be known about the camera which is to be 
‘calibrated’ within a linear projective rather than Euclidean 
scene reconstruction.  
 
Much could be said on the continued misrepresentation of 
photogrammetric approaches in CV literature as being complex 
and not amenable to full process automation, the handling of 
zoom lenses, or unstable interior orientation (IO), etc. However, 
such issues will not be addressed here and the authors will 
concentrate upon camera calibration techniques that have 
potential for practical application. In many respects it is 
difficult to comprehensively compare calibration approaches 
from the two communities, since the focus of attention can be 
so different in each. Whereas a photogrammetric calibration 
might be designed to support a subsequent object space 
measurement demanding 1:20,000 accuracy, a calibration 
requirement for a structure from motion application may need 
to position object points to an accuracy of only, say, 5% of the 
camera-to-object distance. The focus of this paper will be upon 
calibration approaches that lend themselves to photogrammetric 
application, even at a low accuracy level. 
 
There is an extensive body of literature on the calibration of 
digital cameras, with topics ranging from overall reviews 
(Fryer, 1996; Fraser, 2001) to general investigations (Bösemann 
et al., 1990; Fraser & Shortis, 1995; Jantos et al., 2002), low-
cost digital cameras (Kunii & Chikatsu, 2001; Läbe & Förstner, 
2004; Cronk et al., 2006), stability of parameters (Shortis & 
Beyer, 1997; Peipe & Stephani, 2003; Läbe & Förstner, 2004), 
behaviour of IO parameters (Wiley & Wong, 1995; Läbe & 
Förstner, 2004) and accuracy aspects (D’Apuzzo & Maas, 
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1999; Salvi et al., 2002; Fraser & Al-Ajlouni, 2006). In order to 
recall and reiterate salient and occasionally overlooked 
principles of camera calibration, common models and methods 
employed will now be reviewed, with selected algorithms being 
tested and the results analyzed.  

 
2. CALIBRATION METHODS AND MODELS 

In photogrammetric terms, departures from collinearity can be 
modelled such that the basic equations of perspective projection 
can be applied for the calibration process. The nature of the 
application and the required accuracy can dictate which of two 
basic underlying functional models should be adopted:  

• A camera model based on perspective projection, where the 
implication is that the IO is stable (at least for a given focal 
length setting) and that all departures from collinearity, 
linear and non-linear, can be accommodated. This 
collinearity equation-based model generally requires five or 
more point correspondences within a multi-image network 
and due to its non-linear nature requires approximations for 
parameter values for the least-squares bundle adjustment in 
which the calibration parameters are recovered.  

• A projective camera model supporting projective rather than 
Euclidean scene reconstruction. Such a model, characterized 
by the Essential matrix and Fundamental matrix models, can 
accommodate variable and unknown focal lengths, but needs 
a minimum of 6 - 8 point correspondences to facilitate a 
linear solution, which is invariably quite unstable. Non-
linear image coordinate perturbations such as lens distortion 
are not easily dealt with in such models. 

 
Further criteria can also be used to classify camera calibration 
methods:  

• Implicit versus explicit models. The photogrammetric 
approach, with its explicit physically interpretable 
calibration model, is contrasted against implicit models used 
in structure from motion algorithms which correct image 
point positions in accordance with alignment requirements 
of a real projective mapping (Hall et al., 1982; Wei & De 
Ma, 1994).  

• Methods using 3D rather than planar point arrays (Triggs, 
1998; Zhang, 2000). Whereas some CV methods and 
photogrammetric self-calibration can handle both cases – 
with appropriate network geometry – models such as the 
Essential matrix cannot accommodate planar point arrays.  

• Point-based versus line-based methods (Fryer and Brown, 
1986; Caprile & Torre, 1990). Point-based methods are 
more popular in photogrammetry, with the only line-based 
approach of note, namely plumbline calibration, yielding 
parameters of lens distortion, but not of IO. 

 
A more specific classification can be made according to the 
parameter estimation and optimization technique employed: 

• Linear techniques are quite simple and fast, but generally 
cannot handle lens distortion and need a control point array 
of known coordinates. They can include closed-form 
solutions, but usually simplify the camera model, leading to 
low accuracy results. The well-known DLT (Abdel-Aziz & 
Karara, 1971), which is essentially equivalent to an 
Essential matrix approach, exemplifies such a technique. 

