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ABSTRACT 
The advantages of Remote Sensing for the knowledge of environmental dynamics are widely ascertained by scientific community.  
Spatial synchronization and temporal resolution of large areas have meaningfully improved quantity and quality of satellite imagery 
which have assumed an important role in the field of environmental monitoring. Nevertheless, preliminary processing problems of 
multitemporal satellite data, as basic information in the analysis of land cover transformations, persist because of errors due to noise, 
to environmental conditions and to geometric and radiometric distortions introduced during the acquisition and the transmission 
phases.   
The methods of radiometric normalization for multitemporal analysis of satellite imagery can be absolute and relative. The absolute 
methods are not always feasible because they need to measure the optical properties of the atmosphere  acquired “in situ”  and  
simultaneously with the moment of scene recording. The relative methods proceed under the assumption that the relationship 
between the at-sensor radiances recorded at two different times from regions of constant reflectance is spatially homogeneous and 
can be approximated by linear functions. The most difficult and time consuming aspect of all of these methods is the determination 
of suitable time-invariant features upon which to base the normalization. 
In this paper the radiometric normalization techniques of Landsat ETM+ were analysed. These data were referred to acquisitions 
times comprised in 1999-2001-2002 years on a test area of southern Lazio. A normalization algorithm, based on  MAD (Multivariate 
Alteration Detection) transformation, was implemented for this aim, by executing a quantitative and qualitative comparison with the 
consolidated ELC (Empirical Line Calibration) method.  
 
 

1. INTRODUCTION 

Management and environmental protection require a technology  
able to investigate, to measure and to monitor natural and 
atrophic dynamics. Conventional survey “in situ” techniques 
need high times and costs, unacceptable for public agencies 
sensitive to the safeguard and to the correct use of  territory. 
Remote sensing offers an excellent opportunity to monitor 
regularly large surfaces, with comparatively reasonable times 
and costs. 
In literature there are many techniques for multitemporal 
analysis and Image differencing is the most direct method. The 
simple difference among two co-registered satellite data, 
acquired in different times, offers a quantitative assessment of 
change percentage “point to point” (Nielsen et al., 1998).  
The limits of this technique are connected to the difficulty to 
achieve absolute accuracy,  to the temporal stability of sensor 
calibration, to the level of correlation of bands, to the 
atmospheric conditions and, finally, to the geometry of sun-
earth-sensor. Such elements doesn’t enable an effective 
comparison among images, because such data have not a 
common radiometric reference. 
The radiometric normalization makes this technique particularly 
advantageous. In such cases is fundamental to correct 
radiometrically images, in order that information contained in a 
single DN (Digital Number) is lightly influenced by noise.  
Absolute radiometric correction of multi-temporal satellite 
imagery requires atmospheric corrections associated with the 
atmospheric properties at the time of the image acquisition. 
Data for the characterisation of the relevant atmospheric 
processes modulating the incoming radiation at the satellite 
sensor require auxiliary data of parameters, such as the content 

