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ABSTRACT: 
 
Common per-pixel estimations for vegetation parameters are hampered by spatial mismatch between the image and ground 
observations, and limited by neglecting spatial patterns. Geometric correction of images can reach accuracies in the range of 1 pixel, 
while locations of ground observations are measured with an accuracy of 5-10m by GPS. Our HyMap image has 5m pixels. 
Consequently, although coordinates may match, ground observations are not necessarily linked to the correct pixel, but can 
undesirably be represented by neighbouring pixels. Furthermore, vegetation patterns define the observation units used by ecologists, 
but they are not reflected by square pixels. Even though these patterns may reveal useful information, it is excluded from the 
analysis. 
Object-oriented image analysis offers significant improvements. Objects are formed by groups of spectrally similar, neighbouring 
pixels; this reduces the risk of spatial mismatch. They are thus believed to provide a better approach to vegetation-parameter 
estimation than the conventional per-pixel approach. 
Objects are defined by spectral similarity, but an important question is how much spectral variance is allowed. The aim of this paper 
is to investigate optimal heterogeneity for predicting biomass and LAI. We have data from 250 field plots in our test site, 60 km 
west of Montpellier in southern France. A HyMap image is available as well. 
The image is segmented with different heterogeneities; larger heterogeneities resulting in larger segments. Field observations are 
linked to corresponding objects and with Ridge regression, relations between field observations and reflection values are identified. 
For each heterogeneity the prediction error is determined; the smallest error indicating optimal heterogeneity. 
Conclusions confirm that increasing the object size shows an optimum in prediction accuracy for both biomass and LAI. 
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1. INTRODUCTION 

1.1 General Instructions 

Remote sensing data offer a powerful information source on 
vegetation parameters, which are needed in all sorts of models 
describing processes at the Earth’s surface. Recently, 
hyperspectral data added even more power by providing 
spectral detail that allows detection of some chemical 
compounds of vegetation. 
An even more recent development is object-oriented image 
analysis. Instead of analysing the spectral behaviour of 
individual pixels, neighbouring pixels are grouped either by 
segmentation or stratification. Segmentation is the process of 
grouping pixels based on spectral similarity, where maximum 
heterogeneity is the main parameter determining the result; 
shape constraints can be included as minor parameters. Larger 
heterogeneity values will result in larger segments. 
Stratification is the process of grouping pixels according to an 
external variable, the detail of which is fully determining the 
result.  
Variables on hand in object-oriented image analysis are 
manifold that in per-pixel analysis. Beside the spectral variables 
(mean, sd) for each band, variables describing the shape and 
size are available, and a third group of variables describes 
relations with neighbouring objects.  
Remote sensing classification studies profit enormously from 
this latter development. Object-oriented image analysis is much 
closer to human vision than the per-pixel analysis. 

Classification studies show both higher accuracy values and 
more detailed legends. 
The application of object-oriented image analysis in vegetation 
parameter studies has been very limited so far, although it 
seems to offer improvements on two aspects. First, the 
geometric inaccuracies in both field and image data are of lesser 
importance, since a field plot is linked to an object rather than a 
pixel. The risk of linking it to a wrong object is much smaller 
than the risk of linking it to a wrong pixel, because of the larger 
spatial extent of objects. Secondly, field plots are often chosen 
such that they represent a vegetation patch. With per-pixel 
analysis, this information is ignored, while by grouping pixels, 
vegetation patches can show up (depending on the 
heterogeneity threshold). 
In object-oriented-image-analysis literature very little attention 
is paid to optimal object definition. However, the definition is 
thought to affect the relations that are found between field 
observations on vegetation parameters and spectral information. 
Object definition comprises both the spectral bands included 
and the heterogeneity factor. 
Furthermore, optimal object definition need not be identical for 
different vegetation parameters. For example, biomass and Leaf 
Area Index (LAI) are subjected to different dynamics. Biomass 
is determined by the accumulation of yearly growth. On the 
other hand, LAI is largely determined by the yearly situation; in 
the case of evergreens the situation of 2-4 years will determine 
it. Given this difference in temporal steering dynamics, the 
optimal object definition might just as well be different. 
This paper focuses on the spatial aspects of object definition for 
vegetation parameter estimation, i.e. on the effect that the 



 

maximum heterogeneity has. Although the spectral bands 
definitely will have their effect on object definition as well, this 
will not be considered here. The aim of this paper is to answer 
two questions. 1). How does the spatial definition of objects 
affect the statistical relationships between field observations 
and spectral object properties? 2). Is this effect similar for 
different vegetation parameters? This paper will address those 
questions for a given data set; the validity for other areas will be 
explored in subsequent studies. 
The optimal spatial definition is here defined as the level of 
segmentation that results in the lowest prediction error of the 
vegetation parameters. 
 
