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ABSTRACT

MAGSIC is an operation-oriented system in development dedicated to map-guided classification of sea ice for navigation route planning
and meteorological modelling. It has already produced promising results in difficult situations such as the Gulf of Saint-Lawrence in
late winter. The Canadian Ice Service (CIS) produces ice maps made of large regions with relatively homogeneous concentrations
of different ice types. MAGSIC uses the information of these maps to produce a pixel-based (rather than region-based) ice map by
labelling a Markov random field (MRF) segmentation of RADARSAT-1 data along with its derived texture features. The system
uses a novel implementation of MRF segmentation in combination with a unique labelling approach based on “cognitive reasoning”.
Although reasonably successful, the system often had difficulties identifying ice type that required cues based on the shape recognition
of large ice floes or leads. This article aims at thoroughly testing the MAGSIC system using validation data acquired during the “2003
Gulf of Saint-Lawrence SAR Validation Field Program” performed by CIS. Some new features were also added to MAGSIC and
were evaluated. Results suggest a reasonable success and that the errors can be partially attributed to the generalized nature of the
analysts´interpretation and to the difficulties of obtaining concurring ground and image data. They suggest that classification metrics
that can compare sample distributions were slightly superior for labelling purposes but this could not be confirmed statistically.

RÉSUMÉ

MAGSIC est un syst̀emeà vocation oṕerationnel en d́eveloppement d́edíe à la classification guid́ee de la glace de mer pour des
fins de navigation et de modélisation ḿet́eorologique. MAGSIC a d́ejà produit des ŕesultats promettants dans des situation difficiles
comme celle du Golf du Saint-Laurentà la saison d’hiver tardive. Le Service Canadien des Glaces (SCG) produit des carte de glaces
compośees de grande régions ayant des concentrations relativement homogènes de divers types de glaces. MAGSIC utilise cette
information pour produire des cartes de glace détaillées (au niveau des pixels plutôt que des ŕegions) baśees sur l’́etiquetage d’une
segmentation Markoviennne (MRF) de données RADARSAT-1 et de texture dérivée. Le syst̀eme profite d’une implantation originale
de la segmentation Markovienne combinéeà une approche unique de l’étiquetage basée sur le “raisonnement cognitif”. Malgré les
résultats encourageants, le système a souvent du malà identifier les types de glace nécessitants la reconnaissance de grands floes
ou de fractures. Le présent article visèa tester le système MAGSICà l’aide de donńees provenant du “Programme de Validation
sur le Terrain des Données RSO dans le Golfe du Saint-Laurent (2003)” prodigué par le SCG. Quelques nouveaux aspects ontét́e
incorpoŕes à MAGSIC et sont́egalement́evalúes. Les ŕesultats sugg̀erent un taux de succès raisonnable et que les erreurs peuvent
souvent̂etre attribúeesà la nature ǵeńeraliśee de l´interpŕetation des analistes ainsi qu´aux difficultés d´obtention de données de terrain
et d´image simultańees. Ils sugg̀erentégalement que les ḿetriques de classification qui tiennent compte de la distribution des données
sont ĺeg̀erement suṕerieures pour les opération d´́etiquettage mais cela ne puêtre confirḿe statistiquement.

1. INTRODUCTION

Sea ice recognition represents an important remote sensing appli-
cation throughout the high northern latitudes. For many years it
has provided vital maps to ships navigating in ice infested seas
(Hall, 1998). More recently, sea ice mapping is playing a grow-
ing role in modelling global climate and in providing northern
communities with timely information on the sea ice / open water
edge (Agnew et al., 1999). In Canada, the Canadian Ice Service
(CIS) produces and discloses ice maps daily using RADARSAT
images (HH C-band 5.3 GHz) as their primary source of infor-
mation. The ScanSAR wide mode provides a swath of 500 kilo-
meters and can supply the necessary daily coverage of Canadian
territory. Apart from the SAR images, the ice analyst has also
access to a wealth of information including helicopter and ship
reports, maps from previous days along with other satellite prod-
ucts (i.e. MODIS, AVHRR, etc.). The ice analysts prepare World
Meteorological Organization (WMO) maps in which regions con-

taining homogeneous concentrations of sea ice types (between
one and four out of the possible 14 types) for which a standard
codification (called an “egg code”) is defined. These regions can
have thousands of square kilometers and contain no indication as
to the location of each ice type (see Figure 1 for an example of
an egg code symbol and map). Even though the analysts work
in a highly computerized environment using geographic informa-
tion system (GIS) and image processing technology, their inter-
pretation work is completely manual and no automated segmen-
tation/classification routines are used to assist them. The main
reason for such situation is due to the inherent difficulties in inter-
preting SAR images due to speckle noise (Raney, 1998), incident
angle variations (M̈akynen et al., 2002) and because geometrical
and electrical factors vary simultaneously.