of aerosols, ozone or water vapor in different atmospheric 
layers (Kaufmann, 1989; Mitchell and O’Brien, 1993). For 
historic satellite data such data are often difficult or impossible 
to obtain.  
Whenever atmospheric parameters are not available and/or 
absolute surface radiances are not necessary, a relative 
normalisation of the satellite images to a master scene, based on 
the radiometric information intrinsic to the images, is an 
alternative ((Scott et al., 1988; Hall et al.,1991; Furby et al., 
2001; Du et al., 2002). This is especially true in land cover 
classifications and post classification change detection 
applications (Song et al., 2001). 
Radiometric normalisation, either relative or absolute, of 
imagery is important for many other applications, such as image 
mosaicing or tracking vegetation indices over time etc. (Yang 
and Lo, 2000). Furthermore, if change detection procedures, 
such as image differencing or change vector analysis, is 
preferred it must generally be preceded by radiometric 
normalisation (either absolute or relative).  
All these techniques are not “corrections” in the sense that they 
use actual atmospheric measurements from the time of image 
acquisition, but rather attempt to uniformly minimize effects of 
changing atmospheric and solar conditions relative to a standard 
image selected by the user (Callahan, 2003).  
Several methods as of Schott et al. (1988); Hall et al. (1991); 
Moran et al. (1995); Furby and Campbell (2001); Du et al. 
(2002) have been proposed for the relative radiometric 
normalisation of multispectral images taken under different 
conditions at different times. All proceed under the assumption 
that the relationship between the at-sensor radiances recorded at 
two different times from regions of constant surface reflection 
can be approximated by linear functions.  
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The most difficult and time-consuming aspect of all of these 
methods is the determination of suitable time invariant features 
upon which the normalisation is based. A further limit is the 
case in which satellite data are afflicted with intrinsic 
radiometric problems, as cloud or snow covers (Moran et al., 
1992). 
In this paper the radiometric normalization scene-to-scene with 
ELC (Empirical Line Calibration) and MAD (Multivariate 
Alteration Detection) techniques on Landsat ETM+ data had 

been analysed, by executing a quantitative and qualitative 
comparison. These data were referred to acquisitions times 
comprised in 1999-2001-2002 years on a test area of southern 
Lazio – Italy (Figure 1A-1B-1C). With the ELC technique 
Pseudo-Invariant Features (PIF) were manually selected, 
whereas the same Features were automatically identified with 
the aid of a normalization algorithm based on  MAD 
transformation.  

 

 
 

Figure 1A 
 

Figure 1B 
 

Figure 1C 
 

2. METHODS OF ANALYSIS  

The basic assumption of the most of scene-to-scene techniques 
is funded on a linear relation between resampled pixels of ‘ref-
erence’ or ’master’ image and pixels of image to be normalized, 
denoted as ‘target’ or ‘subject’ (Casselles et al., 1989).  
Schott et al. (1988) proposed that in the case of the availability 
of a large amount of homogeneously distributed invariant pix-
els, a regression of the same pixels would produce the best re-
sults, but assumed that these pixels are not identifiable. This 
would be satisfied if ground truth data of the true invariant pixel 
were available, which is rarely the case. Thus their idea was to 
introduce the term pseudo-invariant feature (PIF). PIFs are ar-
eas, assumed to be invariant but potentially exhibit some 
change pixels. PIFs need to be identified manually within bi- or 
multi-temporal images. Schott et al. (1988) proposed the usage 
of band ratios, Hall et al. (1991) a tasseled cap transformation 
to identify potential no-change pixels a priori. 
The pseudo-invariant features are used for a stochastic estima-
tion of regression coefficients for an image to image radiomet-
ric normalisation. The ‘reference’ denoted with DN1, the image 
that is normalised to the master image is DN2, and DN’2  the 
normalised image; i represents the spectral bands. The follow-
ing expression from Schott et al. (1988) was used for a radio-
metric normalisation: 
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where iDN1  and iDN 2  are the means of the pseudo-invariant 
pixels of image 1 and 2 (next denoted in matrix form respec-
tively  as F and G); σ1i and σ2i  are the respective standard de-
viations. 
This formula can be reduced to a simplified expression of an 
independent variable x and a dependent variable y in the sense: 
 
y = ax + c                [2]  
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Manual identification of invariant targets is subjective, 
laborious and with numerous errors. The regression procedure 
would need of targets selected on the whole range of values 
(bright - midrange - dark) with the same dimension and the 
same number. Every target would be localized in a flat area 
with regular characteristics, far from borders of the acquired 
scene, in order to minimize errors due to co-registration (Furby 
et.al., 2001).  
In literature there are many techniques, f.i. PCA (Principal 
Components Analysis), to assist user in the selection of 
invariant features or no-change pixels (Du et al., 2002). 
As in our study, this last is of limited effectiveness in presence 
of data with a high level of temporal and intrinsic change, and 
with invariant pixels in lower number in comparison with the 
remainder pixels of the whole image. 
In image differencing techniques the invariant pixels are 
selected by means of the simple image difference  (F and G 
matrixes or random vector) acquired in two different dates (t1, 
t2) 
 
F - G = [ F1-G1 . . . Fk -Gk ] T           [3]  
 
with  
F = [ F1 . . . Fk ] T    and     G = [ G1 . . . Gk ] T           
 
k  = band number. 
 
