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ABSTRACT:

Zebra-crossings are very specific road features that asgégeralized when imaged at different scales. We aim toalm@azxrossings
as control objects for georeferencing the images provigea Mobile Mapping System (MMS) using the oriented aerialgesof the
same area. In this paper, we present a full automatic methh@®Df zebra-crossing reconstruction from our MMS calitdagereo rig.
In our image-based georeferencing context, reconstruetiouracy is a priority. The only assumption made is that eabra-crossing
band is supposed to be planar and to hava ariori known 3D width. The method consists in reconstructing thee8Des using a
sub-pixel edge matching process by dynamic programming.detection step is run on all 3D edges around the estimatedplane
by looking for parallel segment lines with specific distamc&he accurate 3D plane of each band is then estimated frempadints
belonging to the two previously detected sides. The shdessof each band are detected on the image and are projecttether3D
plane of the band. Our method is robust and provides promigisults. We have a good geometric accuracy.

1 INTRODUCTION struction of zebra-crossing from stereopairs obtainedhfour
Stereopolis MMS. Within road-marks, the zebra-crossings a
used for georeferencing the terrestrial images becausedpet-
itive and parallel bands make their detection quite easytlaeyl
can be found throughout the entire study region. Moreowbgro
road-marks can be used (arrows, dashed lines, continutes).li
The Stereopolis system (Paparoditis et al., 2005) has baet-d

m o
(MMS) equipped with cameras and georeferencing devices Ca3ped at the MATIS laboratory of IGN for automated acquisitio

: Ca8hd georeferencing of terrestrial images in urban areas pEi-
provide such data at a low cost. Most of these systems uset dire 9 g Y P

. . . ! form is equipped with three stereoscopic rigs4600 x 4000
georeferencing devices like GPS/INS, However, in densarurb CCD camqera?s? The vertical bases takeFi)mag%s of the facades a
areas, GPS masks and multi-paths do corrupt measuremeits qu ’

. " . are used for fagcade reconstruction (Pénard et al., 200 hor-

gﬁthev:r? (glgosu?nhte”r\rf Eigsh?rlﬁrm;?é gﬁg c?frmr; \?"r;ld |nte£ﬁi_)lat izontal images (depicted in Figure 1) are used for road recon

mulate and often Ieagto ablsolute metric accuracy, but Ergke struction. The 6 cameras are perfectly synchroniaetis) and

city modellina imoli itioni f Bt/)’d()t gA provide very high image quality (SNR=300 and 12 bits dynamic
y g Implies a positioning accuracy ot abailem. A 46y The intrinsic parameters of each camera and thiiveela

solution to cope with this problem is to run a photogramnaetri

bundle adjustment that integrates measurements from Br(tige orientations between the camerasapeiori estimated using cal-
. . . ibration targets with sub-pixel precision and supposedetadid.

points) and Ground Control Points (GCP). The main difficaity In (Bentrah et al., 2004) the authors present an image-lsasatd

this approach is the unavailability of fine GCPs on the vehicl egy for relative g.éoreferencing of Stereopolis

path. Producing a GCP database with traditional surveygng-t '

nigues (e.g. total station and GPS) would be very expenside a

time-consuming.

This is why our general strategy consists in applying thelroa

marks that have been reconstructed automatically as GGPs fr

multiple view aerial images of the same area for our bundie ad

justment. Indeed, road-marks are very indicative featbees

cause of their invariable shapes and very constrained fageci

tions, making their extraction quite an easy pattern reitiagn

problem. Our strategy of road-mark reconstruction formaher

images is detailed in (Tournaire et al., 2006). The same-roadrjgyre 1: Images provided by horizontal stereo-base of qUEM

marks are automatically reconstructed from images obdairse

ing the ground-based system. Matching terrestrial roarkena

with the same road-marks extracted from aerial images woll p

Recently the automation of city modelling from aerial anteba
lite images has been a prolific field of research. Large sdbfe c
modelling from aerial images does not provide accurated@ca
texture and geometry. For many applications, complemgntar

vide an accurate position for the vehicle. The georefemrime 2 OUR STRATEGY
ages provided in this way can be used for 3D extraction of ad-
ditional road-marks which can’t be reconstructed fromalém- 21 Previous work

