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ABSTRACT: Outlier detection in laser scanner point clouds is an essential process before the modelling step. However, the number 
of points in the generated point cloud is in the order of million points, so (semi) automatic approaches are necessary. Having 
introduced the sources of outliers in typical laser scanner point clouds, an outlier detection algorithm using a density based algorithm 
is addressed. The algorithm is chosen due to its unconstrained behaviour to the preliminary knowledge of the scanned scene and the 
independency to the varying density of the points. The algorithm efficiency is assessed by a test on an aerial laser scanner point 
cloud. The assessment is done with respect to a DSM obtained by photogrammetric methods. The type I and type II errors are 
estimated and the results are reported. Some examples in terrestrial laser scanner point clouds are also presented and the behaviour 
of the algorithm on the data sets are shown and discussed. Although the algorithm dose not detect all outlier clusters, the detection of 
single outliers and even cluster outliers with lower density than a predefined value seems satisfactory, specially the results in the 
boundary of occlusions. Detection of such outliers is important because if they remain in the data set, they may cause modelling 
errors in the next modelling step.  
 
 

1. INTRODUCTION  

Simple, efficient and direct capturing of 3D information are the 
main reasons for the fast growing popularity of laser scanners. 
Although the generated point clouds are direct and dense 
measurement of objects, the appearance of single or cluster 
outliers cause serious problems for the next modelling and 
measurement steps. Therefore, a pre-process is required to 
detect and remove outliers. However, the number of points in 
the generated point cloud is in the order of million points, so 
(semi) automatic approaches are necessary.  
 
Outlier detection in point clouds is not a trivial task since there 
are: geometrical discontinuities caused by occlusions in 
silhouette boundaries, no prior knowledge of the statistical 
distribution of points, the existence of noise, and different local 
point densities. The typical outlier detection approaches, 
classified (Papadimitriou et al., 2002) as distribution-based, 
depth-based, clustering and distance-based approaches, do not 
get satisfactory results in laser point clouds (see section 2). 
  
In this paper, a density based outlier detection algorithm is 
introduced, which was addressed previously for knowledge 
discovery in database (KDD) applications (Breunig et al., 
2000). The algorithm has shown a good potential in KDD 
applications, but its performance and results in laser scanner 
point clouds has not been clarified yet. The algorithm is 
examined on both aerial and terrestrial laser scanner data sets 
and results are reported. 
 
The paper organization is as follows: Section 2 gives a literature 
review of outlier detection algorithms. Section 3 describes some 
sources of outliers in phase and time-of-flight laser 
measurement systems. Then, in Section 4, the mathematical 
aspects of the presented algorithm are briefly addressed. 
Section 5 contains the results of using the algorithm on real data 
sets and the assessment of the results with respect to a reference 
data set. Finally, Section 6 includes a summary and conclusion. 
 

2. LITERATURE REVIEW  

While an extensive amount of research has been presented in 
literature for outlier detection it is still a critical problem in 
laser scanner point clouds. The proposed approaches have weak 
potential to perform well with surface discontinuities, they need 
priory knowledge of the statistical distribution of the samples 
(Howkings 1980, Vanicek 1982) or they are sensitive to noise 
and different local densities (Breunig et al., 2000). 
Nevertheless, the mentioned criteria are typical cases in laser 
scanner point clouds.  
 
According to Papadimitriou et al. (2002) outlier detection 
approaches are classified into the distribution-based (Howkings 
1980), depth-based (Johnson 1998) and clustering approaches 
(Jain et al., 1999). Distribution-based approaches deploy some 
standard stochastic distribution model (Normal, Poisson, etc.) 
and flag as outliers those objects that deviate from the model 
according to a significant level (Vanicek 1982, Rousseeuw 
1987, Barnett 1994, Howkings 1997). However, for arbitrary 
data sets without any prior knowledge of the distribution of 
points, determination of the suitable distribution model which 
fits to the data set (if any) needs to perform expensive tests (in 
laser point clouds the distribution of points varies according to 
the distance of objects to laser scanner and the object geometry) 
. 
 
The depth-based approach is based on computational geometry 
and computes different layers of k-dimentional convex hulls 
(Johnson 1998). Objects in the outer layer are detected as 
outliers. However, it is a well-known fact that the algorithms 
employed cannot cope with large, arbitrary data sets in 3 
dimensions. 
 