Various systems have been proposed to produce ice maps
from SAR images in a semi-automated fashion (Soh et al., 2004;
Karvonen, 2004) but none are expected to be adopted by impor-
tant ice services to assist their ice analysts. MAGSIC (Maillard
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and Clausi, 2005b) is also one such system under development.
Although still embryonic, it has shown promising results and is
being encouraged by CIS. The validation of sea ice classification
is always problematic and needs to be assessed seriously for any
sea ice classification system to be taken seriously.

1.1. Objective

At present, sea ice analysts do not have the time or technology to
prepare ice maps at pixel resolution. Such a pixel-based product
would be of great value for a number of applications including
navigation and meteorological modelling. In a previous paper
we have described the development of MAGSIC (MAp-Guided
Sea Ice Classification), an automated system that performs pixel
based sea ice classification using a SAR image and an egg code
map. In this paper, we are using validated data to test the per-
formance of the MAGSIC system to which we have added a few
more features. In particular, we are testing a total of five classi-
fication metrics for their respective performance. Finally, a vot-
ing scheme in which each metric represents a vote is also being
tested.

2. PREVIOUS WORK: THE MAGSIC SYSTEM

2.1. System description

MAGSIC is a modular system being developed as an operational
tool to be inserted into CIS operations. It does not aim at re-
placing sea ice analysts but rather to work in parallel to produce
added value documents such as pixel based ice maps and more
precise statistics on ice type proportions. The originality of the
system lies in the fact that instead of trying to imitate the analyst’s
work, the system uses the manually produced egg code map asa
priori information to feed a segmentation algorithm and consid-
erably reduce the number of classes within a limited region. This
map-guided approach can be regarded as a symbiosis between
machine-aided interpretation and ice-analyst: while the first ben-
efits from a simplification, the second sees its work taken one step
further.

There are four main components to the system: 1) a map
scanning module to store the region polygons and their specific
ice types, 2) a Markov random field (MRF) based segmentation
module that processes each “egg code” region and splits it into
a number of segments that (ideally) correspond to each ice type,
3) a module to compute the statistics of each segment and each
egg code region, and 4) a labelling module based on cognitive
reasoning. The system and its components are fully described
elsewhere (Maillard and Clausi, 2005b) but a short description of
the segmentation and labelling components follows.

The segmentation algorithm is described in Deng and Clausi
(2005) and is based on an original implementation of Markov ran-
dom fields (MRF): the “Modified adaptive Markov random field
segmentation” (MAMSEG). MRF models inherently describe spa-
tial context: the local spatial interaction among neighboring pix-
els. This is most appropriate since neighboring pixels are gener-
ally not statistically independent but are linked by spatial corre-
lation. Furthermore, MRFs can effectively combine the relative
importance of the pixel being considered and its neighborhood.
MAMSEG was adopted because of its good performance with
SAR data and sea ice. MAMSEG is innovative because it does
not fix a priori the relative weight of the central pixel and its
neighborhood but rather lets it vary with each iteration in the sim-
ulated annealing solution. After the image has been segmented in

a satisfactory manner (with relation to the number of iterations
which typically vary between 50 and 100), statistics are calcu-
lated for each segment of all the egg code regions. The statis-
tics include 1) mean, 2) standard deviation (of each feature), 3)
covariance matrix (when more than one feature is used) and 4)
histogram of each feature.