ages. This can be due to road-mark invisibility or their lones
and shape complexity in relation to the low resolution ofider Many authors have investigated automatic road region aad-ro
images. In the present paper, we focus on automatic 3D recomnarks detection from images in the field of robotic and intell
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gent vehicles. In the GOLD system (Bertozzi and Broggi, 3998
the authors propose a stereovision-based system to be nsed o
moving vehicle as a navigational aid to increase traffic 8gcu .
They propose a real-time method for lane detection on a monoc
ular image which benefits from sonaepriori information about :
the camera position in relation to road and lane size in tlagen
space. The result is a raster detection of lanes with pixalracy.
In (Se and Brady, 2003) the authors propose a real-timeitigor
to detect zebra-crossings and staircases from monocuayeis
This algorithm is integrated into a system for mobility aid par-
tially sight-disabled people. The authors propose a metbod
distinguishing these two features using a slope const(hori-
zontal and slanted). In (Utcke, 1997) a method of zebrasangs
detection is proposed which looks for groups of interseclimes '
with alternating patterns of light-to-dark and dark-tgHi edges. :
This method makes the assumption that zebra-crossingdaare p
nar objects. The percentage of correct detections is e8iyaf
but the false alert rate reaches 36 out of 163 images.

3D band side candidates
(long sides)

Zebra-crossing|modelling

Long side modelling
Small side modelling

3D bands
of zebra crossing

On road point filtering
Segment reconstruction

' Detection of parallel segments

with known distance

Work previously mentioned focuses on the detection of road-
marks as a pattern recognition problem on a monocular ground
based image. It involves some approximate hypothesis lie p
nar road assumption or known position of camera in relation t
the road. In our application the zebra-crossings are usgdre
erate a 3D road-mark database and also for localization 1of oun order to reconstruct the zebra-crossing bands, the Candy
mobile mapping system. Thus, for our applications, we need ®eriche edge detector filter is applied to images of the stere
more robust and more exhaustive method. It seems that the imig (Deriche, 1987). An edge point matching step is run then
tersection and alternating pattern criteria are not sefficton-  to reconstruct the 3D edges. Nevertheless, the stereolibase-
straints for zebra-crossing detection in urban areas.cinfieany s short, thus leading to relatively poor depth estimatiodeed,
other features on the building facades and on the vehicles cagur cameras witB9 mm focal length and pm image pixel size,
testify to these constraints. So a solution consists initapkor provide a3 mm across-track and 4 ¢m along-track pixel size
these objects near enough to the correct position (on thd) roain object space at a distance 1§ m. In order to decrease the
and in taking into account the particular specificationsggisize  discretization effect due to relatively high along-tradkep size,
and shape). Our strategy is to simultaneously processraeljui we need to reach a sub-pixel matching accuracy. This previde
stereopairs to build a 3D description of the scene in whieh th more accurate 3D edge chains, which considerably simpttiies
position and metric specifications of features can be medsur pattern recognition step.

This makes 3D detection more complete and more robust te fals
alerts.

Figure 3: Our zebra-crossing reconstruction strategy

3 3D RECONSTRUCTION BY EDGE MATCHING

In (Han and Park, 2000), the correspondence between two edge
chains is estimated from the proportion of edge point cpoas
In a stereo context, some attempts have been made in (Simonténces. The efficiency of this algorithm is limited by theeeffof
and Rives, 2004, Okutomi et al., 2002) for robust road plese e fragmentation in the edge chains. In (Serra and Berthod4)199
timation. Nevertheless, roads are not always planar. Weotlo n the authors propose a dynamic programming approach for sub-
assume that the road surface is perfectly planar in ordeotoge  pixel edge matching. The matching technique is based on the
the most geometrically accurate reconstruction. Our melte®s  geometric properties of an edge chain and does not use the ra-
to be as robust as possible and exhaustive to handle the géome diometric similarity constraints. In (Baillard and Disda2000),
anomalies of the zebra-crossing’s bands (see Figure 2). an optimized approach is presented for edge point matchithg w

a combination of intensity and contrast direction simfiariThe

figural continuity constraint is then implicitly introdudénto the

from an optimization point of view and is robust to fragmeiata

of edge chains.