Many clustering algorithms detect outliers as by-products (Jain 
1999). From the viewpoint of a clustering algorithm, outliers 
are objects not located in clusters of a dataset. However, since 
the main objective of a clustering algorithm is to find clusters, 
they are developed to optimize clustering, and not to optimize 
outlier detection. These algorithms, in general, consider outliers 
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from a more global perspective, which also has some major 
drawbacks (Breunig et. al., 2000). 
The above three approaches for outlier detection are not 
appropriate for large, arbitrary data sets (Papadimitriou et. al. 
2002). Nevertheless, this is often the case with laser point 
clouds. The following two approaches seem to be more 
appropriate. 
 
The distance-based approach was originally proposed by E.M. 
Knorr and R.T. Ng (Knorr 2000). An object in a data set P is a 
distance-based outlier if at least a fraction b of the objects in the 
object set is further than r from it. This outlier definition is 
based on a single, global criterion determined by the parameters 
r and b. This can lead to problems when the data set has both 
dense and sparse regions (Breunig et. al., 2000). 
 
The density-based approach was proposed by (M. Breunig, et 
al. 2000) for KDD applications. It relies on the local outlier 
factor (LOF) of each object, which depends on the local density 
of its neighborhood. The neighborhood is defined by the 
distance to the MinPts-th nearest neighbor. The MinPts is a 
predefined value, which corresponds to the minimum number of 
points in calculation of density. The algorithm is not only 
independent of the prior knowledge of the scanned objects, 
distribution or density of sampled points but also does not 
suffer from the different local point densities. In section 4 the 
basics of the algorithm are briefly described, the reader is 
referred to Breunig et. al., 2000 for more detail, and the result 
of applying the algorithm on real point clouds (aerial and 
terrestrial) are presented in section 5. 
 
Outliers in point clouds may have different sources. In the next 
section, some sources of the outliers in terrestrial laser point 
clouds are described and in section 5 the behaviour of the 
presented algorithm to different outlier types are shown.    
 

3. SOURCES OF OUTLIERS IN LASER SCANNER 
POINT CLOUDS 

According to (Howkings 1980) an outlier is an observation that 
deviates so much from other observations as to arouse suspicion 
that it was generated by a different mechanism. Big errors or 
outliers can cause from different sources and they are mainly 
measurements that do not belong to the local neighborhood and 
do not obey the local surface geometry; thus they cause serious 
problems in the further steps such as segmentation or mesh 
generation. Here some important reasons of the appearance of 
outliers are described, in particular for terrestrial phase 
measurement and time-of-flight systems.  
 
3.1 Boundaries of occlusions 

Since the footprint of the laser beam is not a geometrical point 
but an ellipse, while it hits a boundary of an occlusion (the 
boundary of an object that occludes other objects behind with 
respect to the radiation line of site), it is divided into two parts 
(Figure 1-a) each of which radiate one of the front and the back 
surfaces incident to the occlusion boundary (hashed parts of the 
spot in the figure). Thus the irradiance (reflected flux) at this 
point would be a weighted average of the irradiance reflected 
by both surfaces. For Lambertian surfaces, the part that has a 
bigger area will have more influence and the center of the 
recorded point will be shifted near to it. This effect is shown, in 
one dimension, in Figure 1-b at a cross section perpendicular to 
an occlusion edge.  

 
Figure 1. Erroneous measurements at the boundary of an 

occlusion. (a) The hashed circle, which is split, is 
the laser foot print. The doted line shows a section 
that is the intersection of the surface 1 plane and a 
plane that the laser beam is move on during one scan 
line. (b) The curve, circle and the cross depict the 
irradiance function along the section at foot print 
center, the geometry boundary point (the 
intersection of the boundary and the section) and the 
measured point, respectively. 

 
Figure 2. A sample of outliers at the boundary of an occlusion. 

The virtual points between the monitor edge and the 
back wall are the result of the problem depicted in 
the Figure 1 and described in text. 

 
Therefore, a virtual point between the back and front surfaces is 
measured and while the spot moves across the occlusion 
boundary, artificial points are produced between two surfaces. 
Figure 2 illustrates this artifact on a real measurement with 
Imager 5003, Z+F GmbH laser scanner, on an occlusion border 
that appears between a monitor and a wall in back. This 
problem is also addressed by (El-Hakim et. al. 1994) for 
triangulation based laser scanners.  

 
3.2 Surface reflectance 

Some measurement errors arise from surfaces that have very 
high or very low reflection such that the receiver’s detector 
cannot resolve the reflected beam. Examples of such surfaces 
are: black objects, glasses and slick metal surfaces. These 
structures generate two key effects on the geometric 
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measurement: a bias in the distance measurement, as well as an 
increase in noise level (Baraldin, 2004). 
 
