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ABSTRACT:

In the past decade, LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sector as a reliable
and accurate technique for land surveying. However, the analysis of Digital Surface Models (DSMs) from complex LIDAR data is still
challenging. Commonly, the first task to investigate LIDAR data point cloudsis to separate ground and object points as a preparatory
step for further object classification. In this paper, the authors present an unsupervisedskewness balancing segmentation algorithm
to separate object and ground points efficiently from high resolution LIDAR point clouds by exploiting measures of distribution. The
results presented in this paper have shown that the proposed algorithm is robust and has potential for commercial applications.

1 INTRODUCTION

LIght Detecting And Ranging (LIDAR) for terrain and land sur-
veying has made significant contributions to many environmen-
tal, engineering and civil applications. It is therefore not surpris-
ing that LIDAR data is being used more and more by the pub-
lic sector and commercial world since the early 1990s (Maas,
2005). Applications such as forestry, building reconstruction,
flood modelling and corridor mapping are based on post process-
ing of LIDAR data point clouds as they are accurate for less hilly
terrain (Huising and Pereira, 1998). Often, the very first task
is to separate ground and objects from a Digital Surface Model
(DSM). This process often yields the generation of a Digital Ter-
rain Model (DTM) and a normalised DSM (nDSM) which are
complementary to the DSM (Elberink and Maas, 2000). As
pointed out recently, DTM generation prior to further segmen-
tation is still a challenge (Vu et al., 2004).

In one of the early investigations (Weidner and Förstner, 1995),
ground and object points were separated in estimating an nDSM
by subtracting a morphologically filtered DSM from the original
data. Buildings were then extracted using parametric and pris-
matic models based on the minimum description length (MDL)
principle (Weidner, 1996; Weidner, 1997). An approach to model
buildings from LIDAR data in a less sloped area was developed
by (Maas and Vosselman, 1999) and was sub-divided into two
parts: texture based segmentation as proposed in (Maas, 1999b;
Maas, 1999c) and the actual building modelling from the point
cloud (Maas, 1999a). Realistic 3D city models from LIDAR
data were presented (Haala and Brenner, 1997; Haala and Bren-
ner, 1998) by reconstructing buildings, facades and vegetation
using multiple data sources, such as colour infra-red (CIR) and
terrestrially captured digital images (Haala et al., 1998b). The
building ground planes were estimated with a 2D Geographical
Information System (GIS) map complemented with a cadastral
map. Geometric primitives were estimated based on histogram
analysis of surface normals (Haala and Brenner, 1997; Haala
et al., 1998a). Vosselman assumed that buildings consist of pla-
nar faces which can be recognised by applying the Hough trans-
form (Vosselman, 1999). The slope based algorithm (Vossel-
man, 2000) employed morphological filtering and has been fur-

ther improved in (Sithole, 2001) with an adaptive terrain slope
algorithm. Working with ungridded LIDAR data, ground points
were estimated with the maximum height difference between two
points in (Roggero, 2001). The author then classified objects into
buildings and vegetation using a Laplacian of Gaussian (LoG).
A DTM using convex-concave hulls was generated in (Vögtle
and Steinle, 2003). In order to classify objects with fuzzy logic,
an nDSM from the difference of the DSM and the generated
DTM was calculated. A DTM was also first identified using
active shape models before object points are further classified
using slope and second derivative with a Maximum Likelihood
classifier (Elmqvist et al., 2001). A grid based DTM genera-
tion approach has been developed in (Wack and Wimmer, 2002)
who found ground points by estimating gradients and the ob-
jects via LoG. A DTM was generated in a first step by finding
ground points using active contours (Ahlberg et al., 2004). In
the second step, the authors estimated high buildings and high
vegetation2m above the ground by exploiting multiple returns
of LIDAR data. A hierarchical rule-based filtering has been pre-
sented in (Nardinocchi et al., 2003). Gridded data was processed
using region growing to find connected discontinuities for esti-
mating ground, buildings and vegetation. Building reconstruc-
tion fusing LIDAR data and aerial images was presented in (Rot-
tensteiner and Briese, 2003). First, the authors detected build-
ing regions in ungridded data. Then, roofs were detected using
a curvature-based segmentation technique and additional planar
faces were estimated with aerial images. For flood modelling,
rural area was segmented from LIDAR point clouds and vegeta-
tion was classified into three height classes (Cobby et al., 2001;
Cobby, 2002). The authors first separated the slightly hilly ter-
rain from the objects using detrending (Davenport et al., 2000).
The obtained bilinear interpolated surface formed a DTM for a
hydraulic flood model (Cobby et al., 2002). For measuring the
height of forest canopies, LIDAR data are superior than aerial
photos (St-Onge and Achaichia, 2001). Vegetation height can
be estimated by taking the difference between first echo (canopy)
and last echo (ground) into account (Maas, 2005; St-Onge and
Achaichia, 2001; Kraus and Pfeifer, 1998). A wavelet approach
to separate ground and object points on gridded LIDAR data has
been proposed by (Vu and Tokunaga, 2001). The authors used K-