The labelling process is carried out by an innovative algo-
rithm that alternatively cumulates evidences about class member-
ship of the segments and labels the segments one at a time. If
there is not enough evidence to label one particular segment, the
algorithm goes on to the next segment. After having tried to label
all the segments of all the regions, the algorithm executes an-
other pass and tries once more to label the remaining segments
and so on. The basic idea behind the algorithm comes from the
fact that the regions have a limited number of classes (between
one and five) and there are generally enough evidence to deduce
a class membership for all the segments. A special terminology
has been proposed for the type of evidence (Maillard and Clausi,
2005a;b):

• First-degree evidence falls into two categories: 1) the egg
code region contains only one class or 2) the egg code re-
gion contains several classes and all but one have already
been solved and assigned. In either case, the association is
straight-forward and no additional information is needed
to solve the association.

• Second-degree evidence is characterized by the fact that
although all or some classes of a region have previously
been solved (in other regions), the program still has to find
which set of associations is the most likely. For a total
of nc classes, there arenc! permutations of matching each
segment of a particular region to one of thenc classes. The
objective is then to determine which permutation is more
likely according to some metric.

• In third-degree evidence, reasoning is based on the fact
that while comparing two egg code regions, although no
association was previously solved, if only one class is com-
mon to both egg code regions (intersection), then one can
deduce which is more likely by calculating a distance met-
ric between all pairwise possibilities. The optimal result is
retained as the correct association.

2.2. Improvements

MAGSIC is still in its “work in progress” phase but its useful-
ness has already been demonstrated and has received encourage-
ments by the CIS. MAGSIC has created a “pipeline” between the
ice analyst’s interpretation and a detailed (pixel-based) ice map
through a novel implementation of MRF segmentation and an
original labelling solution. Some improvements have been added
to MAGSIC since Maillard and Clausi (2005b) have first pub-
lished its description. Three such improvements are described
below.

• Additional classes: Egg code symbols can only have a
limited number of ice classes. They generally have, at
most, three classes but since the percentage of ice is not
always 100%, a fourth class, open water, is often consid-
ered. It does happen, however, that a fourth ice class is
indicated outside (on the right side) the egg code symbol
bringing the total number of possible classes to five. This
has a direct effect on the results as it has been observed
that the greater the number of classes, the greater the risk
of error. But it was also observed that some egg code re-
gions actually include more classes than there are in the
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egg code symbol because the ice analyst generalizes its
interpretation in the final version of the ice code map. We
are therefore considering using the non-generalized ver-
sion of the egg code map to ensure the segmentation algo-
rithm splits the region in the correct number of classes.

• Classification metrics: The initial version of MAGSIC
included three classification metrics to which we have added
two more for a total of five. The list of classification met-
rics follow.

1. Mahanalobis distance - MD

2. Fisher criterion - FC

3. Chi-square test -χ2

4. Kolmogorov-Smirnov test - KS

5. Student’s t-test - t

• A voting scheme: It has been suggested that selecting
the “best” classifier is not necessarily the wisest decision
since valuable information may still be produced by less
successful classifiers (Wolper, 1992). Considering that a
specific classification metric is better adapted to a specific
situation, all classifiers can have the potential of being the
“best” for some situations. One approach to preserving
this information is to pool the output of all classifiers and
base the final decision on that stack of information. There
are numerous ways to combine the output of different clas-
sifiers (Xu et al., 1992) but in the present work, we have
chosen, the voting principle as a first experience. Accord-
ing to Xu et al. (1992), there are three level of output from
classifier: 1) the abstract level produces a single label, 2)
the rank level ranks all possible labels and 3) the measure-
ment level produces a value of likeliness (e.g. distance,
probability, etc.) for all possible labels. In this initial ef-
fort, we have opted for the simple abstract level.

3. STUDY AREA AND DATA

In 2003, the CIS undertook a validation campaign in the Gulf
of Saint-Lawrence near Prince Edward Island (PEI) in order to
have near real time ground truth data which could serve to cali-
brate SAR data and assess its real potential in sea ice recognition.
Helicopter oblique photos were also acquired along with airborne
SLAR, ENVISAT data, RADARSAT-1 data and a wealth of other
radar and optical satellite data. The ground sampling was done
for three dates: 01, 02 and 06 March 2003. Only 01 March
matched the RADARSAT image and, considering the very dy-
namic nature of sea ice in the St.-Lawrence, data from the two
other dates could not be used. Figure 1 shows the location of
the study area and the ground sampling sites in the Gulf of St.-
Lawrence near PEI.