3.3 Multi path reflection 

When the laser beam hits a surface under a quite low incidence 
angle, most of the laser beam is not directly reflected back into 
the receiver, but first deflected onto other close surfaces and 
then reflected back into the receiver. This secondary reflection 
is more effective than the first reflection directly from the first 
surface. Therefore incorrect measurements appear in the point 
cloud. 
 
Some of these artefacts (e.g. weak reflections) can be detected 
by the sensor itself with a simple pre-processing relative to the 
physical properties of the reflected beam or with a filtering 
process (Bornaz 2004). Nevertheless, the pre-processing 
procedures cannot remove all the outliers and still an outlier 
detection process is needed. The approach should detect outliers 
disregarding the source of them and does not suffer from the 
problem of the other approaches. The following chapter 
describes a density based algorithm that satisfies these 
properties. It has two main properties; first unconstrained 
behaviour to the preliminary knowledge of the scanned scene, 
and second the independency to the varying density of the 
points. 
 

4. THE LOF ALGORITHM 

The algorithm needs some basic definitions that are as follows 
(Breunig et. al., 2000): 
 
K-distance of a point p: For any positive integer k, the k-
distance of point p, denoted as k-distance(p), is defined as the 
distance d(p,o) between p and a point o∈D such that (D is a  
point set for which outliers should be detected): 
 
(i) for at least k points o’∈D-{p} it holds that d(p,o’) ≤ d(p,o),  
(ii) for at most k-1 points o’∈D-{p} it holds that d(p,o’) < d(p,o) 
 
K-distance neighborhood of a point p: Given the k-distance 
of p, the k-distance neighborhood of p contains every point 
whose distance from p is not greater than the k-distance, i.e. 
 
Nk(p) = { q ∈ D-{p} | d(p, q) ≤ k-distance(p) } 
 
These points q are called the k-nearest neighbors of p.  
 
Reachability distance of a point p with respect to point o: 
Let k be a natural number. The reachability distance of point p 
with respect to point o is defined as 
 
reach-distk (p, o) = max { k-distance(o), d(p, o) } 
 
If point p is far away from o, then the reachability distance 
between the two is simply their actual distance. However, if 
they are “sufficiently” close, the actual distance is replaced by 
the k-distance of o. The reason is that in this way, the statistical 
fluctuations (noise) of d(p,o) for all the p's close to o can be 
significantly reduced. The strength of this smoothing effect can 
be controlled by the parameter k. The higher the value of k, the 
more similar the reachability distances for points within the 
same neighborhood. 

Local reachability density of a point p: The local reachability 
density of p is defined as 
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The outlier factor of point p captures the degree to which p is 
called an outlier. It is the average of the ratio of the local 
reachability density of p and those of p’s MinPts-nearest 
neighbors. It is easy to see that the lower p's local reachability 
density is, and the higher the local reachability densities of p's 
MinPts-nearest neighbors are, the higher is the LOF value of p. 
 
Breunig et. al. show that the value of LOF for a point deep 
inside a cluster is approximately 1. Similarly, the intuitive 
property of laser scanner point clouds, dense regular sampling, 
implies that the LOF value of points that are measured correctly 
should be 1. All outliers have the common property to not obey 
the local point density, and so the LOF value of them should 
show bigger values than 1.  
 
Moreover, the local behaviour of the factor avoids the problem 
of different densities over a whole scan, which may happen due 
to the varying distance of objects and the scanner. Thus the 
algorithm should function well over both close and far point 
clusters and should detect the single and even clustered outliers 
in which the number of points is smaller than the MinPts value 
that defines the local neighbourhood. Outlier clusters that have 
more points than this value cannot be detected, since the radius 
of the neighbourhood defined by MinPts does not touch the 
points outside the cluster. Thus the point is considered as a 
point deep inside that cluster and not as an outlier. Therefore 
the selection of MinPts has direct influence on the performance 
of the algorithm. Breunig et. al. show some guidelines of 
selecting the lower and upper bands of MinPts. However the 
selection of the bands is application dependent. 
 

5. EFFICIENCY CHECK AND RESULTS 

To assess the explained algorithm, it was examined on both 
aerial and terrestrial laser scanner point clouds, with dense 
clusters and most of the outlier types described in Section 3. 
Below the result of both tests are reported.  
 