• Non-linear techniques such as the extended collinearity 
equation model, which forms the basis of the self-

calibrating bundle adjustment, are most familiar to 
photogrammetrists. A rigorous and accurate modelling of 
the camera IO and lens distortion parameters is provided 
(Brown, 1971) through an iterative least-squares estimation 
process.  

• A combination of linear and non-linear techniques where a 
linear method is employed to recover initial approximations 
for the parameters, after which the orientation and 
calibration are iteratively refined (Faugeras & Toscani, 
1986; Tsai, 1987; Weng et al., 1992; Heikkilä & Silven, 
1997). This two-stage approach has in most respects been 
superceded for accurate camera calibration by the bundle 
adjustment formulation above, which is also implicitly a 
two-stage process.  

 
3. CAMERA CALIBRATION IN COMPUTER VISION 

The calibration models for machine and computer vision have 
traditionally employed reference grids, the calibration matrix K 
being determined using images of a known object point array 
(e.g. a checkerboard pattern). Commonly adopted methods are 
those of Tsai, (1987), Heikkila & Silven (1997) and Zhang 
(2000). These are all based on the pinhole camera model and 
include terms for modelling radial distortion. 
 
Tsai’s calibration model assumes that some parameters of the 
camera are provided by the manufacturer, to reduce the initial 
guess of the estimation. It requires n features points (n > 8) per 
image and solves the calibration problem with a set of n linear 
equations based on the radial alignment constraint. A second 
order radial distortion model is used while no decentering 
distortion terms are considered. The two-step method can cope 
with either a single image or multiple images of a 3D or planar 
calibration grid, but grid point coordinates must be known. 
 
The technique developed by Heikkila & Silven (1997) first 
extracts initial estimates of the camera parameters using a 
closed-form solution (DLT) and then a nonlinear least-squares 
estimation employing a the Levenberg-Marquardt algorithm is 
applied to refine the IO and compute the distortion parameters. 
The model uses two coefficients for both radial and decentering 
distortion, and the method works with single or multiple images 
and with 2D or 3D calibration grids.  
 
Zhang’s calibration method requires a planar checkerboard grid 
to be placed at different orientations (more than 2) in front of 
the camera. The developed algorithm uses the extracted corner 
points of the checkerboard pattern to compute a projective 
transformation between the image points of the n different 
images, up to a scale factor. Afterwards, the camera interior and 
exterior parameters are recovered using a closed-form solution, 
while the third- and fifth-order radial distortion terms are 
recovered within a linear least-squares solution. A final non-
linear minimization of the reprojection error, solved using a 
Levenberg-Marquardt method, refines all the recovered 
parameters. Zhang’s approach is quite similar to that of Triggs 
(1998), which requires at least 5 views of a planar scene. 
 
The term self-calibration (or auto-calibration) in CV is used 
when no calibration object is employed and the metric 
properties of the camera and of the imaged scene are recovered 
from a set of ‘uncalibrated’ images, using constraints on the 
camera parameters or on the imaged scene. Self-calibration is 
generally adopted in 3D modelling to upgrade a projective 
reconstruction to one that is metric (i.e. determined up to an 
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arbitrary Euclidean transformation and a scale factor). In 
general, three types of constraints are applied (separately or in 
conjunction) to perform self-calibration: scene constraints, 
camera motion constraints, or constraints on the camera 
intrinsic parameters. All of these have been tried, but in the case 
of an unknown camera motion and unknown scene, only 
constraints on the IO can be used.  
 
The majority of the so-called self-calibration algorithms 
described in the CV literature treat intrinsic camera parameters 
as constant but unknown (Faugeras et al., 1992; Hartley, 1994; 
Pollefeys & Van Gool, 1996; Heyden & Åström, 1996; Triggs, 
1997).  The problem of variable IO parameters has also been 
studied by Pollefeys et al. (1997) and Heyden & Åström (1997). 
Self-calibration can be problematic with certain critical motion 
sequence networks (Sturm, 1997), where the motion of the 
camera is not generally sufficient to allow for the recovery of 
calibration parameters and an ambiguity remains in the 3D 
reconstruction. Moreover only the focal length is usually 
determined while lens distortion and other internal parameters 
are neglected, assumed known, or considered as unknown and 
are recovered without any statistical testing for significance. 
 