means on height to assign pixels to buildings, motorway, bound-
ary and two tree types. A noise robust texture-based segmenta-
tion approach using wavelet packets, co-occurrence matrices and
normalised modified histogram thresholding has been proposed
in (Bartels et al., 2005) who partitioned ground and objects into
rivers, fields and residential areas.

To summarise, most authors first separate ground and object points
in LIDAR data before further post-processing. This paper ad-
dresses this task according to the following definitions. Ground
points include the top layer soil, thin man-made layering such as
asphalt or tarmac as defined asbare earth in (Sithole and Vossel-
man, 2003). At this stage, grass and low vegetation are also con-
sidered as ground points. Object points includingdetached ob-
jects (buildings, trees and bushes) andattached objects (bridges
and ramps) as described in (Sithole and Vosselman, 2003) are
segmented, too. The paper is organised as follows: In Section 2,
the theoretical background and approach of the unsupervised seg-
mentation algorithm is derived. Section 3 presents results on real
data and discusses them. The paper concludes and gives possible
future avenues in Section 4.

2 SEGMENTATION ALGORITHM

2.1 Theoretical Background

Naturally measured samples will lead to a normal distribution due
to the central limit theorem (Duda et al., 2001). Assumption
is also made that object points may disturb the normal distrib-
ution, and by removing those from the raw point cloud, normal
distributed ground points are obtained. Thus, the principle of this
segmentation algorithm using measures of distribution is the suc-
cessive removal of those object points from the point cloud until
a normal distribution is achieved. For this, meaningful measures
are required to describe the point cloud distribution sufficiently.

An important measure of asymmetry of a distribution in a sample
is the skewnesssk (Davies and Goldsmith, 1984), often referred
as the third moment about the mean (David, 1953).
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whereN is the total number of the LIDAR pointssi, with i ∈
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Another measure of distribution is the kurtosisku (Davies and
Goldsmith, 1984), also called the fourth moment (David, 1953).
It is a measure of the size of a distribution’s tail and is a degree
of the dominance of peaks in a distribution.

ku =
1

N · σ4
·

N
∑

i=1

(si − µa)4 (4)

Characteristic Dominance Dominance Normal
of distribution of peaks of valleys distribution

Skewness sk > 0 sk < 0 sk = 0

Kurtosis ku > 3 ku < 3 ku = 3

Table 1: Measures of distribution of different characteristics

Table 1 lists skewness and kurtosis of different distribution’s char-
acteristics. For a normal distribution,ku is three andsk is zero;
if peaks dominate a sample,ku is greater than three andsk is
greater than zero; if a sample is characterised by valleys,ku is
less than three andsk is less than zero (Davies and Goldsmith,
1984).