5.1 

                                                                

Aerial case 

A part of the ALS point cloud of Espoonlahti A1 was used. The 
area contains an urban area (Figure 3b). The data is captured by 
TopoSys, Falcon2 ALS with the nominal accuracy of σxyz = 
0.22m. A reference surface was required to find out the 
reference outliers and inliers and to compare with the result of 
the algorithm. Here, a surface extracted from an aerial stereo 
pair was considered, which was available from the same area.  
Having the reference surface, reference outliers were selected 
as points that were far from the reference surface with respect to 

 
1http://www.fgi.fi/osastot/foto/projektit/www_treeextr/espoonlahti.html 
2 http://www.toposys.com/ 
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Figure 3. (a) The residual map and the histogram of residuals (the right side of the legend). The green, yellow and red 
areas are corresponds to 84% (σ), 95%(2σ) and more than 95% confidence intervals respectively. Gray 
areas are regions no measurement. (b) The aerial image of the area. 

a defined confidence interval. Then the LOF algorithm was 
performed on the point cloud, and points were classified as 
outliers and inliers. Next, the results of both outlier and inlier 
sets were compared with the reference ones. The following 
sections describe more about the test and result. 
 
5.1.1 Reference data 
 
A DSM generated by photogrammetric methods used as a 
reference surface. It was extracted from a stereo pair with 
characteristics described in Table 1.  
 
Imagery Scale 1:5300 
Focal length 153.59(mm) 
Frame size 230.0(mm) x 230.0(mm) 
Pixel size 0.014(mm) 
DSM point density ~100 points/m2 
Table 1. Characteristics of the imagery used for reference 

surface extraction 
 
SAT-PP3 was employed to generate the DSM. The software 
uses feature points and edges for reliable dense DSM generation 
(Zhang 2005). In addition, manual editing of the final surface 
was performed. The surface model itself was evaluated using 
manual stereo measurements of 128 points. The points are 
measured such that the cover the whole area and different 
heights (the top and bottom of buildings in addition to flat 
areas). Table 2, 1st row, is the summary of the residuals between 
manual measurements and the generated DSM by the software. 
According to the point density of the laser scanner point cloud 
and its accuracy, which was σxyz = 0.22m, this DSM was 
selected as a reference surface. 
 

 Mean (m) Std. (m) Max. (m) 
Manual stereo 

measurements vs. DSM 0.126 0.365 1.774 

Laser vs. DSM 0.201 1.533 7.474 
Table 2. Statistical information of the residuals between manual 

stereo measurements and extracted DSM from SAT-

                                                                 

5.1.2 

3 SATellite imagery Precision Processing  

PP (1st row), and the residuals between extracted 
DSM and laser point cloud (2nd row). 

 
To classify the laser point cloud into two (reference) inlier and 
outlier categories, the distance of each point of the point cloud 
to the DSM was computed. The distance was defined as the 3D 
Euclidian distance of each point to the nearest surface triangle. 
In table 2 the second row shows the statistical information of 
the residuals. Figure 3a illustrates the residual map of laser 
point cloud and the reference DSM. The laser point cloud and 
the DSM were both registered to UTM coordinate system.  
 
Outliers were considered as points that were outside the 95% 
confidence interval of the probability distribution function of 
the residuals, equal to 3.066m (Figure 3a, the histogram beside 
the legend). 
 

Evaluation of the LOF algorithm 
 
The LOF algorithm was performed on the same laser point 
cloud. The MinPts value was set to 20 points. The LOF values 
bigger than 1.2 were detected as outliers. Table 3, depicts the 
relation between reference inliers/outliers and the detected ones 
by the LOF algorithm. In the table, the α–Error (Type I) is the 
number of reference inliers that were detected as outliers by the 
algorithm. The β–Error (Type II) is the number of reference 
outliers that were detected as inliers. 
 

The LOF algorithm 
 Inliers Outliers  

Inliers 109967 1261 111228   
Outliers 4273 319 4592 

 114240   1580 115820 
    

R
ef

er
en

ce
 

α–Error 1.09% β–Error 3.68%  

α–Error 
Correct 
outliers 
Correct 
inliers 

β–Error  

Table 3. The relation between reference inliers/outliers and the 
detected ones by the LOF algorithm. 

 
The result shows a relatively high β–Error; means there are 
outliers that are still remained in the laser point cloud. However 
a close look into the point cloud and the DSM shows that there 
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5.2 

are two reasons. First, there are points that are inside a cluster 
of outliers and if the cluster has point density more than MinPts 
it is not detectable by the algorithm. If a higher value of MinPts 
is set it causes that object point clusters that have less points 
than MinPts are also being detected as outliers (it raises the α–
Error). This is because the algorithm is blind to figure out the 
difference between a cluster of object points and outliers. 
Second, there are still some areas in the reference DSM that are 
not a part of the real surface. These are mainly the areas that are 
difficult for matching algorithms to get reliable results such as a 
cluster of trees (Figure 3, a cluster in the bottom left of the 
figure). On the other hand, the algorithm detected the single or 
cluster outliers that have the point density less than MinPts.  
 

