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ABSTRACT 
The purpose of this paper is to explore the dynamics of neural networks in forecasting crop (wheat) yield using remote sensing and 
other data. We use the Adaptive Neuro-Fuzzy Inference System (ANFIS). The input to ANFIS are several parameters derived from 
the crop growth simulation model (CGMS) including soil moisture content, above ground biomass, and storage organs biomass. In 
addition we use remote sensing information in the form of the Normalized Difference Vegetation Index (NDVI). ANFIS has only 
one output node, the yield. In other words a single number is sought. An additional difficulty in predicting yield is that remote 
sensing data do not go long back in time. Hence any predicting effort is forced to use a very limited number of past years in order to 
construct a model to forecast future values. The system is trained by leaving one year out and using all the other data. We then 
evaluate the deviation of our estimate compared to the yield of the year that is left out. The procedure is applied to all the years and 
the average forecasting accuracy is given.  
 

1. INTRODUCTION 

The synergy of neural network, fuzzy sets and genetic 
algorithms is collectively known as computational intelligence 
(Duch et al., 2004). Several different combinations exist. There 
exist the optimisation of neural network weights via a genetic 
algorithm (Liu et al., 2002; Liu et al., 2004) and the use of a 
genetic algorithm to tune a fuzzy inference system (Russo 
2000). In this paper we focus on the merge of neural networks 
and fuzzy set theory which result to fuzzy neural networks 
(FNN) also known as neuro-fuzzy systems or granular neural 
networks (GNN) (Pedrydcz et al., 2001).  
 
Several flavours of neuro-fuzzy systems have been applied to 
the classification of remotely sensed imagery. A comparison of 
the most commonly used ones can be found in Stathakis et. al. 
(in press a). We briefly mention here that NEFCLASS (Nauck, 
2003) has been used in the classification of remotely sensed 
data to obtain land use and land cover classes (Stathakis et al., 
in press b). ANFIS (Jang, 1993) has been used in the same 
context (Benediktsson et al., 1999). Fuzzy ARMAP (Carpenter 
et al, 1992) has been applied into global land cover mapping 
(Gopal et al., 1999). 
 
The use of a neuro-fuzzy system for crop yield estimate has 
several appealing characteristics. All the variables that are input 
into the system are associated with varying degrees of 
accuracy. The ambiguity steams from measurement error and 
generalisation. Using fuzzy sets instead of the actual values as 
inputs, we aim at shifting to the semantics of the data rather 
than its measure (Zadeh, 1999). 
 
The purpose of this paper is to apply ANFIS neuro-fuzzy 
architecture for crop yield estimation. We proceed by briefly 
presenting the architecture of this neuro-fuzzy system. We then 
describe the data and parameters used as well as the exact 
methodology. Finally conclusions and guidelines for future 
work are given. 
 

2. METHOD 

2.1 ANFIS 

We considered several architectures to use in crop yield 
prediction. Perhaps the most important parameter for selecting 

the most suitable one is that we wanted that the estimate would 
be a number. It is well know that with neuro – fuzzy modelling 
there is the alternative to use a fuzzy set as the output. In this 
case, yield would be expressed for example as low, normal of 
high with each of those three hedges corresponding to a fuzzy 
set. We do not imply however that seeking a crisp (non-fuzzy) 
value is a more exact approach than seeking a trend expressed 
in fuzzy sets (low, medium, etc). But although the accuracy of 
prediction is probably the same in both expressions of desired 
output, people are more used to and feel more confident in 
looking at number rather than a membership function. 
 
ANFIS is a system that accepts numerical inputs and produces a 
single output value. While this is clearly a limitation when 
using this system e.g. in land use classification, because only 
one output class is permitable, it is proved here to be an 
advantage. The multiple output counterpart of ANFIS called 
CANFIS has also been suggested (Mizutani 1997). 
 
ANFIS is susceptible to the “curse of dimensionality”. The 
training time increases exponentially with respect to the number 
of fuzzy sets per input variable used. To illustrate this let us 
consider a system with 8 input variables that are coded into two 
fuzzy sets (e.g. low, high) and has 256 rules, as shown on figure 
1. If we chose now to use three linguistic variables instead of 
two (say low, medium, high) the number of fuzzy rules 
becomes 6561. This phenomenon limits in practice the choice 
of input variables as well as the expression of those variables 
into meaningful fuzzy sets. 
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FIG 1. The curse of dimensionality in ANFIS 
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2.2 Data 

Three adjacent regions in Russia (Rostov, Krasnodar, and 
Stavropol) with similar agro-ecological and agronomical 
conditions are used as pilot areas for the study. These regions 
make the biggest contribution in wheat grain production of 
Russia. Statistical winter wheat data for 1999-2004 were used 
for the network training. The study area is shown in Fig 2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 2. Pilot area location (hatched regions)  
 
2.3 Parameters used 

A model for predicting winter wheat yield at regional level is 
constructed. The input to the network are several parameters 
derived from the crop growth simulation model (CGMS) (Supit 
et al., 1994) including soil moisture content, above ground 
biomass, and storage organs biomass. In addition, we use 
remote sensing information in the form of the Normalized 
Difference Vegetation Index (NDVI). 
 
The CGMS outputs and NDVI values originally were received 
on 10-daily basis during each vegetative season. However, all 
input parameters were aggregated for two periods to construct 
the time profiles. The duration of the first period is from crop 
sowing to maturing (up to the 1st of August). The second period 
corresponds to the crop development from sowing to flowering 
(up to the 1st of June). The main reason of such an aggregation 
is to investigate a difference between “early” (during crop 
flowering) and “late” (during crop maturing) crop yield 
prediction. 
 