a dynamic programming method along conjugate epipolasline
" ‘ of aerial images. An initial matching cost function is defires
final cost function. Minimization is then performed on the to
Figure 2: Covered and damaged bands tal cost along the epipolar line. This approach is very ggéng
2.2 Algorithm overview As seen in Figure 1 our images are not fronto-parallel to diael r
surface, thus perspective deformations are very strongake
The first step of our strategy for zebra-crossing reconstmic into account these deformations, an adaptive shape window o
consists in a 3D reconstruction of edge chains by a dynamic pr image resampling in "vertical” epipolar geometry is apgli&s
gramming optimization approach for matching the edge point described in section 3.2. In addition the very large deptfietd
globally on the conjugated epipolar lines. The output a 8tep  in the 3D scene (frond to co) causes large search space in im-
is a group of 3D edge chains. The second step is to find, withirage. In this case repetitive elements (like zebra-crossican be
these 3D chains, 3D segment lines that are potential lomg&ifl missed in the matching. As we look for the objects on the road
zebra-crossings. The last step consists in the fine recmtisin =~ surface we limit the search area within a volume around the ap

of the zebra-crossing shape. Each step of the process fgdsenproximate road surface that we will estimate. This point b
in Figure 3 will be explained in the next sections. discussed in the following section.
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Figure 5: Matching edges with perspective deformation
Figure 4: Restriction of search area with road surface

3.1 Search area constraint

As mentioned before in our terrestrial imaging system, s v
large depth of field and perspective effects are the maircdiffi
ties in the matching process. These two problems can partial
solved by limiting the search area around each principaigt#
the scene (facades and road) followed by a perspectivdicaeti
tion of each image.We will thus define our search area around
the approximate road surface to match the road features.ig hi
achieved using the approximate pose of the cameras inawe fati 3.3 Edge matching results
the road surface. As seen in Figure 4, the stereo rig is mdunte™
horizontally on the vehicle at a heightfrom road surface. The
Y axis is supposed to be perpendicular to the road surfaceawit
tolerance. Thisd depends on vehicle deviation in relation to the
road. Thus, the search interval is reduced to the volumedsstw
two planes fi1 and m2). Parametef can be optimally chosen for
each exposure by estimating the camera deviation in ral&io
the 3D architectural scene via vanishing point detectiodcaee

in (Cipolla et al., 1999); or, it can be easily chosen comipaety
greater than the maximum deviation of vehicles relativeh® t
road @maz)-

Figure 6: The resampled images used for reconstruction

h The optimized matching process by dynamic programming pro-
vides a disparity map with pixelar matching quality. As dissed
before, because of very lo®/H a sub-pixel matching quality is
needed. This is achieved by post processing step involvibg s
pixel edge re-localization along the gradient directiorach im-

age as in (Devernay, 1995). The sub-pixel matching estimati

is then computed at the intersection of the sub-pixel epipote

and subpixel edge chains. Figure 7 shows the 3D sub-pixel re-
constructed edges.

3.2 Similarity constraint

In (Baillard and Dissard, 2000) the similarity measure sy
tween two edge points is calculated as a combination of the di
ferences in grey level on each side of the edge point and tee-di
tion of contrast. In (Han and Park, 2000), the similaritydtion

is a classical normalized correlation coefficient caleadain a
(2n 4+ 1 X 2n + 1) window. Zoom

As explained in the previous section, the search area iseldmi Figure 7: Reconstructed 3D edgés= 4°

to a volume around the road surface. To avoid false matches du

to road obstacles (e.g. vehicles and pedestrians), a "reae’p

adaptive shape correlation window of large s{zé x 11) has

been used. With this strategy the aim is to implicitly filteosh 4 ZEBRA CROSSING DETECTION

obstacles in the reconstruction step. This process renmaey

false matches. The reconstructed 3D edge chain has adequaie explained in the previous section edge chains are recmst

quality in the centre of the images, but edge chains are fragin 3D. The reconstruction is precise but 3D edge chains ane ve

mented near the image corners. This is due to important eersp low-level primitives. As shown in Figure 7 most of the edges w

tive deformation between the two images that makes an imporare interested in are reconstructed as well as many othatslin

tant difference in segment direction from one image to agoth ing false matches. Figure 2 shows that zebra-crossing tareds

