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ABSTRACT:

Zebra-crossings are very specific road features that are less generalized when imaged at different scales. We aim to use zebra-crossings
as control objects for georeferencing the images provided by a Mobile Mapping System (MMS) using the oriented aerial images of the
same area. In this paper, we present a full automatic method for 3D zebra-crossing reconstruction from our MMS calibrated stereo rig.
In our image-based georeferencing context, reconstruction accuracy is a priority. The only assumption made is that each zebra-crossing
band is supposed to be planar and to have ana priori known 3D width. The method consists in reconstructing the 3Dedges using a
sub-pixel edge matching process by dynamic programming. The detection step is run on all 3D edges around the estimated road plane
by looking for parallel segment lines with specific distances. The accurate 3D plane of each band is then estimated from the points
belonging to the two previously detected sides. The short sides of each band are detected on the image and are projected onto the 3D
plane of the band. Our method is robust and provides promising results. We have a good geometric accuracy.

1 INTRODUCTION

Recently the automation of city modelling from aerial and satel-
lite images has been a prolific field of research. Large scale city
modelling from aerial images does not provide accurate facade
texture and geometry. For many applications, complementary
ground based imagery is necessary. Mobile Mapping Systems
(MMS) equipped with cameras and georeferencing devices can
provide such data at a low cost. Most of these systems use direct
georeferencing devices like GPS/INS, However, in dense urban
areas, GPS masks and multi-paths do corrupt measurements qual-
ity. Even though INS can help filter GPS errors and interpolate
between GPS interruptions, intrinsic drifts of INS will soon accu-
mulate and often lead to absolute metric accuracy, but largescale
city modelling implies a positioning accuracy of about10 cm. A
solution to cope with this problem is to run a photogrammetric
bundle adjustment that integrates measurements from images (tie
points) and Ground Control Points (GCP). The main difficultyof
this approach is the unavailability of fine GCPs on the vehicle
path. Producing a GCP database with traditional surveying tech-
niques (e.g. total station and GPS) would be very expensive and
time-consuming.
This is why our general strategy consists in applying the road-
marks that have been reconstructed automatically as GCPs from
multiple view aerial images of the same area for our bundle ad-
justment. Indeed, road-marks are very indicative featuresbe-
cause of their invariable shapes and very constrained specifica-
tions, making their extraction quite an easy pattern recognition
problem. Our strategy of road-mark reconstruction form aerial
images is detailed in (Tournaire et al., 2006). The same road-
marks are automatically reconstructed from images obtained us-
ing the ground-based system. Matching terrestrial road-marks
with the same road-marks extracted from aerial images will pro-
vide an accurate position for the vehicle. The georeferenced im-
ages provided in this way can be used for 3D extraction of ad-
ditional road-marks which can’t be reconstructed from aerial im-
ages. This can be due to road-mark invisibility or their low size
and shape complexity in relation to the low resolution of aerial
images. In the present paper, we focus on automatic 3D recon-

struction of zebra-crossing from stereopairs obtained from our
Stereopolis MMS. Within road-marks, the zebra-crossings are
used for georeferencing the terrestrial images because their repet-
itive and parallel bands make their detection quite easy andthey
can be found throughout the entire study region. Moreover, other
road-marks can be used (arrows, dashed lines, continuous lines).
The Stereopolis system (Paparoditis et al., 2005) has been devel-
oped at the MATIS laboratory of IGN for automated acquisition
and georeferencing of terrestrial images in urban areas. The plat-
form is equipped with three stereoscopic rigs of4000 × 4000
CCD cameras. The vertical bases take images of the façades and
are used for façade reconstruction (Pénard et al., 2005).The hor-
izontal images (depicted in Figure 1) are used for road recon-
struction. The 6 cameras are perfectly synchronized(10µs) and
provide very high image quality (SNR=300 and 12 bits dynamic
range). The intrinsic parameters of each camera and the relative
orientations between the cameras area priori estimated using cal-
ibration targets with sub-pixel precision and supposed to be rigid.
In (Bentrah et al., 2004) the authors present an image-basedstrat-
egy for relative georeferencing of Stereopolis.

Figure 1: Images provided by horizontal stereo-base of our MMS.