From the foregoing discussion, one feature of CV approaches to 
camera calibration is apparent: there is at yet no accepted one-
step method that is either reasonably universal or amenable to 
full automation. This is not really surprising given the imaging 
hardware characteristics (e.g. variable zoom lenses) and image 
geometries adopted across the spectrum of CV applications. 

 
4. PHOTOGRAMMETRIC CAMERA CALIBRATION 

4.1 Overview 

Different camera models have been formulated and used in 
close-range photogrammetry, but generally sensor orientation 
and calibration is performed with a perspective geometrical 
model by means of the bundle adjustment (Brown, 1971). A 
review of methods and models of the last 50 years is provided 
in Clarke & Fryer (1998). The basic mathematical model is 
provided by the non-linear collinearity equations, usually 
extended by correction terms (i.e. additional parameters or APs) 
for the IO and radial and decentering lens distortion (Fraser, 
1997; Gruen & Beyer, 2001). The bundle adjustment provides a 
simultaneous determination of all system parameters along with 
estimates of the precision and reliability of the extracted 
calibration parameters. Also, correlations between the IO and 
exterior orientation (EO) parameters, and the object point 
coordinates, along with their determinability, can be quantified.  
 
A favourable network geometry is required, i.e. convergent and 
rotated images of a preferably 3D object should be acquired, 
with well distributed points throughout the image format. If the 
network is geometrically weak, correlations may lead to 
instabilities in the least-squares estimation. The use of 
inappropriate APs can also weaken the bundle adjustment 
solution, leading to over-parameterisation, in particular in the 
case of minimally constrained adjustments (Fraser, 1982).  
 
The self-calibrating bundle adjustment can be performed with 
or without object space constraints, which are usually in the 
form of known control points. A minimal constraint to define 
the network datum is always required, though this can be 
through implicit means such as inner constraint, free-network 
adjustment, or through an explicit minimal control point 

configuration (arbitrary or real). Calibration using a testfield is 
possible, though one of the merits of the self-calibrating bundle 
adjustment is that it does not require provision of any control 
point information. Recovery of calibration parameters from a 
single image (and a 3D testfield) is also possible via the 
collinearity model, though this spatial resection with APs is not 
widely adopted due to both the requirement for an accurate 
testfield and the lower accuracy calibration provided. 
 
One of the traditional impediments to wider application of the 
self-calibrating bundle adjustment outside the photogrammetry 
community has been the perception that the computation of 
initial parameter approximations for the iterative least-squares 
solution is somehow ‘difficult’. This is certainly no longer the 
case, and in many respects was never the case. As will be 
referred to later, self-calibration via the bundle adjustment can 
be a fully automatic process requiring nothing more than 
images recorded in a suitable multi-station geometry, an initial 
guess of the focal length (and it can be a guess), and image-
identifiable coded targets which form the object point array. 
 
4.2 The Additional Parameters (APs) 

The most common set of APs employed to compensate for 
systematic errors in CCD cameras is the 8-term ‘physical’ 
model originally formulated by Brown (1971). This comprises 
IO parameters of principal distance and principal point offset 
(xp, yp), as well as the three coefficients of radial and two of 
decentering distortion. The model can be extended by two 
further parameters to account for affinity and shear within the 
image plane, but such terms are rarely if ever significant in 
modern digital cameras. Numerous investigations of different 
sets of APs have been performed over the years (e.g. Abraham 
& Hau, 1997), yet this model still holds up as the optimal 
formulation for digital camera calibration.  
 