During winter and spring, strong currents and winds make the
Gulf of St.-Lawrence as one of the marine routes that is most dan-
gerous to navigate. The ice can shift so fast that data collected in
the morning can be out-dated in the afternoon (D. Flett, CIS, per-
sonal communication, October 2004). For these reasons, obtain-
ing good ground data for sea ice in the St.-Lawrence is extremely
difficult and the opportunity to use such data bears great value.
Ground data was collected in two fashion: punctual sites gave
exact ice types for an area of limited extension and zonal sites
were recorded as egg code regions with different ice type concen-
trations. Figure 1c shows both of these and Figure 2 shows the

(a) (b)

(c)

Figure 1: Study area: (a) RADARSAT-1 sub image near PEI
(validation area in yellow), (b) corresponding egg code map, (c)
enlargement of the study area identifying the validation sites.
Legend of an egg code: the letter “A” indicates that the symbol
applies to region “A”: first row indicates the total proportion of
ice (9+ = 90%); second row indicates the proportion of each ice
type (3 in this case); third row gives the ice code of each type;
last row indicates the relative floe size (http://ice-glaces.ec.gc.ca)
and (C) validation sites (1 to 5a) and areas (A to C).

helicopter photographs matched with a RADARSAT sub-image
for the punctual sampling sites.

The MAGSIC system was conceived to produce a pixel-based
ice map from the combined use of an ice code maps and a SAR
image. The ice code map serves a double purpose: 1) it pro-
vides information on the number and type of sea ice and 2) it is
used as a series of masks (one for each egg code region) for the
segmentation algorithm. The sea ice information is stored in a
special spreadsheet while the masks are in a raster format con-
structed from a digital vector version of the egg code map sup-
plied by CIS. The segmentation can incorporate numerous chan-
nels of information and it has been found that optimum results
were obtained when two texture channels were derived from the
SAR image and incorporated in the segmentation process (Deng
and Clausi, 2005). The two texture channel arecontrastanden-
tropy produced from the co-occurrence matrix texture paradigm
(Haralick et al., 1973).

4. RESULTS AND DISCUSSION

The results are divided in three main topics: the segmentation,
the labelling using cognitive reasoning and the labelling using
the voting principle.

4.1. Evaluation of image segmentation

Evaluating the results of a segmentation with sparse validation
data is a subjective task. Since the labelling results are evaluated
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(a) Site 1

(b) Site 2

(c) Site 2a

(d) Site 3

(e) Site 4

(f) Site 5a

Figure 2: The six punctual validation sites represented as an
helicopter oblique photo and RADARSAT subimage pair: (a) site
1 (fast ice, open water and nilas), (b) site 2 (first year ice and
nilas), (c) site 2a (grey and grey-white ice), (d) site 3 (grey, grey-
white ice and nilas), (e) site 4 (first year ice and open water) and
(f) site 5a (leads in nilas).

using ground truth, the segmentation received only a visual eval-
uation. Figure 3 shows the results of both the segmentation and
the labelling. The first observation is that spatial consistency is
present and that no discontinuities can be observed. This is not
trivial since the SAR image (plus texture) has been segmented as
a series of egg code regions with different number of classes: of
the 42 regions, 10 had a single class and were not segmented but
directly assigned a class, one region had two classes, 13 regions
had three classes, 14 had four classes and four had five classes.
Despite this stratification, the segmented image appears as one
continuum and, apart from the land areas, no break lines can be
observed.

The second observation is that, unlike land use maps, the ice
map is usually made of relatively small bundles of pixels having
the same class. This is rather normal considering the broken na-
ture of sea ice (especially in the Gulf of St.-Lawrence) and the
spatial resolution of 100 meters. It should also be noted that the
image reflects the end of the winter season when the ice situa-
tion is usually the most complex. It was however also noted that
that the number of classes has an effect on the segmentation re-
sults and that the number of iterations of the segmentation process
should take this information into account. The effect of that prob-
lem can be sensed in the egg code regions with four or five classes
which tend to be more speckled than the two- or three-classes re-
gions. The relation is obviously not linear and further study is
needed to establish the nature of the relation and its quantifica-
tion.