2 OUR STRATEGY

2.1 Previous work

Many authors have investigated automatic road region and road-
marks detection from images in the field of robotic and intelli-
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gent vehicles. In the GOLD system (Bertozzi and Broggi, 1998),
the authors propose a stereovision-based system to be used on a
moving vehicle as a navigational aid to increase traffic security.
They propose a real-time method for lane detection on a monoc-
ular image which benefits from somea priori information about
the camera position in relation to road and lane size in the image
space. The result is a raster detection of lanes with pixel accuracy.
In (Se and Brady, 2003) the authors propose a real-time algorithm
to detect zebra-crossings and staircases from monocular images.
This algorithm is integrated into a system for mobility aid for par-
tially sight-disabled people. The authors propose a methodfor
distinguishing these two features using a slope constraint(hori-
zontal and slanted). In (Utcke, 1997) a method of zebra-crossing
detection is proposed which looks for groups of intersecting lines
with alternating patterns of light-to-dark and dark-to-light edges.
This method makes the assumption that zebra-crossings are pla-
nar objects. The percentage of correct detections is about80%,
but the false alert rate reaches 36 out of 163 images.

Work previously mentioned focuses on the detection of road-
marks as a pattern recognition problem on a monocular ground-
based image. It involves some approximate hypothesis like pla-
nar road assumption or known position of camera in relation to
the road. In our application the zebra-crossings are used togen-
erate a 3D road-mark database and also for localization of our
mobile mapping system. Thus, for our applications, we need a
more robust and more exhaustive method. It seems that the in-
tersection and alternating pattern criteria are not sufficient con-
straints for zebra-crossing detection in urban areas. In fact, many
other features on the building facades and on the vehicles can
testify to these constraints. So a solution consists in looking for
these objects near enough to the correct position (on the road)
and in taking into account the particular specifications (given size
and shape). Our strategy is to simultaneously process acquired
stereopairs to build a 3D description of the scene in which the
position and metric specifications of features can be measured.
This makes 3D detection more complete and more robust to false
alerts.

In a stereo context, some attempts have been made in (Simond
and Rives, 2004, Okutomi et al., 2002) for robust road plane es-
timation. Nevertheless, roads are not always planar. We do not
assume that the road surface is perfectly planar in order to provide
the most geometrically accurate reconstruction. Our method has
to be as robust as possible and exhaustive to handle the geometric
anomalies of the zebra-crossing’s bands (see Figure 2).

Figure 2: Covered and damaged bands

2.2 Algorithm overview

The first step of our strategy for zebra-crossing reconstruction
consists in a 3D reconstruction of edge chains by a dynamic pro-
gramming optimization approach for matching the edge points
globally on the conjugated epipolar lines. The output of this step
is a group of 3D edge chains. The second step is to find, within
these 3D chains, 3D segment lines that are potential long sides of
zebra-crossings. The last step consists in the fine reconstruction
of the zebra-crossing shape. Each step of the process presented
in Figure 3 will be explained in the next sections.

Left image Right image

Edge detection

& chaining

Left edges Right edges

Edge matching

3D edge chains

Road plane detection

On road point filtering

Segment reconstruction

Detection of parallel segments

with known distance

3D band side candidates
(long sides)
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3D Reconstruction by edge matching

Zebra-crossing detection

Zebra-crossing modelling

Figure 3: Our zebra-crossing reconstruction strategy

3 3D RECONSTRUCTION BY EDGE MATCHING

In order to reconstruct the zebra-crossing bands, the Cannyand
Deriche edge detector filter is applied to images of the stereo
rig (Deriche, 1987). An edge point matching step is run then
to reconstruct the 3D edges. Nevertheless, the stereo base-line
is short, thus leading to relatively poor depth estimation.Indeed,
our cameras with29 mm focal length and9 µm image pixel size,
provide a3 mm across-track and a4 cm along-track pixel size
in object space at a distance of10 m. In order to decrease the
discretization effect due to relatively high along-track pixel size,
we need to reach a sub-pixel matching accuracy. This provides
more accurate 3D edge chains, which considerably simplifiesthe
pattern recognition step.

In (Han and Park, 2000), the correspondence between two edge
chains is estimated from the proportion of edge point correspon-
dences. The efficiency of this algorithm is limited by the effect of
fragmentation in the edge chains. In (Serra and Berthod, 1994)
the authors propose a dynamic programming approach for sub-
pixel edge matching. The matching technique is based on the
geometric properties of an edge chain and does not use the ra-
diometric similarity constraints. In (Baillard and Dissard, 2000),
an optimized approach is presented for edge point matching with
a dynamic programming method along conjugate epipolar lines
of aerial images. An initial matching cost function is defined as
a combination of intensity and contrast direction similarity. The
figural continuity constraint is then implicitly introduced into the
final cost function. Minimization is then performed on the to-
tal cost along the epipolar line. This approach is very interesting
from an optimization point of view and is robust to fragmentation
of edge chains.