The three APs used to model radial distortion Δr are generally 
expressed via the odd-order polynomial Δr = K1r3 + K2r5 + K3r7, 
where r is the radial distance. A typical Gaussian radial 
distortion profile Δr is shown in Figure 1, which illustrates how 
radial distortion can vary with focal length. The coefficients Ki 
are usually highly correlated, with most of the error signal 
generally being accounted for by the cubic term K1r3. The K2 
and K3 terms are typically included for photogrammetric (low 
distortion) and wide-angle lenses, and in higher-accuracy vision 
metrology applications. The commonly encountered third-order 
barrel distortion seen in consumer-grade lenses is accounted for 
by K1. Recent research has demonstrated the feasibility of 
empirically modelling radial distortion throughout the 
magnification range of a zoom lens as a function of the focal 
length written to the image EXIF header (Fraser & Al-Ajlouni, 
2006). 
 
Decentering distortion is due to a lack of centering of lens 
elements along the optical axis. The decentering distortion 
parameters P1 and P2 (Brown 1971) are invariably strongly 
projectively coupled with xp and yp. Decentering distortion is 
usually an order of magnitude or more less than radial distortion 
and it also varies with focus, but to a much less extent, as 
indicated by the decentering distortion profiles shown in Figure 
1. The projective coupling between P1 and P2 and the principal 
point offsets increases with increasing focal length and can be 
problematic for long focal length lenses. The extent of coupling 
can be diminished through both use of a 3D object point array 
and the adoption of higher convergence angles for the images.  
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Figure 1. Radial and decentering distortion profile for a digital camera 
set at different focal length. 

 
Within the bundle adjustment, the APs can be treated as: 

• Camera- or focal setting-invariant, where one set of APs is 
used for all images from either a given camera or given 
focus setting in a multi-sensor self-calibration which 
incorporates, say, different zoom settings from the same 
camera. This is the most common AP arrangement and it can 
be applied to multi-camera as well as to single-camera self-
calibration. 

• Frame-variant, where a set of APs is used for each image, 
usually as a consequence of having a network formed by 
images from different cameras or where each image might 
have been acquired at a different zoom setting (Remondino 
& Borlin, 2003), as in robotics or machine vision 
inspections. The adoption of frame- or image-specific APs 
can be very problematic due to the strong prospects for over-
parameterisation and network adjustment singularities. This 
approach should be avoided unless there is a 3D testfield 
with control points in place. 

It is also possible to carry a combination of camera-invariant 
and image-variant APs, though there seems less practical 
justification for this with modern digital cameras. The approach 
was used in the past to model both frame-specific image 
deformation, and to constrain variations in lens distortion to be 
linear in multi-focal setting self-calibration (Fraser, 1980). 

The procedure of self-calibration using APs introduces new 
observations and unknowns into the bundle adjustment, which 
can influence the quality of the functional and stochastic model. 
The improper use of APs can weaken the condition of the 
normal equation system and adversely affect the determinability 
of all system parameters. Therefore, a statistical testing of APs 
is recommended (Gruen, 1981). This is especially so in cases 
where the network geometry is not optimal for system 
calibration or there is a strong likelihood of excessive projective 
coupling between the APs themselves, or between the APs and 
the EO parameters (high correlation between the APs and the 
object point coordinates is rarely an issue of concern). 

5. PROJECT CONSIDERATIONS  

Critical to the quality of the self-calibration is the overall 
network geometry, and especially the camera station 
configuration. Various experimental studies in close-range 
photogrammetry (e.g. Fraser, 1996; Fryer, 1996; Clarke et al., 
1998; Gruen & Beyer, 2001; El-Hakim et al., 2003) have 
confirmed that: 

• The accuracy of a network increases with increasing 
convergence angles for the imagery. Increasing the angles of 
convergence also implicitly means increasing the base-to-
depth (B/D) ratio. 

• Accuracy is enhanced by increasing the number of rays to a 
given object point, though the rate of improvement is 
proportional to the square root of the number of images 
‘seeing’ the point. Thus, the gains in precision effectively 
level off after, say, 8 rays per point. 

• Accuracy increases with the number of measured points per 
image, but the incremental improvement is small beyond a 
few tens of points. More important is that extra points within 
an image offer better prospects for modelling departures 
from collinearity throughout the full image format. 