Figure 5(a) shows the edge chain matching issue in a directiosometimes damaged and do not completely form straight.lines

parallel to the epipolar line. The matching result as sedigime  So, we need a robust detection method to filter out the non in-

5(b) causes the fragmented chains. This fragmentationteffe  teresting features and to produce higher level features 3R

be removed by chaining isolated pixels but the 3D reconstduc segment lines from the 3D edge chains. The principal godlisf t

chain will be of poor quality because of interpolation. detection step is to get hypothetical zebra-crossing bandie
dates. The detection process takes advantage of the gieen sp

To resolve this issue, we prefer resampling the images ipigoe  fications of zebra-crossings as defined in section 4.1. Ttexde

lar geometry where the image’s normal vector is set approxition method is performed on all of the 3D chains around thd roa

mately parallel to the terraiff axis (see figure 6). While rectify- plane. This plane is detected automatically as will be erpth

ing images, we take into account the distortions to buildtition- in section 4.2. The final segment line candidate are computed

free” images. From now these rectified images will be usedwhe without any planar hypotheses assumption using initial 88r<

ever image information is needed. dinates. The detection method is discussed in section 4.3.
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4.1 Zebra-crossing specifications -

In France, the zebra-crossings are painted on the roadsdattcp e
to strict specifications (Transport Ministry and Interiomiistry, —— —_—
1988). A zebra’s band in urban areas is a parallelograstah B ——
width and2.5m minimum length . However, accurate length and
exact shape (angle between long and short sides) of the band
are unknowns. Each band is supposed to be planar but due to
transversal road curvature, the zebra as a whole is not aplan
feature. (a) Initial chains and accumulation in grey on the left

4.2 Principal plane detection - -

Here the goal is to detect the features that lie on the roddcur
We assume that in the first approximation, the road surfacéea
represented as a plane. Indeed, a large number of recdestruc -
chains are near enough to an average plane, however, some out (b) After first filtering (c) After second re-
liers are mixed into the data. A RANSAC algorithm (Fischler and regrouping grouping
and Bolles, 1981) is used to find a robust 3D plane (with a tol-
erance oR0 cm). To refine this estimation, a least squares tech- Figure 8: Parallel segment detection
nique is then carried out on the remaining samples (closketo t
3D plane). The features with distances greater #tanm from
the computed plane are filtered out. performed in two steps. Considering that orientation uiagety

is higher for short segments, first a grouping is made withe fin
4.3 Detection of zebra-crossing long sides threshold for closeness and a coarse one for orientatifarefifce

to favour the regrouping of short and close segments. Tte lit
In the next step the remaining 3D edges are projected onto theegments are then filtered out. The reconstructed segneeritsre
estimated road plane to transform the detection problem 86  in our running example are shown in Figure 8(b). The first step
to 2D. Nevertheless, let us point out that true 3D coordimée  Provides the longer segment lines with lower uncertaintyrifn-
each detected segment without any p|anar assumptions avill btation and the second one is made with a fine threshold oftarien
available for the final reconstruction. tion and coarse threshold of closeness (see Figure 8(c§)sdtr

ond step gathers broken segment lines (break due to a damaged
As can be seen in Figure 7, extracted edge chains suffer fromebra-crossing band or an occlusion). The output of ourggrou
fragmentation due to local texture. To generate initiak lseg-  ing step is a global 2D segment with information from theidhit
ments, a classical algorithm (Douglas and Peucker, 1978gd 3D segments contained in the grouping. Knowing the 3D coor-
to polygonalize the edge chains. In order to refine the estimadinates of each contributed line segment, a final 3D line segm
tion of each side of the polygon, a 2D line segment regressioiis estimated by a 3D regression on all the 3D segments that hav
is performed on all the edge points that are contributedgusia ~ been contributed. In an ideal case, if all edge chains thattgo
approach presented in (Deriche et al., 1992). the reconstruction of a side of the zebra-crossing are tetea