As seen in Figure 1 our images are not fronto-parallel to the road
surface, thus perspective deformations are very strong. Totake
into account these deformations, an adaptive shape window or
image resampling in ”vertical” epipolar geometry is applied as
described in section 3.2. In addition the very large depth offield
in the 3D scene (from0 to ∞) causes large search space in im-
age. In this case repetitive elements (like zebra-crossings) can be
missed in the matching. As we look for the objects on the road
surface we limit the search area within a volume around the ap-
proximate road surface that we will estimate. This point will be
discussed in the following section.
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Figure 4: Restriction of search area with road surface

3.1 Search area constraint

As mentioned before in our terrestrial imaging system, the very
large depth of field and perspective effects are the main difficul-
ties in the matching process. These two problems can partially
solved by limiting the search area around each principal plane of
the scene (facades and road) followed by a perspective rectifica-
tion of each image.We will thus define our search area around
the approximate road surface to match the road features. This is
achieved using the approximate pose of the cameras in relation to
the road surface. As seen in Figure 4, the stereo rig is mounted
horizontally on the vehicle at a heighth from road surface. The
Y axis is supposed to be perpendicular to the road surface witha
toleranceθ. Thisθ depends on vehicle deviation in relation to the
road. Thus, the search interval is reduced to the volume between
two planes (π1 and π2). Parameterθ can be optimally chosen for
each exposure by estimating the camera deviation in relation to
the 3D architectural scene via vanishing point detection asdone
in (Cipolla et al., 1999); or, it can be easily chosen comparatively
greater than the maximum deviation of vehicles relative to the
road (θmax).

3.2 Similarity constraint

In (Baillard and Dissard, 2000) the similarity measurementbe-
tween two edge points is calculated as a combination of the dif-
ferences in grey level on each side of the edge point and the direc-
tion of contrast. In (Han and Park, 2000), the similarity function
is a classical normalized correlation coefficient calculated in a
(2n + 1 × 2n + 1) window.

As explained in the previous section, the search area is limited
to a volume around the road surface. To avoid false matches due
to road obstacles (e.g. vehicles and pedestrians), a ”road plane”
adaptive shape correlation window of large size(11 × 11) has
been used. With this strategy the aim is to implicitly filter most
obstacles in the reconstruction step. This process removesmany
false matches. The reconstructed 3D edge chain has adequate
quality in the centre of the images, but edge chains are frag-
mented near the image corners. This is due to important perspec-
tive deformation between the two images that makes an impor-
tant difference in segment direction from one image to another.
Figure 5(a) shows the edge chain matching issue in a direction
parallel to the epipolar line. The matching result as seen infigure
5(b) causes the fragmented chains. This fragmentation effect can
be removed by chaining isolated pixels but the 3D reconstructed
chain will be of poor quality because of interpolation.

To resolve this issue, we prefer resampling the images in an epipo-
lar geometry where the image’s normal vector is set approxi-
mately parallel to the terrainZ axis (see figure 6). While rectify-
ing images, we take into account the distortions to build ”distortion-
free” images. From now these rectified images will be used when-
ever image information is needed.

Left edge points Right edge points

Epipolar line

Matched edge points

Edge points

(a) The edge chains in stereo images(b) Matching result

Figure 5: Matching edges with perspective deformation

Figure 6: The resampled images used for reconstruction

3.3 Edge matching results

The optimized matching process by dynamic programming pro-
vides a disparity map with pixelar matching quality. As discussed
before, because of very lowB/H a sub-pixel matching quality is
needed. This is achieved by post processing step involving sub-
pixel edge re-localization along the gradient direction ineach im-
age as in (Devernay, 1995). The sub-pixel matching estimation
is then computed at the intersection of the sub-pixel epipolar line
and subpixel edge chains. Figure 7 shows the 3D sub-pixel re-
constructed edges.