Areas with a light rate of change will have a very low DN 
value. The limit of this procedure consists in lack of 
simultaneous comparison of all changes for all bands.  
Although the principle is similar (invariant pixels are used in an 
regression approach), MAD transformation (Canty et al., 2004; 
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Canty, 2005) is new and fully automatic, overcoming the 
above-mentioned problems with the concentration of 
information on the global change rate. Moreover, it is invariant 
compared with linear effects caused by atmospheric conditions 
and sensor calibration (Nielsen et al., 1998). The main progress 
is the automatic identification of ”no change pixels”, that are 
homogeneously distributed over the entire image and different 
surface types. 
In the first phase of the procedure a linear combination of all 
intensities of the N bands of the two images is supposed. 
 
U = aT F = a 1 F 1 + a 2 F 2 + . . . + a N F N             [4] 
 
V = bT G = b 1 G 1+ b 2 G 2+ . . .+ b N G N.      [5] 
 
The ai and bi (i = 1. . . N)  vectors of coefficients are calculated 
in order to minimize the positive correlation between U and V. 
This means that the resulting difference image U –V will show 
maximum spread in its pixel intensities.  
If we assume that the spread is primarily due to actual changes 
that have taken place in the scene over the interval  t1- t2,, then 
this procedure will enhance those changes as much as possible. 
Particularly we seek linear combinations such that 
 
Var(U-V) = Var (U) + Var (V) -2Cov (U,V) → max   [6] 
 
subject to the constrain 
 
 Var (U) = Var (V) =1               [7] 
      
we will have       Var (U - V) = 2(1- ρ)                [8] 
 
where   ρ = Corr (U,V) is the correlation of the transformed 
vectors U and V. 
 
Since we are dealing with change detection, we require that the 
random variables U and V be positively correlated, that is,    
 
Cov (U,V) > 0. 

We thus seek vectors a nd b which minimize the positive 
correlation  ρ. 
 
The [6] procedure identifies  N sets of coefficients ai e bi , 
where every set corresponds to a single difference component. 
 
MADi = Ui –Vi = ai

T F – bi
T G,     i = 1. . . N     [9] 

  
Consequently, the no-change pixels for radiometric 
normalization must satisfy the next relation 
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where ( )iMADi ρσ −= 122    
and  the decision threshold  t = χ²N , P=0.01    
 
The term P  is the probability to observe a lower value of t, in 

no change hypothesis, the [10] brings near to χ² with N 
degrees of freedom. 
 
3. DATA AND RESULTS  

The methods were evaluated and tested on three Landsat ETM+ 
data acquired over Aurunci chain, in southern Apennine of 
Lazio (Italy), on September 24, 1999, April 6, 2001  and 
February 2, 2002. The images were subset with dimensions 650 
× 650 pixels (Figure 1A-1B-1C). 
This territory was chosen because it presents a diversified 
morphology with active anthropical dynamics and permits to 
test the effectiveness of normalization alghoritm, both the  
consolidated (ELC) and the innovative (MAD) ones, even in 
not much favourable climatic and territorial situations.  With 
this aim, satellite data acquired in different period of the year 
were analysed, with various atmospheric and illuminated 
conditions. 