 

2. DATA 

2.1 Vegetation data 

From August to October 2005 a field campaign was held in the 
La Peyne catchment in southern France, 60 km west of 
Montpellier. The vegetation in the study area frequently suffers 
from water and heat stress, as in all Mediterranean areas. It 
ranges from open areas with low herbal vegetation, garrigue, 
through dense bushes up to 5m, maquis, to the climax 
vegetation of the region, oak forests (Sluiter, 2005). Within the 
area some 250 plots were visited. Each plot measured 5m x 5m 
and was sampled for biomass and LAI. 
 
Biomass:  Biomass was estimated using empirical allometric 
formulas from Ogaya et al. (2003) for trees: 
 

50ln277.2900.4ln DAB +=  (1) 

50ln563.2830.3ln DAB +=  (2) 
 
where  AB = aboveground biomass (in Mg ha-1) 
 D50 = stem diameter at 50cm (in cm). 
Equations (1) and (2) relate to the evergreen oak (Quercus ilex) 
and the strawberry tree (Arbutus unedo), respectively. 
For shrubs we used a similar formula provided by Pereira et al. 
(1994): 
 

4901.20075.0 max642.0 DHAB ⋅⋅=  (3) 

Where  AB = aboveground biomass (in kg) 
 dmax = maximal diameter (in m) 
 h = height (in m). 
Those equations were used to estimate the aboveground 
biomass for individual trees or shrubs, by summing all results 
per plot and dividing it by the plot area, values were 
transformed into the amount of biomass per hectare. 
Biomass data were collected for 216 plots (table 1). 
 
Leaf Area Index:  In 243 plots photographs were taken with a 
hemispherical lens from below the canopy (oriented towards 
zenith) to estimate Leaf Area Index. Four photos were taken 1m 
from the corners on the diagonals, and one was taken in the 
centre of the plot. The photos were then analyzed with CAN-
EYE (Baret and Weiss, 2004). This process consists of two 
steps: 1. photos are classified into one of two classes, vegetation 
or sky, 2. gap distribution is determined for different viewing 
angles. Jonckheere et al. (2004) and Weiss et al. (2004) give 
accurate descriptions of the underlying principles. 
Leaf Area Index data were collected for 243 plots (table 1). 
 

 
 

 Biomass LAI 
 Mg/ha - 
N 210 243 
mean 167 3.2 
sd 209 0.84 
variance 43742 0.7 
min 0.1 0.4 
max 1347 5.4 

 
Table 1.  Statistical characteristics of field data. 

 
2.2 Image data 

A HyMap image recorded on 13 July 2003 covers the 
catchment of the Peyne river. The image has 124 bands and 
provides continuous spectral cover from 400 to 2500nm. The 
spatial resolution is 5m. The image was geometrically rectified 
using ground control points determined by GPS in the field and 
a 25m resolution DEM. 
 
 

3. METHODS 

3.1 Data processing  

Masking: Since we were interested in vegetation parameters, 
only the vegetated pixels were included in the analysis to assure 
that spectral variance in the image was a result of variance in 
vegetation characteristics only. To remove the non-vegetated 
pixels a mask was produced in two steps. First all pixels with an 
NDVI value of 0.25 and less were selected. Next a buffer 
operation was applied, and the selected pixels were all buffered 
by two more pixels. Without the buffer, the pixels next to 
(masked-out) roads would show extreme values in the 
succeeding MNF transformation, indicating that they were 
affected by the neighbouring non-vegetated pixels.  
 
Minimum Noise Fraction:  The masked HyMap image, now 
only containing vegetated pixels, was subjected to a Minimum 
Noise Fraction (MNF) transformation (Green et al., 1988). With 
MNF noise reduction is applied by optimizing autocorrelation 
for an indicated part of the image. The remaining signal is then 
subjected to a Principal Component transformation. We applied 
MNF for two reasons. First, the number of bands (124) is very 
large to include in the segmentation procedure. Secondly, 
hyperspectral data show a high level of collinearity, i.e. 
correlation between the variables. Application of MNF allows 
reduction of the number of variables while maintaining most of 
the variance. Furthermore, it results in non-correlated bands, so 
it solves the collinearity problem. 
With MNF the number of input and output bands is equal, the 
output bands showing decreasing variance. The analysis was 
continued with the first 20 MNF bands, which explained 84% 
of the total variance in the masked image. 
 
