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ABSTRACT: 
 
For optimal management of river floodplains in the Netherlands monitoring of natural vegetation succession and hydrodynamic 
processes is essential. A key biophysical parameter to monitor floodplains is vegetation biomass. Not only because it influences the 
hydraulic resistance determining the discharge capacity of the floodplains, but also indicating species diversity and habitat 
heterogeneity in the floodplains. The objective of this study is to investigate the feasibility of mapping above-ground biomass and 
plant functional type distribution of heterogeneous canopies in river floodplains using imaging spectroscopy.  
We establish linear predictive models between vegetation indices derived from airborne imaging spectrometer (HyMap) data and 
field measurements of biomass (n = 21). Image and field data were acquired during a field campaign in the summer of 2004 in the 
Millingerwaard, a river floodplain situated along the river Waal in the Netherlands. Results for broad-band and narrow-band derived 
VIs (e.g., NDVI, SAVI, WDVI and RSR) and a multivariate approach using PLS were compared using a cross-validation procedure 
to assess the prediction power of the regression models. Results showed that regression models could be improved when differences 
in vegetation structure were taken into account. Therefore, regression models were developed for individual plant functional types 
(grassland, mixed herbaceous, shrub and softwood forest). Vegetation biomass maps for the Millingerwaard were prepared in two 
steps. First a classification of plant functional types was made using mixture tuned match filtering (MTMF). In a second step, the 
best regression models were inverted and used to map the spatial distribution of the vegetation biomass. The results demonstrate the 
necessity to use a PFT based approach for biomass assessment, improving the quality of the prediction significantly over 
conventional approaches. 
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1. INTRODUCTION 

River floodplains are dynamic systems and in Western-Europe 
they are often determined to combine different functions, such 
as flood protection, nature development, recreation, agriculture 
and extraction of sand, clay and gravel (Middelkoop et al., 
2001). For optimal management of these river systems 
monitoring of vegetation succession is an essential requirement. 
On the hand it gives insight in the inherent quality of the 
floodplain in terms of e.g., biodiversity. On the other hand, the 
influence of vegetation on the hydraulic resistance of the 
floodplains is used for modelling current and future discharge 
capacities of the river system. For example in the Netherlands, 
river managers require information on the spatial distribution of 
vegetation biomass in river floodplains to decide for which 
locations increased flood risks occur.  
 
Future development of vegetation succession is assessed by 
comparing scenarios from ecological process models. Recent 
advances in remote sensing have shown that imaging 
spectroscopy can be applied for quantitative retrieval of relevant 
vegetation variables (e.g., LAI, biomass, vegetation structure) 
that are required for model initialization and calibration (Turner 
et al., 2004) but also for monitoring of the actual status of the 
floodplain. 
 
Vegetation biomass mapping in river floodplains is complicated 
due to the significant spatial variability of vegetation 

composition. For modelling applications, functional 
classifications have been developed to simplify the floristic 
complexity (Woodward and Cramer, 1996). This means that 
classes of plant functional types (PFT) are composed of species 
with a similar effect on one or several ecosystem functions 
(e.g., primary productivity, nutrient cycling). To improve 
mapping of biophysical variables it has been suggested to 
derive land cover specific relationships using land cover maps 
(Cohen et al., 2003). This suggestion could also be adopted for 
biomass mapping by stratifying the area for specific plant 
functional types. 
 
The objective of this study is to investigate the feasibility of 
mapping above-ground biomass of heterogeneous canopies in 
river floodplains using imaging spectroscopy using a PFT based 
approach. The suitability of univariate regression models based 
on vegetation indices is compared to the use of a multivariate 
regression model using PLS. In addition, the use of plant 
functional type specific relations is evaluated. 
 

2. MATERIAL AND METHODS 

2.1 Study area 

The Millingerwaard floodplain is a heterogeneous natural area 
along the river Waal in the Netherlands. As part of the Gelderse 
Poort nature reserve, the floodplain is a nature rehabilitation 
area, meaning that for some time now areas have been taken out 
of agricultural production and are allowed to undergo natural 



 

succession. This has resulted in a heterogeneous landscape with 
river dunes along the river (PFT22), a large softwood forest in 
the eastern part along the winterdike (PFT4) and in the 
intermediate area a mosaic pattern of different succession stages 
(PFT1, PFT21, PFT22 and PFT3) (see table 1). Nature 
management (e.g., grazing) within the floodplain is aiming at 
improvement of  biodiversity. However,  also  measures  for 
reduction of the hydraulic resistance of the vegetation (e.g., 
harvesting of softwood forest) have been carried out. 
 