 
 
 

 A  (February 2002) 
Target 

  B  (April 2001) 
Target 

   C  (September 1999) 
Reference 

Band Min Max Mean Stdev Min Max Mean Stdev Min Max Mean Stdev 
1 43 162 59,68 5,27 64 255 90,98 23,76 58 236 77,21 7,49 
2 24 141 43,89 6,69 42 255 73,04 24,06 38 251 59,10 8,80 
3 17 171 42,34 10,29 33 255 68,17 28,51 29 255 55,96 14,12 
4 13 139 53,75 17,38 16 244 73,77 23,40 18 255 85,63 21,94 
5 6 220 51,46 21,48 15 255 78,39 29,68 12 255 73,77 23,54 
7 4 255 34,48 14,67 11 255 50,76 23,54 8 255 46,11 17,00 

 
Table 1 – Statistics of images 

 
 
In Table 1 the DN ranger for single band are displayed.  The 
maximum and minimum values for every band are very 
different among images. Such differences are due to the 
presence of clouds and snow covers in the whole acquisition 
scene (absent in test area of Figure 1A). 
Before the execution of radiometric correction procedures, the 
images were co-registered, by identifying 30 GCP (Ground 
Control Point) by means of Image-to-Image technique of ENVI 
image processing software and using Landsat ETM+ data of 
1999 as reference image. With this aim, a not parametric model, 

based on the  3° order polynomial function, was used and a 
value lower than 0.5 pixel for RMS was obtained. Next,  
Landsat ETM+ data of 2000 and 2002 were resampled with 
Nearest Neighbour method, in order to not alter heavily the 
radiometric content of images. 
In the first phase of this study, related to ELC processing, the 
pixel indispensable to calculate the calibration parameters (gain 
ed offset) were manually selected from the ground truth data, by 
selecting 10 targets o invariant regions from the positional point 
of view and with similar radiometric characteristics. Table 2 
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shows the number of pixels distributed across different surface 
types to obtain the best regression estimation.  
For every pixel in every band  were executed the relationships 
given by these coefficients, to convert a digital count to a 
reflectance-resulting in the ELM calibrated image. ENVI refers 
to the slope curve as Solar Irradiance and the intercept curve as 
Path Radiance. The final output image is in reflectance space 
rather than radiance space.  
In the second phase, MAD technique had permitted to 
automatically identify invariant pixels, while the calibration 
parameters were determined with orthogonal regression (Canty 
et al., 2004). The exactness of procedure was evaluated by 
means of the gains and the offset values (Table 3). Such values 

must be near respectively to one and zero (Du et al., 2002), in 
order to not loose the radiometric resolution in comparison to 
the initial data. 
For both the procedures the gains and offsets values of band 6 
were widely higher than values of remaining bands. This is due 
to the lower geometric resolution (60 m) and the intrinsic 
characteristics of bands that works in thermic range, and with 
electromagnetic radiation emitted rather than reflected. 
A further validity control of procedures (Yuan et al., 1996) was 
carried out by means of MSE mean (Mean Square Error) on the 
10 sample areas, each of 256 pixels, uniformly distributed on 
original image (Figure 3) and on normalized images. 

 
 
 

 
 

  
n° 

pixel 
Band   

1 
Band   

2 
Band   

3 
Band   

4 
Band   

5 
Band   

7   
Sand 25 105,88 92,24 102,92 85,76 93,72 76,44 
Buildings 19 110,79 90,95 102,74 84,68 95,26 82,58 
Water 112 75,87 46,75 34,28 20,29 14,86 12,78 
Quarry 38 125,71 121,71 161,82 146,39 205,89 157,13 
Rock 1 65 90,42 75,49 78,52 112,92 120,15 75,28 
Rock 2 32 77,94 60,59 58,34 95,97 95,84 58,69 
Shaded slope 50 63,64 45,22 36,18 90,48 53,50 26,56 
Bare soil 1 30 74,73 58,67 66,97 59,43 68,17 51,90 
Bare soil 2 20 85,40 72,30 84,85 76,80 98,20 80,90 
Asphalted park 12 96,25 74,50 78,75 70,75 69,58 54,17 