Figure 7: Reconstructed 3D edges.θ = 4◦

4 ZEBRA CROSSING DETECTION

As explained in the previous section edge chains are reconstructed
in 3D. The reconstruction is precise but 3D edge chains are very
low-level primitives. As shown in Figure 7 most of the edges we
are interested in are reconstructed as well as many others includ-
ing false matches. Figure 2 shows that zebra-crossing bandsare
sometimes damaged and do not completely form straight lines.
So, we need a robust detection method to filter out the non in-
teresting features and to produce higher level features like 3D
segment lines from the 3D edge chains. The principal goal of this
detection step is to get hypothetical zebra-crossing band candi-
dates. The detection process takes advantage of the given speci-
fications of zebra-crossings as defined in section 4.1. The detec-
tion method is performed on all of the 3D chains around the road
plane. This plane is detected automatically as will be explained
in section 4.2. The final segment line candidate are computed
without any planar hypotheses assumption using initial 3D coor-
dinates. The detection method is discussed in section 4.3.
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4.1 Zebra-crossing specifications

In France, the zebra-crossings are painted on the roads accordintg
to strict specifications (Transport Ministry and Interior Ministry,
1988). A zebra’s band in urban areas is a parallelogram of50cm

width and2.5m minimum length . However, accurate length and
exact shape (angle between long and short sides) of the band
are unknowns. Each band is supposed to be planar but due to
transversal road curvature, the zebra as a whole is not a planar
feature.

4.2 Principal plane detection

Here the goal is to detect the features that lie on the road surface.
We assume that in the first approximation, the road surface can be
represented as a plane. Indeed, a large number of reconstructed
chains are near enough to an average plane, however, some out-
liers are mixed into the data. A RANSAC algorithm (Fischler
and Bolles, 1981) is used to find a robust 3D plane (with a tol-
erance of20 cm). To refine this estimation, a least squares tech-
nique is then carried out on the remaining samples (close to the
3D plane). The features with distances greater than20 cm from
the computed plane are filtered out.

4.3 Detection of zebra-crossing long sides

In the next step the remaining 3D edges are projected onto the
estimated road plane to transform the detection problem from 3D
to 2D. Nevertheless, let us point out that true 3D coordinates for
each detected segment without any planar assumptions will be
available for the final reconstruction.

As can be seen in Figure 7, extracted edge chains suffer from
fragmentation due to local texture. To generate initial line seg-
ments, a classical algorithm (Douglas and Peucker, 1973) isused
to polygonalize the edge chains. In order to refine the estima-
tion of each side of the polygon, a 2D line segment regression
is performed on all the edge points that are contributed using the
approach presented in (Deriche et al., 1992).

As seen in figure 8(a) an accumulation space is defined perpen-
dicular to the principal direction of the line segment set. The prin-
cipal direction is the most frequently occurring directionwithin
the set. Each line segment votes in cells in which it projectsalong
the principal direction. The score is proportional to the part of
the segment, which project in each cell. Accumulation cell’s size
is proportional to the reconstruction precision and to the chosen
tolerance for the detection step. The peaks in the accumulation
diagram correspond to the existence of straight lines in theprin-
cipal direction. In practice a hysteresis thresholding is carried out
in this diagram to extract the connex components. The thresholds
are defined regarding the minimum band lengthL (20% and5%
of minimum band length it means20% and5% of 2, 5 m). This
hysteresis thresholding robustifies the method to discretization ef-
fects in accumulation space. For each component we look for its
neighbouring component at a distance equivalent to the specified
band width. The component is filtered, if no other component is
available. For each remaining component, all segment linesthat
have contributed to the component, will be candidates for group-
ing in order to generate the longer line segments. Usually not all
the segments of one component are to be regrouped. For exam-
ple in figure 8(a), some segments of manhole-cover contribute to
the band segments to a connex component. Therefore, the can-
didates for grouping are generated by measuring the difference
of orientation and closeness between segments. A globally more
favorable grouping is then chosen as in the approach presented
in (Jang and Hong, 2002). In practice, the grouping process is

(a) Initial chains and accumulation in grey on the left

(b) After first filtering
and regrouping

(c) After second re-
grouping

Figure 8: Parallel segment detection

performed in two steps. Considering that orientation uncertainty
is higher for short segments, first a grouping is made with a fine
threshold for closeness and a coarse one for orientation difference
to favour the regrouping of short and close segments. Too little
segments are then filtered out. The reconstructed segment results
in our running example are shown in Figure 8(b). The first step
provides the longer segment lines with lower uncertainty oforien-
tation and the second one is made with a fine threshold of orienta-
tion and coarse threshold of closeness (see Figure 8(c)). The sec-
ond step gathers broken segment lines (break due to a damaged
zebra-crossing band or an occlusion). The output of our group-
ing step is a global 2D segment with information from the initial
3D segments contained in the grouping. Knowing the 3D coor-
dinates of each contributed line segment, a final 3D line segment
is estimated by a 3D regression on all the 3D segments that have
been contributed. In an ideal case, if all edge chains that gointo
the reconstruction of a side of the zebra-crossing are detected, a
complete 3D segment line (on the entire length of the band side)
can be estimated. In this case, the segments that are smallerthan
the minimum specified length of band can be filtered-out. Some-
times, due to the road curvature along a band side such a segment
line can’t be reconstructed. So, the line segment candidates are
filtered with a lower threshold. The longer the line segment can-
didate is, the more precise the reconstruction is. In section 6, the
effect of this parameter on the results will be discussed.