For each parameter we wither use the maximum value or the 
first two coefficients of the 5-order polynomials. Those 
polynomials are used to approximate each parameter. As a 
result, the following set of input parameters was created: 
 

1. maximum NDVI value for the 2nd period; 
2. first and second coefficients of the NDVI 5-order 

polynomial for the 1st period; 
3. first and second coefficients of the NDVI 5-order 

polynomial for the 2nd period (fig.3); 
4. maximum storage organs’ biomass value for the 1st 

period; 
5. maximum storage organs’ biomass value for the 2nd 

period; 
6. first and second coefficients of the storage organs 

biomass 5-order polynomial for the 1st period; 

7. first and second coefficients of the storage organs 
biomass 5-order polynomial for the 2nd period; 

8. maximum above ground biomass value for the 1st 
period; 

9. maximum above ground biomass value for the 2nd 
period; 

10. first and second coefficients of the storage organs 
biomass 5-order polynomial for the 1st period; 

11. first and second coefficients of the storage organs 
biomass 5-order polynomial for the 2nd period; 

12. first and second coefficients of the soil moisture 5-
order polynomial for the 1st period; 

13. first and second coefficients of the soil moisture 5-
order polynomial for the 2nd period. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3. Example of NDVI time profiles for two years for 
Krasnodar region and corresponding 5-order polynomials for 
the first period of analysis (late period). 
 
2.4 Methodology 

The total number of samples is 18. This number is very low and 
it shows one of the major difficulties in our test. One of the 
main questions that need to be addressed in this study is 
whether it is possible which such a low number of training 
samples to predict future values. The positive aspect compared 
to statistical methods is that, the neuro-fuzzy method has no 
conceptual limitation because it is purely data driven. Although 
not recommended in general, no assumptions are violated by 
having such a low population number.  
 
ANFIS architecture is determined by preliminary testing. 
Finally the following parameters were selected for the first 
neuro-fuzzy configuration: 1, 3, 5, 9, 11 (see above). 
Parameters 2, 4, 8, 10, 12 were selected for the second one. 
Triangular membership function is deployed. The stopping 
criterion is either completion of ten training epochs or reaching 
0.01 mean classification error for the training data set. The 
input parameters are normalized to the [-1, 1] range according 
to the formula: 
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ANFIS is very stable. The results remain the same in 
subsequent runs with the same input. On the contrary we tested 
standard neural networks that proved to be quite unstable. We 
tested a feed-forward multi layer perceptron trained by the 
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backpropagation algorithm (Rumelhart et al., 1986) and we had 
to average the results over many runs (10-100 times) in order to 
obtain a stable value. 
 
 
 

3. RESULTS 

 
Table 1. Results. The first row gives the ID of the sample. 
“Period 1” and “Period 2” rows shows the results for late and 
early periods accordingly. “Actual” row is the actual yield 
realised at each sample. “Period 1 correct” and “Period 2 
correct” is the ratio of estimate divided by the actual yield per 
sample for the two periods. The last column shows overall 
percentage of yield estimate. 
 
The results are shown on table 1. We can see that on average 
the prediction gives a 74% level of accuracy which we consider 
satisfactory as a first approach, given the very limited number 
of training samples. In addition, the overall percentages of 
estimation accuracy for the two periods used are equal (by 
chance). However, accuracy values for the early period are 
more stable than for the late period. This can be explained by 
the fact that the crop yield in the region depends more on the 
crop growth conditions before flowering than on conditions 
after flowering. This means that a quite accurate estimate can 
be made relatively early in time (about two months before 
harvesting). The internal distribution of error per period 
exhibits very heterogeneous behaviour. Some samples are 
estimated very accurately whereas in certain cases the 
forecasting fails. Different samples are difficult to forecast 
between the two periods. The graphs of prediction accuracy for 
periods 1 and 2 are given in figures 4 and 5 accordingly. The 
structure of ANFIS that we used is shown in fig. 6. 
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Fig 4. Prediction accuracy for the late period (1). 
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Fig 5. Prediction accuracy for the early period (2). 

 



 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

input
mf

output
mf

rule (AND operator)

input

output

. . .
 

Fig 6. ANFIS architecture for period 2 (early). Not all of the 
connections and nodes are shown. 

4. CONCLUSIONS 

This first effort showed that a neuro-fuzzy configuration can be 
used for wheat yield prediction for the region with acceptable 
results. In the future we intent to make two additional 
experiments with the same basic configuration. First use 
different parameters as inputs and second test more rigorously 
different ANFIS configurations. 

 
The first group of tests is to find the best input dimensions for 
this particular task. There is a range of possible parameters 
other than those used here that we could utilise: 
 

- results of dry matter production modelling based on 
Monteith approach (Monteith, 1972); 

- meteorological parameters (temperature, amount of 
precipitation, snow depth and so on). 

 
The second group of tests refers to ANFIS parameters. 
Although we perform a basic sensitivity analysis on the basic 
parameters used we would be more confident by a more 
systematic approach. We believe that parameters such as the 
number of fuzzy sets, the type of membership functions as well 
as the option to have different parameters per input, should 
receive more experimental effort. A possible way forward is to 
use a genetic algorithm to select the optimal values. 
 
Finally, it would be very interesting to explore the knowledge 
learned by the fuzzy system by looking thoroughly into the 
rules created in the rule base. Perhaps this would provide an 
insight with respect to which are the most important factors in 
crop yield prediction using a data driven approach. 
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