 S
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Sand 25 114,28 99,40 110,60 69,12 101,24 79,36 
Buildings 19 129,21 111,32 127,53 73,00 113,89 102,42 
Water 112 87,51 56,58 42,40 19,02 19,53 16,46 
Quarry 38 121,58 114,89 146,18 95,39 177,26 129,11 
Rock 1 65 103,66 87,20 89,37 81,78 125,88 84,89 
Rock 2 32 92,41 75,22 73,16 73,78 110,44 73,59 
Shaded slope 50 76,32 53,80 47,38 36,76 41,80 29,84 
Bare soil 1 30 79,07 62,13 64,40 57,97 65,63 42,83 
Bare soil 2 20 92,80 78,40 87,05 55,30 90,40 75,05 
Asphalted park 12 107,08 85,42 86,83 61,58 80,08 62,33 
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Sand 25 75,16 61,04 66,20 56,28 63,32 52,32 
Buildings 19 83,05 67,84 78,89 64,11 72,53 66,79 
Water 112 58,20 36,61 27,33 15,44 9,59 8,73 
Quarry 38 86,82 84,92 117,18 110,92 171,47 126,87 
Rock 1 65 69,98 58,09 64,89 78,43 102,91 69,75 
Rock 2 32 60,59 45,84 48,72 57,31 75,59 52,13 
Shaded slope 50 49,36 31,22 26,72 26,18 24,14 17,20 
Bare soil 1 30 58,07 42,57 45,47 42,37 48,20 37,20 
Bare soil 2 20 66,90 54,30 62,75 52,95 68,60 57,90 
Asphalted park 12 70,33 53,25 54,50 48,75 46,25 37,42 
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Table 2 – Mean of pseudo-invariant target used in ELC (Empirical Line Calibration) method 

 
 
 



  

  

  
 

Figure 2. Sample scatter plots showing the results of equation of linear regression with ELC method 
 
 

ELC -Empirical Line Calibration Radiometrical Calibration with 
MAD 

A → C B → C A → C B → C  
Gain Offset Gain Offset Gain Offset Gain Offset 

Band 1 1,652 -21,412 1,137 -23,469 0,850 1,792 1,366 -4,472 
Band 2 1,500 -6,535 1,137 -19,854 0,940 -7,013 1,307 1,445 
Band 3 1,434 -4,463 1,163 -21,236 1,010 -8,842 1,345 -1,157 
Band 4 1,412 6,280 1,769 -25,999 1,167 -0,459 1,587 1,841 
Band 5 1,119 15,154 1,161 -16,013 1,030 -5,217 1,250 9,072 
Band 7 1,209 3,989 1,236 -18,390 1,039 -4,437 1,210 4,028 

 
Table 3:  Results of gains and  offsets  obtained with ELC and MAD methods. 

 

 

 
A normalized on C B normalized on C  MSE  

mean             
1 149,61 27,20 13,71 137,49 86,36 6,03 
2 170,74 29,98 15,90 145,06 78,83 5,10 
3 675,58 66,77 71,38 346,14 187,14 125,87
4 479,11 84,72 88,20 327,21 105,42 120,50
5 604,58 124,99 131,07 297,82 81,02 78,93 
6 668,07 128,75 127,17 402,06 187,39 181,26
7 471,30 101,93 108,53 294,60 160,23 104,73
8 499,92 65,79 56,66 178,58 372,40 177,69
9 679,71 127,06 119,22 447,19 166,21 193,40