complete 3D segment line (on the entire length of the barg) sid
As seen in figure 8(a) an accumulation space is defined perpegan be estimated. In this case, the segments that are sthalter
dicular to the principal direction of the line segment séte prin-  the minimum specified length of band can be filtered-out. Some
cipal direction is the most frequently occurring directioithin times, due to the road curvature along a band side such a segme
the set. Each line segment votes in cells in which it projalieg ~ line can’t be reconstructed. So, the line segment candiciee
the principal direction. The score is proportional to thetpd  filtered with a lower threshold. The longer the line segmemt-c
the segment, which project in each cell. Accumulation selize  didate is, the more precise the reconstruction is. In se@&jdhe
is proportional to the reconstruction precision and to thesen effect of this parameter on the results will be discussed.
tolerance for the detection step. The peaks in the accuiomlat
diagram correspond to the existence of straight lines irptire
cipal direction. In practice a hysteresis thresholdingaisied out 5 ZEBRA-CROSSING MODELING
in this diagram to extract the connex components. The tbtdsh
are defined regarding the minimum band lengtt20% and5% The segment hypotheses for long sides of a band are projected
of minimum band length it mear2)% and5% of 2,5 m). This  into the image space. For each segment a measure of gradient
hysteresis thresholding robustifies the method to diszattin ef-  direction is calculated using the images of gradient in tivedd
fects in accumulation space. For each component we looksfor i tions (z andy). Then, we look iteratively for pairs of line seg-
neighbouring component at a distance equivalent to thefsggec ments with inverse gradient direction and with a distanagveg
band width. The component is filtered, if no other component i lent to band width. Figure 9 shows how the gradient direcison
available. For each remaining component, all segment timels  used to generate the bands by grouping two segment carglidate
have contributed to the component, will be candidates fougr  Such pairs of segments form a band and a 3D plane is estimated
ing in order to generate the longer line segments. Usualiyalho using these segments. This plane will be the final plane of the
the segments of one component are to be regrouped. For exafband. The band is then modelled as a quasi-parallelogram. Th
ple in figure 8(a), some segments of manhole-cover cong&itiut band vertices are defined as the intersection of the long side
the band segments to a connex component. Therefore, the catie transversal sides in image space. These vertices arerhe
didates for grouping are generated by measuring the difere jected onto the band’s 3D plane. The plane of each band is cal-
of orientation and closeness between segments. A globaltg m culated independently and the zebra-crossing is not @nstt
favorable grouping is then chosen as in the approach pesbentto be planar. The following section explains how the transale
in (Jang and Hong, 2002). In practice, the grouping procgss ibands are modelled.
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(a) 3D textured reconstructgd) Image projection of reconstructed
bands bands

Figure 11: Zebra-crossing modeling results
Figure 9: Constitution of the bands. The light lines coroerpto
the search space for transversal side detection

5.1 Transversal side band modelling Scoreicuicy = ‘ I

+ || @
As seen in igure 9, the estimated long sides of the band, are ta

gent to the true position of the band but the extremity oféhes ¢ | : Candidates for the upward and downward transversal
segments are not correctly positioned and a little part efside bandsU, V : Set of estimated line with Hough for the

is missing (see band in figure 9). In the presence of covering downward , the upward of a band.

objects like stains or manhole-covers the long sides areorot

plete (see band! in igure 9). In addition, the accurate angle . .

between two sides of a zebra-crossing band is unknown. Thise€condary higher peaks §tore (up to80% of maximumsScore)

is why only with the long sides the parallelogram modellisg i '€ accepted. In order to find the best pair with inverse gradi
not possible. So, we aim at detecting the transversal sidés a dlrectlon_crlterla the final two transversal sidgsj) are found

to calculate the vertices of the parallelogram as the iattisn ~ PY €quation 3. Lo

of the long sides and transversal sides. According to Sedtib, (4,7) = argmin(I'..I%) 3)

let us suppose that the transversal sides are quasi-panadlef teviey

inverse gradient directions. Search space is defined ferdsd  The 4 vertices of the band are then calculated by interspthia
tection around the extremities of the bands. For each bapaira long sides and the transversal sides. These vertices ar@tbe