4.2. Evaluation of class labelling

The results of the labelling are evaluated using ground truth from
the 2003 validation campaign of CIS and quantified in a series
of confusion matrices (Tables 1-5) showing the performance of
the different classification metrics. The labelling algorithm is
based on what we have called a “cognitive reasoning” algorithm
that uses evidence from the egg codes to deduce the labels of the
segments inside the egg code regions. In the present case, first-
degree evidence came from the 10 one-class regions all of which
were “fast ice”. It then turned out that third-degree evidence (two
regions with a unique common class) was not possible so that the
algorithm could not solve the remaining 32 regions based only
on the information on a single class. The cognitive reasoning
algorithm needs little information but it needs to be sufficiently
diversified. To increase the quantity of evidence, a single three-
class egg code region was manually solved to provide sufficient
evidence to solve the rest of the regions in two passes.

Errors in the labelling results can either be attributed to the
classification, the labelling or both. To separate these three kind
of errors, one needs extensive ground truth which is not the case
in this study. The following paragraph describe the results ob-
tained with the five classification metrics without specification of
the source of errors. It should be kept in mind that misclassifi-
cation is two-fold and that their combined effects are reflected in
these tables.

Mahanalobis distance: The MD is a popular classifier in the
remote sensing community. It measures the probabilistic distance
between and single vector and a sample through its mean and co-
variance matrix. In our particular case it is not the most appro-
priate because it can not measure the distance between two pop-
ulations: the samples and the vectors composing the segments.
To compensate this, the mean of the population is used. Despite
this drawback, the MD classifier has proven valuable in previ-
ous experiments (Maillard and Clausi, 2005b). Table 1 shows
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the confusion matrix obtained after labelling using the MD clas-
sifier. Although the overall results are rather low (53.88%), they
are comparable with the other classifiers. It should be noted that
much of the confusion is between grey-white ice and first-year
ice, two ice classes that can be considered alike in terms of tone.
It is also notable that various ice types were confused with open
water. These errors might be attributable to a time lag between
the ground truth and image acquisition during which the ice has
shifted; this is further discussed the conclusions section.

Table 1:Confusion matrix for the MD classifier
N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 907 1 40 0 0 294 1242
G 0 408 0 0 0 0 408

GW 342 2 313 0 0 625 1282
FY 117 118 593 224 0 28 1080
F 45 0 0 0 354 0 399

OW 0 0 0 0 0 370 370
Total 1411 529 946 224 354 1317 4781

Percent correct = 53.88% Kappa statistic = 0.4157

Fisher criterion: Unlike MD, the FC classifier is capable of
taking into consideration the spread of both populations being
compared. Coincidentally, the FC yielded the exact same results
as the MD. This is not such an extraordinary coincidence since
labelling is applied to whole segments and not single pixels.

Table 2:Confusion matrix for the FC classifier
N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 907 1 40 0 0 294 1242
G 0 408 0 0 0 0 408

GW 342 2 313 0 0 625 1282
FY 117 118 593 224 0 28 1080
F 45 0 0 0 354 0 399

OW 0 0 0 0 0 370 370
Total 1411 529 946 224 354 1317 4781

Percent correct = 53.88% Kappa statistic = 0.4157

Chi-square: Theχ2 “goodness-of-fit” test is usually employed
to compare a sample’s distribution to a theoretical distribution
such as the Gaussian function. In the present case, it is used
to compare two independent sample distributions through their
shape. With 59.07% of overall classification success, theχ2

yielded the highest score of the five classifiers. Here, all the open
water pixels have been misclassified.

Table 3:Confusion matrix for theχ2 classifier
N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 907 39 262 0 0 34 1242
G 0 408 0 0 0 0 408

GW 342 2 931 0 0 7 1282
FY 117 118 72 224 0 549 1080
F 45 0 0 0 354 0 399

OW 0 305 65 0 0 0 370
Total 1411 872 1330 224 354 590 4781

Percent correct = 59.07% Kappa statistic = 0.4814

Kolmogorov-Smirnov: The KS test can be used as a classifier
in the same manner as theχ2 as it also measure the difference
between two distributions but in their cumulative version. This

is probably why it produced a similar result than theχ2 with
58.96% overall success. It succeeded slightly better in classifying
open water but at the expense of grey-white ice (being like water
relatively dark).