10 524,34 98,70 82,07   249,63 86,90 35,93 
Figure 3: Test areas location  Table 4: Values of MSE for every test areas 
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Figure 3a: Histogram of MSE  values related  

to normalization of image A on C 
Figure 3b: Histogram of MSE  values related  

to normalization of image B on C 
  

4. CONCLUSION

The analysis of the results (Table 4, Figure 3a and Figure 3b) 
demonstrated the validity of the innovative technique MAD for 
radiometric normalization of multitemporal satellite data. On 
the whole, the MAD based normalisation and the ELC based 
normalisation technique generally produce comparable results 
for images with light level of noise (Figure 1A compared with  
Figure 1C). 
A certain amount of problems were proved  on image with 
intrinsic radiometric problems, such as haze phenomenon and 
cloud covers (Figure 1B, Figure 3b).  Some relevant 
discrepancies were found on the class bare soil 2, probably 
because of clear differentiation with the class bare soil 1. 
Generally, the mean values after the image normalisation in 
both approaches are well represented. The variances of the no 
change pixels in both normalisation approaches are slightly 
underestimated. The regression parameters on the no change 
pixels are slightly better represented in the MAD based 
approach.  
Due to its completely automatic operation, and as parameters 
are free and fast, the MAD based normalisation technique was 
favoured,  as the definition of decision thresholds or 
individuation of PIF (Pseudo Invariant Features) with 
subjective criterions by using ELC techniques.  
In fact, with MAD transformation the basic data come 
completely from the same image, without interference of 
unfavourable climatic conditions or every type of 
noise/variation in terms of reflectance (Canty et al., 2004). 
 
 

ACKNOWLEDGMENTS 

The authors appreciate the support of Prof. A. Leone and Dr. F. 
Recanatesi - University of La Tuscia (Viterbo) - for making 
available satellite images used for this study. 
 
 

REFERENCES 

Callahan, K., E., (2003), Validation of a radiometric 
normalization procedure for satellite derived imagery within a 

change detection framework, thesis of MS in Geography, 
Logan, Utah.  
Canty M. J., Nielsen A. A., Schmidt M. (2004), Automatic 
radiometric normalization of multitemporal satellite imagery. 
Remote Sensing of Environment, 91, 4411-451. 
Canty M. J., CDSAT.ZIP - ENVI plug-ins for change detection 
in multispectral satellite imagery, http://www.fz-
juelich.de/ste/remote_sensing, May 2005. 
Casselles V., Garcia M. Y. L. (1989), An alternative simple 
approach to estimate atmospheric correction in multitemporal 
studies. International Journal of remote sensing, 10, 1127-1134. 
Du Y., Teillet P.M., Cihlar J. (2002), Radiometric 
normalization of multitemporal high-resolution images with 
quality control for land cover change detection. Remote sensing 
of Environment, 82, 123-134. 
Furby S. L., Campbell N. A. (2001), Calibrating images from 
different dates to ‘like-value’ digital counts. Remote sensing of 
Environment, 77, 186-196. 
Hall F. G., Strebel D. E., Nickeson J. E., Goetz  S. J. (1991), 
Radiometric rectification: Toward a common radiometric 
response among multidate, multisensor images. Remote sensing 
of Environment, 35, 11-27. 
Moran M. S., Jackson R. D., Slater P. N., Teillet P. M. ( 1992), 
Evalution of simplified procedures for retrival of land surface 
reflectance factors from satellite sensor output. Remote sensing 
of Environment, 41, 160-184. 
Nielsen A. A., Conradsen K., Simpson J. J. (1998), Multivariate 
alteration detection (MAD)  and MAF post-processing in 
multispectral bitemporal image data: New approaches to change 
detection studies. Remote Sensing of Environment, 64, 1-19. 
Schott J.R., Salvaggio C., Volchok W.J. (1988), Radiometric 
scene normalization using pseudo- invariant features. Remote 
Sensing of Environment, 26, 1-16. 
Yuan, D., Elvidge, C. D. (1996), Comparison of relative 
radiometric normalization techniques, Photogrammetry & 
Remote Sensing, 51, 117-12

 


	METHODS OF ANALYSIS
	DATA AND RESULTS
	CONCLUSION