of quasi-parallel sides is detected optimally in the searela by  jected onto the previously calculated 3D plane of the barat- C
maximizing a gradient-based score. The search space i®definrying out the same procedure for each detected band provides
around an approximate transversal side in 3D. The apprdgima the 3D zebra-crossing model. Each band is reconstructed ind
transversal side is estimated on the zebra-crossing iwitle ~ pendently. We do not assume a planar model for zebra-cgpssin
by a 3D regression on the extremities of the longer sidesqup tThe transversal curvature of the road can thus be recotetruc
80% of the maximum length). A sufficiently large neighbour- precisely. Figure 11 shows reconstruction results on ouming
hood around this bandi{ cm on each side) is accepted. The example.
limits of the search space are then projected onto the image (

seen in Figure 9). The intersection of the two long sides of a

band and the previously defined area constitutes a sea@lo@are

each side of a band. A Hough transformation is performed on . .
the edges within the search area to detect the lines withterie " Order to evaluate the robustness of our algorithm it hasibe
tion near the approximate transversal side orientationqap°). ~ aPPlied to 15 stereopairs of images obtained in a test sunvey

The set of a local maximum with a Hough score higher t6 the city centre of Amiens in _France. Onl_y the bands of quasi-
parallelogram form are taken into account in our evaluatidrese

bands could be partially occluded or damaged (see Figuoet2),
the bands with any transversal side occluded are not taken in
account in evaluation. Our sample comprises a set of 82 lEnds
different zebra-crossings. The test is performed first With,, =

1 m in the detection step (see section 4.3) to ensure good recon-
struction. We then measure the number of detected bands and
also the number of good reconstructions. The bands aredzonsi
ered correctly reconstructed if the projections of its sitestereo

pair images are qualitatively as close as 1 pixel to the image
Figure 10: Edge points in the search area of bAhd band sides. We prefer to evaluate the band with its sideerath
than its vertices because the vertices in reality are dathagd

) ) . ) . not clearly defined. A& M S accuracy normally depends on the
of the highest maximum are accepted as side candidatesisee Freso|ution of the image, it is provided in pixels in the ewian.

ure 10).We look for the best pair of quasi-parallel segmientsl A5 seen in Table 1, the rate of detection is akft with 92%
with maximum contrast as Lhe final transversal sides. Inrordegs good reconstruction within the detected ones. The detect
to do this, a gradient vectol'] is calculated for each line (see (4te can be increased with,.;, = 0.2 m to 97% with 89% of
equation 1). Figure 10 shows the set of accepted segmest lingood reconstructions. In the two cases we had only 1 falseala
and the corresponding vectbr. A global Score is then defined  that could be filtered by taking into account the minimum and
according to equation 2 for each pair of hypotheses for a.band maximum distances criteria between the bands.

6 RESULTS AND EVALUATIONS

(a) Downward search area with(d) Upward search area with 2 hy-
hypotheses potheses

T = (Z Ge(s), Z Gy(s)) (1) TheRMS accuracy depends on the depth and orientation of the
set sct zebra-crossing in relation to the stereobase, Therdigrg, =
0.2 m is applied to take into account the smaller and more un-
t : Estimated hough lines : Point int, certain segment lines as well. Figure 12 shows the perfartean
G or y: Deriche gradient in x or y directions. All other gradient of our reconstruction algorithm for a very unfavourablerete
operators can be used. opair. The zebra-crossing is at a distanc@®#n from our1 m
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(a) Relative position to stergb) 8 bands out of 10 are detected and
obase 6 are correctly reconstructed.

Figure 12: Reconstructed zebra-crossing with = 0.05.

(a) 7 bands out of 7 are detectfly) 6 bands out of 6 are detected.
and correctly reconstructed 1 band is not correctly recon-
structed due to non-flat band

Figure 13: Image projection of 3D reconstructed zebrasinos

stereobase. The right extremity of the zebra-crossingustsid

7 CONCLUSION AND FUTURE WORK

We have presented an original algorithm for 3D zebra-cngssi
reconstruction from rigid stereopairs in urban areas. Na-e
uation revealed robustness and completeness of our &lgorit
to different sizes, shapes, orientations and positionsebfa
crossings in the images. This algorithm is also quite generi
Indeed it can be applied very easily to any other 3D planar par
allelogram. We will also generalize our approach to deahwait
other road-marks in order to build a complete road-mark GIS.
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