Table 4:Confusion matrix for the KS classifier
N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 889 1 274 34 0 44 1242
G 0 408 0 0 0 0 408

GW 625 2 342 271 0 42 1282
FY 0 118 369 521 0 72 1080
F 45 0 0 0 354 0 399

OW 65 0 0 0 0 305 370
Total 1624 529 985 826 354 463 4781

Percent correct = 58.96% Kappa statistic = 0.4801

Student’s t-test: The t-test verifies if the difference between
two sample’s mean is significant to a certain degree of confidence
or if the difference can be attributed to the sample’s pooled vari-
ance. The t-test assumes a Gaussian distribution but this assump-
tion can usually be relaxed ifN is large. The t-test yielded the
lowest score (55%) of the five metrics. This is probably due to the
fact that it assumes a Gaussian distribution and that it considers
the mean as fully representative of the samples.

Table 5:Confusion matrix for the t classifier
N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 907 1 6 34 0 294 1242
G 0 408 0 0 0 0 408

GW 342 2 42 7 0 889 1282
FY 117 118 296 549 0 0 1080
F 45 0 0 0 354 0 399

OW 0 0 0 0 0 370 370
Total 1411 529 344 590 354 1553 4781

Percent correct = 55.01% Kappa statistic = 0.4300

4.3. Voting principle

The voting principle adopted here only considered the final labels
of each classification metric and the label with the most votes was
considered a “winner”. In cases where no definite winner was
found (e.g.two votes for label 1, two for label 2 and one for label
3) the segment was left unclassified. This occurred in 17 of the
127 segments (or 13.4%) and this explains why the total number
of samples in the confusion matrix (Table 6) is smaller than in the
other matrices. It can be observed form Table 6 that the total score
of ∼ 61% is higher than any of the five classification metrics.
This confirms the fact that different metric can be better adapted
to certain situations and that different such situations do occur in
classifying sea ice from SAR data.

To compare the individual success of the five metrics between
themselves, Table 7 shows the percentage of each of the five clas-
sification metrics matches the final label of the voting principle.
The most striking observation is the relatively small number of
matches between the voting principle solution and theχ2 met-
ric. This is somewhat troubling since theχ2 yielded the highest
score of the five metrics. The MD and FC classifiers appear to be
very consistent with the previous results and show a very similar
behavior.

Finally, we have tested the significance (at90% level of con-
fidence) of the difference between the six confusion matrices and
found that only the t-test results and the voting proinciple results
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Table 6: Confusion matrix for the voting principle (multi-
classifier).

N=nilas, G=grey, GW=grey-white, FY=first year, F=fast, OW=open water
Reference Classified Data

Data N G GW FY F OW Total
N 907 1 6 0 0 294 1208
G 0 408 0 0 0 0 408

GW 342 2 306 0 0 625 1275
FY 117 118 72 224 0 28 559
F 45 0 0 0 354 0 399

OW 0 0 0 0 0 370 370
Total 1411 529 384 224 354 1317 4219

Percent correct = 60.89% Kappa statistic = 0.5006

Table 7: Number of matches between the voting principle and
the five classification metrics. The one-label regions (which were
not segmented) were withdrawn to compute the corrected values.

Metric total matches corrected matches
MD 81.10% 79.49%
FC 84.25% 82.91%
χ2 37.80% 32.48%
KS 52.76% 48.72%
t 59.84% 56.41%

can be considered significantly different so that no real conclu-
sion can be drawn from the different scores.

5. CONCLUSIONS

This article presents the performance of the MAGSIC system us-
ing ground truth data collectedin situ by CIS during a validation
campaign. It also serves the purpose of testing and comparing five
different classification metrics for the labelling phase as well as a
voting scheme using all five metrics. Results show that, for differ-
ent reasons including over-generalization in the egg-code maps
and possible shifts of the ice condition between ground data and
image acquisition, the percentage of success hardly surpasses the
60% mark. They also suggest that theχ2 and the Kolmogorov-
Smirnov classifiers appear to perform slightly better (maybe be-
cause they compare the whole distributions) but their superior-
ity could not be confirmend statistically. The multi-classifier ap-
proach using a simple voting scheme performed at least as well as
the best classifier and could be used as an alternative to choosing
a single classifier.
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