Plant functional type height (m) main species 
PFT1: grazed grassland 0 - 0.4 Trifolium rep., Potentilla 

rept., Cynodon dactylon 
PFT21:Mixed herbaceous  
– Echio Melilotetum 

0.8 - 1.3 Rubus caesius,  Urtica 
dioica 

PFT22: : Mixed herbaceous  
– Bromo Inermis 

0.4 - 1 Calamagrostis epigejos 

PFT3: shrubs 0.8 - 4 Sambucus nigra, 
Cratageus monogyna 

PFT4: softwood forest > 2 Salix alba 

 
Table 1.  Main plant functional types for vegetation in 
floodplain Millingerwaard along the river Waal in the 

Netherlands 
 
 
2.2 Spectrometer data 

HyMap images for the Millingerwaard were acquired on July 
28, 2004 in 126 spectral bands ranging from 400 to 2500 nm 
(bandwidth 15 - 20 nm). The data were processed to surface 
reflectance by partially compensating for adjacency effects and 
directional effects using the model combination 
PARGE/ATCOR-4 (Richter and Schläpfer, 2002). The spatial 
resolution of the images is 5 m. Ground measurements include 
top-of-canopy reflectance measurements as well as leaf optical 
properties measurements at all ground plots as well as several 
reflectance measurements of calibration surfaces using an ASD 
FieldSpec instrument (Kooistra et al., 2005). A mask was 
applied to select the vegetated areas within the floodplain, based 
on pixels with an NDVI > 0.2 and a maximum reflectance at the 
wavelength of 665 nm (band 13) of 7.4 %. 
 
2.3 Field sampling 

We selected 21 sampling plots measuring 2x2 m, covering the 
plant functional types grassland (PFT1) and mixed herbaceous 
vegetation (PFT21 and PFT22). Vegetation biomass was 
sampled in three subplots  (0.5x0.5 m) with a homogeneous 
vegetation cover located at three of the corners of each main 
plot. Biomass was clipped at 0.5 cm above the ground level and 
stored in paper bags. The collected material was air-dried, first 
for 5 days at room temperature in open bags, and subsequently 
for 24 h at 70ºC, and weighed. For every sampling plot a 
detailed vegetation description was made according to the 
method of Braun-Blanquet (1951). Abundance per species was 
estimated optically as percentage soil covered by living biomass 
in vertical projection, and scored in a nine-point scale. The 
coordinates of the central location of each ground plot was 
determined using a differential global positioning system.  
 
2.4 Biomass regression models 

The DGPS measured locations of the sampling plots were 
overlaid on the HyMap image and reflectance spectra were 
extracted for single pixels that coincided with the plots. Various 

vegetation indices were calculated and tested as predictor for 
vegetation biomass. As earlier studies often show a saturation 
effect for higher biomass values (e.g., Wylie et al., 2002), both 
linear and exponential regression models were tested. A cross-
section of frequently used vegetation indices (VIs) was assessed 
in this study. This included the traditional NDVI and Ratio 
index (both SR and RSR), the soil-correcting WDVI and SAVI, 
the atmosphere-correcting index GEMI, the EVI as used for 
MODIS data and the MTCI as used for MERIS data. In 
addition, several narrow band indices were tested PVI, TVI, 
MCARI and VOG. An overview of most of the indices can be 
found in Broge and Leblanc (2001). 
 
Results of the univariate regression approach using VIs were 
compared with a multivariate regression approach using partial 
least squares (PLS) regression. Because of the low number of 
available samples, we used the leave-one-out (LOO) cross-
validation procedure to validate the regression models. Because 
the predicted samples are not the same as the samples used to 
build the model, the RMSE of cross-validation (RMSECV) is a 
good indicator of the accuracy of the model in predicting 
unknown samples. In addition, the RMSECV was used to select 
the optimal number of latent variables for the PLS model. 
 
2.5 Mapping spatial distribution of biomass 

Vegetation biomass maps for the Millingerwaard were prepared 
in two steps. First a classification of plant functional types was 
made using mixture tuned match filtering (MTMF). Next, the 
best regression models were inverted and used to map the 
spatial distribution of the vegetation biomass.  
 