• Self-calibration is only reliable when the network geometry 
is favourable, i.e. the camera station configuration comprises 
highly convergent images, orthogonal roll angles and a large 
number of well distributed object points. A compensation for 
departures from collinearity might well be achieved in a 
bundle adjustment with APs for a weak network, but the 
accurate and reliable recovery of representative calibration 
values is less likely to be obtained. 

• A planar object point array can be employed for camera 
calibration if the images are acquired with orthogonal roll 
angles, a high degree of convergence and, desirably, varying 
object distances. What is sought is the maximum possible 
imaging scale variation throughout the image format.  

• As mentioned, orthogonal roll angles must be present to 
break the projective coupling between IO and EO 
parameters. Although it might be possible to achieve this 
decoupling without 90o image rotations, through provision of 
a strongly 3D object point array, it is always recommended 
to have ‘rolled’ images in the self-calibration network. 

 
 

6. EXPERIMENTAL TESTS 

Selected results of experimental self-calibration tests are 
presented in this section, with three issues being briefly 
covered. The first is the distinction in attainable accuracy 
between the CV and photogrammetric approaches. The second 
highlights the often overlooked problems associated with 
inappropriate network geometry for calibration, and the third is 
included to illustrate that there remain issues of research 
interest in camera parameter modelling.    
 
6.1 Camera calibration using a 3D object 

A comparison between different methods was carried out using 
a 3D testfield and 10 images acquired with a Leica Digilux 1 
digital camera at an image resolution of 1120 x 840 pixels.  The 
3D object point array and camera station geometry are 
illustrated in Figure 2. The focal length was fixed at minimum 
zoom (widest angle) and the network included four images with 
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±90o roll angles. The following camera calibration software 
suites or algorithms were employed: 

• DLT (Abdel-Aziz & Karara, 1971), implemented at IGP-
ETH Zurich, without distortion corrections. 

• Tsai (Tsai, 1987), with the first term of radial distortion 
correction; accessed via www-cgi.cs.cmu.edu/afs/cs.cmu.edu 
/user/rgw/www/TsaiCode.html. 

• Heikkila (Heikkila & Silven, 1997), with the 2 terms for 
both radial and decentering distortion correction; available at 
www.ee.oulu.fi/~jth/calibr/.  

• Photomodeler (www.photomodeler.com), with full set of 
APs, without control points. 

• Australis (www.photometrix.com.au), with full set of APs, 
in free-network mode. 

• SGAP, implemented at IGP-ETH Zurich, with full set of 
APs, in free-network mode. 

Within the self-calibration process of Photomodeler, Australis 
& SGAP, parameter values can be constrained via initially 
assigned standard errors, while few options are available for the 
other methods. The results of the calibrations, as assessed by 
the resulting RMSE of image coordinate observations 
(triangulation misclosures) and RMSE of object point XYZ 
coordinates against their true values, are listed in Table 2. The 
recovered radial distortion profiles from each solution are also 
shown in Figure 2, but it should be recalled that from a 
photogrammetric standpoint the main quality indicator of the 
calibration is the RMSE values of object point coordinates 
(Table 2) and here it can be seen that the bundle adjustments 
yield superior results.  
 

Software/algorithm RMSE_xy 
(μm) 

RMSE_XYZ 
(mm) 

  DLT 39.7 0.287 
  Tsai 0.29 0.033 
  Heikkila 0.34 0.036 
  Bundle adjustments   
  PhotoModeler 0.36 0.01/0.01/0.02 
  Australis 0.29 0.01/0.01/0.02 
  SGAP (IGP-ETHZ) 0.30 0.01/0.01/0.02 

Table 1. Object point accuracy and residuals from the different 
calibration computations. 

 
6.2 Camera calibration using a planar target array  

A further camera calibration test was also performed, this time 
with a planar object point array, namely a black and white 
checkerboard pattern. The image data was obtained from 
http://www.vision.caltech.edu/bouguetj/calib_doc/, where a 
camera calibration toolbox developed by J.V. Bouguet from 
Caltech is available. The 25 images used had resolutions of 640 
x 480 pixels. In this instance the camera was fixed and the 
planar point field, shown in Figure 3, was moved through 
various orientations – though notably without any 90o rotations. 
 