Terrestrial case 

A data set is captured by the Z+F Imager 5003 inside a room. A 
part of the intensity image produced by this laser scanner is 
shown in Figure 4. In the scene, there were some occlusion 
boundaries (e.g. the left edge of the front monitor which covers 
a part of the back wall) as well as black, glass and metal 
surfaces (e.g. black targets, frames attached to the wall and the 
legs of chairs). The LOF algorithm was performed on the point 
cloud with MinPts = 10 (since the point cloud is very dense). 
The LOF map of the data is shown in the same figure, right 
(here the range image structure is used to help showing the 
results). In this map, the Gray value of each pixel shows the 
LOF value of the corresponding point in the point cloud. The 
whiter the pixel is, the bigger the value of LOF and so the 
higher probability of being an outlier.  
 

As the figure depicts, pixels lying near the occlusion boundaries 
are brighter. Moreover, there are some non-occlusion edges 
(edges with both incident surfaces scanned) that have darker 
values. This means they are considered as inlier observations 
(e.g. the right edge next to the screen of the front monitor and 
the upper edges of the tables). This shows that the algorithm 
resolves the difference between boundaries that have both 
incident surfaces measured and occlusion boundaries; therefore 
it detects exactly the boundaries that have problem due to an 
occlusion. Similarly, the bright value of the pixels located on 
the black targets, glass frames and chair legs show the detection 
of outliers there.  
 
Another example is also shown in figure 5. The point cloud is 
obtained by Riegl laser scanner LMS-Z420i; location is 
Pinchango Alto, Peru (Eisenbeiss et al. 2005). The detected 
outliers are illustrated in white. As the figure depicts, single and 
small cluster outliers are detected (MinPts = 10, the detection 
threshold = 1.2). 
 
Although the algorithm could extract most of the expected 
outliers in the scene, there are still some that are not detected. 
The points inside clusters of outliers are ignored. Even if the 
borders of outlier clusters were detected (e.g. the border of the 
black targets) the whole erroneous cluster were not detected due 
to the similarity of the point density inside such clusters. 
Another problem of using this algorithm is the runtime 
complexity, which is proportional to the search processes to 
find MinPts-nearest neighbours. (Breunig et al., 2000) 
suggested using grid based approaches for queries to improve 

Figure 4. (left)The sample intensity image captured by Imager 5003, Z+F Laser scanner (Sub 
image: 1024x1024), (right) The LOF map of the sample data with MinPts = 10 

Figure 5. Detected outliers in White. The data set 
captured by Riegl laser scanner LMS-
Z420i; Location: Pinchango Alto, 
Peru. MinPts = 10 
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the runtime performance. In this implementation the KDtree4 
structure is used to reduce this complexity. It is well-known that 
this structure has complexity of O(log n) nearest neighbour 
queries. Subsequently, generating a database to save the value 
of neighbourhood radius and local reachability density values 
avoids multiple computations over one point. Having developed 
these improvements, the runtime complexity significantly 
reduced to a linear complexity (Figure 6). 
 

 
Figure 6. Runtime performance of the implemented LOF 

algorithm on sample point cloud 
 

6. CONCLUSION 

Detecting outliers in laser scanner point cloud using a density 
based algorithm is investigated in this paper. Having introduced 
sources of outliers, the LOF algorithm was chosen due to its 
unconstrained behaviour to the preliminary knowledge of the 
scanned scene and since it dose not suffer from the varying 
density of the points. The algorithm efficiency is assessed by a 
test on an ALS point cloud, which contained most of the 
mentioned outliers. The assessment is done with respect to a 
DSM obtained by photogrammetric methods. The type I and 
type II errors are estimated and the results are reported. In 
addition some examples in terrestrial laser scanner point clouds 
are presented and the behaviour of the algorithm on the data 
sets are shown and discussed. Although the algorithm dose not 
detect outlier clusters with the point density higher than MinPts 
(a predefined density, see Section 4), the detection of single 
outliers and even cluster outliers with lower density than 
MinPts seems satisfactory; specially the results in the boundary 
of occlusions. Detection of such outliers is important since if 
they remain in the data set, they may cause modelling errors in 
the next modelling step.  
 
While the algorithm detects a part of outliers, the problem of 
the detection of the cluster outliers is still a challenge. Detection 
of such clusters would be possible if the point cloud is modelled 
and other sources of information such as images are integrated, 
which the author is currently working on. 
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