A minimum noise fraction (MNF) was performed to reduce the 
noise level and to optimise the classification. After visual 
inspection the first 8 new composite bands were selected as 
inputs for the classification. Earlier studies have shown that 
MTMF can give good classification results for heterogeneous 
vegetation cover (Williams and Hunt, 2002; Glenn et al., 2005). 
MTMF is a unmixing algorithm that is capable of determining 
the abundance of different end-members within a pixel.  End-
member spectra for PFT1, PFT21 and PFT22 (Table 1) in the 
Millingerwaard were collected from the DGPS measured 
locations. End-member spectra for PFT3 (shrubs), PFT4 
(forest), agricultural crops and  soil were collected by manual 
selection of regions of interest. This was supported by field 
knowledge and aerial photographs. The MTMF algorithm 
produces a matched filter value for every end-member for every 
pixel of the masked HyMap image. The final biomass map was 
constructed by combining the matched filter values with the 
inverted regression models for the investigated PFTs.  
 

3. RESULTS AND DISCUSSION 

3.1 Biomass statistics per plant functional type 

The plant functional type for every sampling location was 
derived from the vegetation descriptions based on height and 
species composition. The relationship between the vegetation 
species was explored using Detrended Correspondence 
Analysis (DCA) based on the software program Canoco (ter 
Braak and Smilauer, 2002). In the resulting DCA-plot (Figure 
1) the species variation for the sampling plots is presented. 
Variation on the first axis is explained by a dry-wet gradient 
from the levees (high, sandy) to lower, clay-rich soils, 
perpendicular to the river. The second axis represents (natural) 
management with high values for grazed plots. Based on the 



 

position of the sampling locations in the DCA-plot, a clustering 
of samples per PFT was identified (Figure 1). In 2004, no 
sampling plots were located in shrubs and softwood forest, so 
these PFTs are not shown in the DCA-plot. Table 2 summarises 
the biomass statistics for the measured PFTs. The biomass range 
for grazed grassland is clearly lower then the herbaceous 
vegetation types. PFT21 dominated by Rubus caesius shows 
both higher mean and maximum values then PFT22 that occurs 
on the higher located levees. 
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Figure 1. DCA plot of the vegetation species described for the 

21 sampling plots in the Millingerwaard.  
 

Plant functional type n biomass (ton/ha) 
  mean  stdev min max 
PFT1: grazed grassland 4 1,68 0,61 1,27 2,59
PFT21:Mixed herbaceous  
– Echio Melilotetum 

8 7,32 1,73 5,81 11,6

PFT22: Mixed herbaceous  
– Bromo Inermis 

9 4,49 1,30 2,42 6,46

 
Table 2. Summary statistics for measured biomass in 21 plots 
for the identified plant functional types in the Millingerwaard 
 
3.2 Regression of biomass and spectral reflectance 

A preliminary analysis of the relationship between the 
investigated VIs and vegetation biomass revealed PFT specific 
behaviour (Figure 2). The combined set of herbaceous 
vegetation plots for PFT21 and PFT22 shows a clear relation 
between SAVI and measured biomass. However, figure 2 shows 
that grazing influences the relation between reflectance and 
biomass: the grazed plots (PFT1) appear to have a higher LAI at 
a given biomass compared to the ones not grazed. For this 
study, the plots of PFT1 were excluded from our analysis 
because their low number prevented a separate calibration.  
 
Plots of the (absolute value of the) correlation coefficient 
provide more insight in the relationship between the HyMap 
derived reflectance and the measured biomass (Figure 3). The 
largest absolute value for the correlation coefficient was found 
at 1023 nm, however the whole NIR region from 770 – 1130 nm 
shows values around the maximum. Correlation for the visible 
bands (440-695 nm) was negative, for near-infrared (710-1340 
nm) positive, and negative for the short-wave infrared. 
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Figure 2. Relation between SAVI derived from HyMap 
reflectance spectra and biomass for all measured plots (n=21)  
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Figure 3. Absolute value of correlation coefficients and PLS 
regression coefficient (divided by factor 100) relating HyMap 

reflectance to biomass for herbaceous vegetation (PFT2) 
 
For the combined set of mixed herbaceous sampling plots 
(PFT21 and PFT22), various vegetation indices were tested as 
predictor for biomass. Best results with only small differences 
in R2 and RMSECV were obtained for SAVI, WDVI and GEMI 
using exponential relationships (Table 3). From these results 
can be deduced that although vegetation coverage for large 
parts of the area is high, the background reflectance of the soil 
is also an important component to consider. Although other 
studies  showed good results for NDVI in grassland (Wylie et 
al., 2002), relationships with NDVI in this study resulted in 
higher cross-validation errors. Also, the use of hyperspectral 
based indices (e.g., MCARI, Vog) resulted in higher cross-
validation errors (1.84 and 1.74, respectively). As could be 
expected (Figure 2), including the grassland samples in the 
regression analysis, resulted in a significant reduction of the 
prediction capability.  
 