Self-calibrations for this test were again carried out using 
Photomodeler, Australis, SGAP and the methods of Tsai and 
Heikkila, and the Zhang method was also applied. Although the 
recovered camera parameters were quite similar, the statistical 
quality measures available in Australis and SGAP indicated that 
the network is essentially singular because of the lack of roll 

angle variation. This leads to very high projective coupling 
between the IO and EO parameters. In fact, one can essentially 
substitute any plausible value for the principal point offset (xp, 
yp) and a satisfactory and close to constant RMSE of residuals 
(between 0.57 and 0.63 microns) will be obtained, as indicated 
in Figure 3. The same is true for the decentering distortion 
parameters P1 and P2, and their inclusion or omission makes no 
difference to the recovered RMSE values of image residuals. 
This means that the network (without rotated images) can 
accommodate any principal point offset (within reason) and 
therefore it does not have the strength to recover the ‘true 
values’. This renders the ‘calibration’ process essentially 
worthless if scene independent camera parameters are sought. 

  
 

 
Figure 2. Calibration testfield and image network geometry (above), 
along with computed radial distortion profiles.  
 

  

 
Figure 3. An image of planar testfield and the camera station geometry 
(above), along with the recovered residuals and a posteriori sigma0 
values from 11 Australis runs (below). 
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6.3 Radial distortion in different colour channels 

Nowadays, it is very difficult to find a monochrome off-the-
shelf digital camera. For higher-accuracy photogrammetric 
measurement, new calibration issues arise with colour cameras.   
One such issue is the effect of chromatic aberration within the 
lens, which is usually divided into longitudinal (axial) and 
lateral (oblique) aberrations. The former generates blur effects, 
which are difficult to reduce, whereas the latter causes a degree 
of misregistration of the colour channels which can potentially 
be corrected in post-processing steps (Cronk et al., 2006). A 
factor that can adversely impact upon the accuracy of this 
registration and on the recovery of representative lens distortion 
profiles within a self-calibration adjustment is the distinction 
between the distortion profiles of separate colour channels.  
 
This aspect was investigated for a SONY DSC F828 digital 
camera (8 Mega pixel) with a focal length of 10mm. The 
derived profiles, shown in Figure 4, indicate that radial 
distortion in the green channel is the smallest, whereas as that in 
the blue channel is the largest (the difference reaches about 10 
pixels at the sensor edges). In photogrammetric measurement 
applications demanding high accuracy, it is necessary to take 
such differential distortion influences into account, especially 
given that most colour CCD cameras employ Bayer filters. Two 
possible options are, first, to record single-colour imagery 
through the use of an external filter (e.g. a green filter since the 
Bayer pattern has twice as many green pixels as red or blue) 
and secondly to self-calibrate the lens distortion for each colour 
and subsequently correct for distortion separately within each 
channel before the final ‘registered’ RGB imagery is measured. 
A practical difficulty with this approach is that it generally 
requires access to the ‘raw’ camera images, a feature which 
may or may not be available in lower cost cameras. 
 

 
Figure 4. Radial distortion profiles for the 3 colour channels and 
demosaicked B/W image.  

 

 
7. CONCLUSIONS 

This article has reviewed different approaches to digital camera 
calibration. As use of consumer-grade cameras is becoming 
more and more common in photogrammetric applications, there 
is a requirement for adoption of appropriate calibration 
procedures. The self-calibrating bundle adjustment is a very 
flexible and powerful tool for camera calibration and systematic 
error compensation, and it provides for accurate sensor 

orientation and object reconstruction, while treating all the 
system unknowns as stochastic variables.  
It is not always possible to perform self-calibration in practical 
close-range measurement projects. In fact, network geometries 
that are optimal for scene reconstruction are often quite 
different from those that support comprehensive camera 
calibration. Therefore, rather than performing a self-calibration 
simultaneously with the object reconstruction, it is often better 
to first calibrate the camera using an appropriate network, with 
the aim being to recover all significant parameters (not just 
focal length as in many CV applications). Nowadays, 
calibration can be a fully automatic procedure and experience 
has shown that the temporal variations in calibration parameters 
for consumer-grade cameras are generally not significant given 
that they are employed at low and medium accuracy levels.   
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