5 ZEBRA-CROSSING MODELING

The segment hypotheses for long sides of a band are projected
into the image space. For each segment a measure of gradient
direction is calculated using the images of gradient in two direc-
tions (x andy). Then, we look iteratively for pairs of line seg-
ments with inverse gradient direction and with a distance equiva-
lent to band width. Figure 9 shows how the gradient directionis
used to generate the bands by grouping two segment candidates.
Such pairs of segments form a band and a 3D plane is estimated
using these segments. This plane will be the final plane of the
band. The band is then modelled as a quasi-parallelogram. The
band vertices are defined as the intersection of the long sides and
the transversal sides in image space. These vertices are then pro-
jected onto the band’s 3D plane. The plane of each band is cal-
culated independently and the zebra-crossing is not constrained
to be planar. The following section explains how the transversal
bands are modelled.
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Figure 9: Constitution of the bands. The light lines correspond to
the search space for transversal side detection

5.1 Transversal side band modelling

As seen in igure 9, the estimated long sides of the band, are tan-
gent to the true position of the band but the extremity of these
segments are not correctly positioned and a little part of the side
is missing (see bandI in figure 9). In the presence of covering
objects like stains or manhole-covers the long sides are notcom-
plete (see bandII in igure 9). In addition, the accurate angle
between two sides of a zebra-crossing band is unknown. This
is why only with the long sides the parallelogram modelling is
not possible. So, we aim at detecting the transversal sides and
to calculate the vertices of the parallelogram as the intersection
of the long sides and transversal sides. According to section 4.1,
let us suppose that the transversal sides are quasi-parallel and of
inverse gradient directions. Search space is defined for side de-
tection around the extremities of the bands. For each band, apair
of quasi-parallel sides is detected optimally in the searcharea by
maximizing a gradient-based score. The search space is defined
around an approximate transversal side in 3D. The approximate
transversal side is estimated on the zebra-crossing in it’swhole
by a 3D regression on the extremities of the longer sides (up to
80% of the maximum length). A sufficiently large neighbour-
hood around this band (40 cm on each side) is accepted. The
limits of the search space are then projected onto the image (as
seen in Figure 9). The intersection of the two long sides of a
band and the previously defined area constitutes a search area on
each side of a band. A Hough transformation is performed on
the edges within the search area to detect the lines with orienta-
tion near the approximate transversal side orientation (upto 20◦).
The set of a local maximum with a Hough score higher than80%

(a) Downward search area with 4
hypotheses

(b) Upward search area with 2 hy-
potheses

Figure 10: Edge points in the search area of bandII

of the highest maximum are accepted as side candidates (see Fig-
ure 10).We look for the best pair of quasi-parallel segment lines
with maximum contrast as the final transversal sides. In order
to do this, a gradient vector (~Γ) is calculated for each line (see
equation 1). Figure 10 shows the set of accepted segment lines
and the corresponding vector~Γ . A globalScore is then defined
according to equation 2 for each pair of hypotheses for a band.

~Γt = (
X
s∈t

Gx(s),
X
s∈t

Gy(s)) (1)

t : Estimated hough line ,s : Point int,
Gx or y : Deriche gradient in x or y directions. All other gradient

operators can be used.

(a) 3D textured reconstructed
bands

(b) Image projection of reconstructed
bands

Figure 11: Zebra-crossing modeling results

Scoret∈U,l∈V =



 ~Γt




+



~Γl




 (2)

t, l : Candidates for the upward and downward transversal
bands,U, V : Set of estimated line with Hough for the

downward , the upward of a band.

Secondary higher peaks ofScore (up to80% of maximumScore)
are accepted. In order to find the best pair with inverse gradient
direction criteria the final two transversal sides(i, j) are found
by equation 3.