Vegetation index R2 RMSECV 
NDVI 0,498 1,79
SAVI 0,588 1,66
WDVI 0,583 1,68
GEMI 0,587 1,65
PLS (2 factors) 0,517 1,58

 

PFT1 

PFT21 

PFT22 

Axis 1 

Axis 2 



 

Table 3. Results of (selection of) investigated vegetation indices 
and PLS for estimation of biomass of mixed herbaceous 

vegetation (PFT2) 
Finally, PLS was used to investigate the multivariate relation 
between biomass and HyMap reflectance. Compared to the 
three best VIs this resulted in an improved cross-validation error 
but a lower R2. Due to its linear character PLS is less capable of 
predicting the higher values of the biomass range. Investigation 
of the PLS regression coefficient shows that clear maxima can 
be identified around 895 and 1099 nm. Possibly, this could be 
related with the slopes of the water absorption features around 
970 and 1200 nm. 

 
3.3 Spatial distribution of biomass 

The following step in this study was to predict the value of the 
biomass on the basis of the HyMap reflectance values. As PFT 
specific relations for mixed herbaceous vegetation have been 
derived, first the coverage of this PFT in the Millingerwaard 
needs to be determined. From the MTMF classification results, 
clear differences can be observed in the spatial coverage of 
grazed grassland (PFT1) and mixed herbaceous vegetation 
(PFT21 and PFT22) in the Millingerwaard (Figure 4). Although 
grazed grassland occurs in several areas of the floodplain 
(Figure 4A), a clear hotspot can be observed in triangular area in 
the north of the floodplain which is a former agricultural field 
under grazing management. In the central area of the floodplain, 
smaller grazing areas and paths which is used by the cattle can 
be identified. The coverage of PFT21, which is dominated by  
Rubus caesius, is mainly concentrated in the central area of the 
floodplain. The coverage of PFT22, is spread over a large part 
of the floodplain, but excludes the Rubus caesius dominated 
area of PFT21. The coverage of PFT22 along the river on the 
levee is expected. As main understory of the softwood forest, it 
also covers a large part of the south-east area of the floodplain 
where the softwood forest is located.  
 

 

 

Figure 4. Results of MTMF classification: matched filter values 
are presented for (A) PFT1, (B) PFT21 and (C) PFT22 (see 
Table 1 for description of PFTs).    
 
Figure 4C also shows the mixing of PFT1 and PFT22 in the 
former agricultural field to the North. Although a certain level 
of mixing can be expected, the coverage of PFT22 seems to be 
overestimated. Further analysis is required to assess the 
classification accuracy in a quantitative manner. 
 
Based on the coverage of the mixed herbaceous PFT (Figure 4B 
and 4C), the spatial distribution of biomass for this PFT was 
calculated. The biomass map of herbaceous vegetation was 
computed through inversion of the SAVI based exponential 
regression model (Figure 5) proportionally to the coverage of 
PFT21 and PFT22. In the central part of the floodplain, the 
spatial distribution of mixed herbaceous biomass shows 
increasing values  perpendicular to the river. On the levee along 
the river, vegetation biomass is relatively low; further from the 
river vegetation coverage increases and also vegetation biomass 
increases. In the softwood forest, relatively lower biomass 
values for herbaceous vegetation are estimated due to the mixed 
vegetation in the pixels. Due to uncertainty in the classification, 
the agricultural field in North-Eastern part of the floodplain 
shows estimated biomass values, while this area is covered by 
maize.  
 

 
 

Figure 5. Above-ground biomass (ton/ha) of herbaceous 
vegetation (PFT2) predicted using SAVI vegetation index for 

the Millingerwaard 
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4. CONCLUSIONS 

We explore the possibility to assess vegetation biomass in a 
heterogeneous river floodplain using imaging spectroscopy. The 
results indicate that biomass can be estimated with a reasonable 
accuracy using both VI’s-based approaches and PLS regression. 
However, we found that the quality of these relations are 
significantly dependent on a pre-classification of the imaging 
spectrometer data into plant functional types. For example in the 
Millingerwaard, nature management through grazing had an 
important influence on the relation between vegetation 
reflectance and biomass. Based on a first qualitative evaluation, 
we can conclude that by applying mixture tuned match filtering 
(MTMF), a good characterization of the spatial distribution of 
PFTs within the floodplain could be made. 
In future work, we will use physical based modelling for the 
retrieval of biophysical parameters in dependency of PFT 
estimates. 
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