2.2 Proposed Algorithm

The proposed algorithm works on balancing the distribution of
points in LIDAR data. Statistical measures of distribution are in-
dependent from the relative position of the points. That is why
they do not have to be regularly arranged in a DSM. Therefore,
the proposed technique works on both gridded data and point
clouds. As kurtosis and skewness both express the characteris-
tics of the point cloud distribution, they can equally be treated as
termination criteria in a segmentation algorithm. In this unsuper-
vised segmentation algorithm, skewness is chosen as a measure
to describe the point cloud distribution. Thus, this algorithm is
calledskewness balancing as shown in Figure 1 and works as fol-
lows. First, the skewness of the point cloud is calculated. If it is
greater than zero, peaks dominate the point cloud distribution as
shown in Table 1. Thus, the highest value of the point cloud is re-
moved by classifying it as an object point. To separate all ground
and object points, these steps are iteratively executed while the
skewness of the point cloud is greater than zero. The remaining
points in the point cloud finally belong to the ground.

Figure 1: Proposedskewness balancing algorithm for object and
ground point separation from LIDAR point clouds



3 RESULTS AND DISCUSSION

The test results, gridded for visualisation purposes only, are de-
picted in Figure 2 with height bars measured in metres. Fig-
ure 2(a) shows a part of a first echo DSM of Neuostheim in
Mannheim, Germany, representing an urban area with both build-
ings and vegetation of different height. This LIDAR data tile con-
sists of75, 051 measured points and is part of the DSMs recorded
with the TopoSys Falcon II LIDAR system in 2004. The data
were kindly provided by TopoSys GmbH, Germany, by courtesy
of the Stadt Mannheim, Germany, the copyright holderc©. As
depicted in Figures 2(b) and 2(c), respectively, object and ground
points have been successfully separated using theskewness bal-
ancing algorithm as illustrated in Figure 1.
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Figure 2: Ground and object separation usingskewness balancing
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Figure 3: Skewness and kurtosis vs. iterations

As shown in Figure 3, the skewness converges to zero after 1665
iterations and by then, as expected, the kurtosis to about three.
Noteworthy also is the histogram of the LIDAR data tile in Figure
4 showing both classified ground (blue) and object (red) points.
One can easily imagine that finding a height threshold directly
from the non-parametric histogram would not have been straight-
forward for the purpose of ground and object separation. How-
ever, applying theskewness balancing algorithm, the boundary
between object and ground points is found.

Theskewness balancing algorithm is applied to two further point
clouds gridded for visualisation. The LIDAR data tile in Fig-
ure 5(a) shows a first echo DSM of Oststadt in Mannheim, Ger-
many, generated from5, 730, 946 measured valid points. This
DSM represents a challenging urban area with mixed detached
objects (buildings and vegetation of different height), various at-
tached objects (bridges and motorway junctions) and a river. As
depicted in Figures 5(b) and 5(c), respectively, detached objects
were clearly detected, however, a few of the attached objects were
not due to the complex scene. The first echo DSM of parts of
Neuostheim, Mannheim in Germany, in Figure 6(a) is constructed
from 2, 748, 790 LIDAR points. It shows a highly dense urban
area with mostly detached objects, both with building and veg-
etation of various height. Nearly all detached object points are
correctly classified and removed from the ground as shown in
Figures 6(b) and 6(c), respectively.

The segmentation results of theskewness balancing algorithm
were validated with simultaneously recorded aerial and colour
infra-red photos which were kindly provided by TopoSys GmbH,
Germany, by courtesy of the Stadt Mannheim, Germany.
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Figure 4: Histogram of classified points
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Figure 5: Separation of ground and object points from DSM of Neuostheim in Mannheim, Germany
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4 CONCLUSIONS AND FUTURE WORK

In this paper, a robustskewness balancing algorithm for object
and ground point separation from first echo LIDAR data in less
hilly terrain is presented. Working on the original, ungridded
point cloud, measures of distribution have been used to char-
acterise the point cloud distribution and subsequently to filter
it. The results presented in this paper have shown a clear sep-
aration of detached and most of the attached objects from the
ground. Theskewness balancing algorithm therefore has poten-
tial for commercial applications as it is efficient and straightfor-
ward to implement.

For future work, theskewness balancing algorithm will be ex-
tended to even more complex scenes in order to make it robust
against very sloped areas. The issue of detecting all attached
objects will be addressed, too. It is also planned for further re-
search to classify the detected object points into finer categories.
A data fusion approach with further features derived from differ-
ent bands such as first and last echo LIDAR, intensity data, aerial
and colour infra-red photos will be taken into account.
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