(i, j) = argmin
t∈U,l∈V

( ~Γt.
~Γl) (3)

The 4 vertices of the band are then calculated by intersecting the
long sides and the transversal sides. These vertices are then pro-
jected onto the previously calculated 3D plane of the band. Car-
rying out the same procedure for each detected band provides
the 3D zebra-crossing model. Each band is reconstructed inde-
pendently. We do not assume a planar model for zebra-crossing.
The transversal curvature of the road can thus be reconstructed
precisely. Figure 11 shows reconstruction results on our running
example.

6 RESULTS AND EVALUATIONS

In order to evaluate the robustness of our algorithm it has been
applied to 15 stereopairs of images obtained in a test surveyin
the city centre of Amiens in France. Only the bands of quasi-
parallelogram form are taken into account in our evaluation. These
bands could be partially occluded or damaged (see Figure 2),but
the bands with any transversal side occluded are not taken into
account in evaluation. Our sample comprises a set of 82 bandsof
different zebra-crossings. The test is performed first withLmin =
1 m in the detection step (see section 4.3) to ensure good recon-
struction. We then measure the number of detected bands and
also the number of good reconstructions. The bands are consid-
ered correctly reconstructed if the projections of its sides in stereo
pair images are qualitatively as close as 1 pixel to the images
band sides. We prefer to evaluate the band with its sides rather
than its vertices because the vertices in reality are damaged and
not clearly defined. AsRMS accuracy normally depends on the
resolution of the image, it is provided in pixels in the evaluation.
As seen in Table 1, the rate of detection is about92% with 92%
of good reconstruction within the detected ones. The detection
rate can be increased withLmin = 0.2 m to 97% with 89% of
good reconstructions. In the two cases we had only 1 false alarm
that could be filtered by taking into account the minimum and
maximum distances criteria between the bands.

TheRMS accuracy depends on the depth and orientation of the
zebra-crossing in relation to the stereobase, ThereforeLmin =
0.2 m is applied to take into account the smaller and more un-
certain segment lines as well. Figure 12 shows the performance
of our reconstruction algorithm for a very unfavourable stere-
opair. The zebra-crossing is at a distance of20 m from our1 m
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(a) Relative position to stere-
obase

(b) 8 bands out of 10 are detected and
6 are correctly reconstructed.

Figure 12: Reconstructed zebra-crossing withB/H = 0.05.

(a) 7 bands out of 7 are detected
and correctly reconstructed

(b) 6 bands out of 6 are detected.
1 band is not correctly recon-
structed due to non-flat band

Figure 13: Image projection of 3D reconstructed zebra-crossing

stereobase. The right extremity of the zebra-crossing is situated
near the corners of the stereopair, so the angle of intersection
in the reconstruction step is very small. In our specific mo-

Lmin Visible band Detected Correct reconstruction
1 m 83 76 (92%) 70 (92%)

0.2 m 83 81 (97%) 72 (89%)

Table 1: Zebra-crossing detection and reconstruction results.

bile mapping application, the high frequency of image acquisi-
tion provides many images from one zebra-crossing; therefore,
in order to be more precise in the reconstruction, we use only
the nearest stereo-pair withLmin = 1m. So, if we use only
the nearest stereopairs to zebra-crossings the detection rate is
100%, 90% of detected bands are correctly reconstructed. Figure
13 shows the image projection of a reconstructed zebra-crossing
with Lmin = 1 m.

Figure 14: Projection of reconstructed band in image

In order to compare our 3D reconstructed model with the terrain
reality, 3D measurements are performed by surveying techniques
with millimetre precision on a zebra-crossing containing 4bands.
A stereopair is used to reconstruct the same zebra-crossing. A
rigid transformation is then applied to place these two models
(reconstructed and terrain reality) in the same coordinatesystem.
The difference between two models is then measured as the aver-
age distance between the 4 points of each band in 2 models. We
have found a maximum distance of4 cm with anRMS of 2 cm.
2 cm of difference is acceptable for our reconstruction due to de-
finition limit for a real zebra-crossing. As seen in figure 14,the
band corners of a real zebra-crossing are not well defined dueto
local texture.

7 CONCLUSION AND FUTURE WORK

We have presented an original algorithm for 3D zebra-crossing
reconstruction from rigid stereopairs in urban areas. The eval-
uation revealed robustness and completeness of our algorithm,
to different sizes, shapes, orientations and positions of zebra-
crossings in the images. This algorithm is also quite generic.
Indeed it can be applied very easily to any other 3D planar par-
allelogram. We will also generalize our approach to deal with all
other road-marks in order to build a complete road-mark GIS.
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