Segmentation:  Segmentation of the image was performed with 
eCognition 3.0, an object-based image analysis package 
(Definiens, 2003). Segments were exclusively defined by MNF 
values without any limitations from shape parameters. Within 
eCognition the maximal heterogeneity of the objects is set by 
the scale parameter. The MNF image was segmented ten times 
with increments of the scale parameter of 5. The exact 



 

definition of the scale parameter is not published by Definiens. 
The number of segments decreased rapidly with increasing 
scale parameter values (Table 2). 
 
 

Scale N 
5 8763 
10 3752 
15 2800 
20 2458 
25 2286 
30 2203 
35 2147 
40 2103 
50 2067 

 
Table 2. Number of segments (N) resulting from segmentation 

with different scale parameters (Scale). 
 

For each segment the mean value for each of the 124 HyMap 
bands was calculated.  
 
Data set preparation:  For both vegetation parameters 11 data 
sets were prepared, ten for the different segmentation levels, 
and one relating the field plots to individual pixels. So in total 
22 data sets were prepared. Each data set, contained the 
parameter values and the 124 spectral band values. The MNF 
bands were only used to segment the images, while the 
relationship between the HyMap image and the vegetation data 
will be based on the original bands. 
 
3.2 Statistical analysis 

Ridge regression:  The relation between spectral behaviour of 
vegetation and biomass and LAI is determined using Ridge 
regression (Hastie et al., 2001). This is a linear multiple 
regression method, which searches for the minimum of squared 
errors, while at the same time limiting the range of the squared 
sums of the regression coefficients. In situations with many 
correlated variables, like in hyperspectral images, regression 
coefficients become poorly determined and exhibit high 
variance. By imposing a size constraint on the coefficients this 
phenomenon is prevented. 
The size constraint of the regression coefficients is set by λ. 
There is an inverse, non-linear relation between λ and the 
degrees of freedom (df) of the regression coefficients. With λ 
equal to 0, Ridge regression is equal to regular multiple 
regression with maximum df. By increasing λ, df will decrease 
(p63, eq. 3.50, Hastie et al., 2001). 
 
Cross validation:  The performance of the Ridge regression 
functions was determined using generalised cross validation 
(GCV). GCV values are calculated for each data set for the 
same range of λ values. GCV is equal to the total residual 
variance, so lower GCV values indicate better performance. 
 
 

4. RESULTS 

The results of the cross validation are given in Figures 1 and 2 
for Leaf Area Index and Biomass, respectively. For both 
parameters ten graphs are provided, showing, from top-left to 
lower-right, the results for individual pixels to scale parameter 
50. For lay-out reasons, the graphs for scale parameter 45 are 

not shown. However, in both cases these curves do confirm the 
trend shown by scale parameters 40 and 50. 
The vertical axis shows the GCV values, while the horizontal 
axis shows the degrees of freedom, df. The lowest points of the 
graphs indicate the best performance for a given scale 
parameter. For Leaf Area Index, scale parameter 15 shows the 
lowest GCV minimum of the ten graphs. The GCV value of 
0.38 corresponds to 54% unexplained variance, which means an 
R2 of 0.46. For biomass, scale parameter 10 shows the lowest 
GCV value of the ten graphs. The value of 23000 results in an 
R2 of 0.47. 
For biomass optimal performance increases from individual 
pixels to scale parameter 10, after which it decreases again with 
larger scale parameters. For Leaf Area Index the initial trend is 
not so straightforward, with scale parameter 5 showing better 
results than scale parameter 10, although the optimum at scale 
parameters 15 or 20 is clearly better. From 25 on, the 
performance shows a clear decreasing performance. 
Total variance in the data set determines the relation between 
the size constraint of the regression coefficients λ, and df. This 
shows in the smaller range covered by df with increasing scale 
parameters. 
 
 

5. DISCUSSION 

The different levels of segmentation result in different accuracy 
values for estimation of Leaf Area Index and biomass. 
Segmentation compared to the one-pixel situation shows that 
segmentation indeed does provide better estimates. 
By segmenting the images, information is lost. Up to a certain 
level this is expected to be noise, stemming either from spectral 
noise or spatial mismatch. At a certain aggregation level the lost 
information might turn out to be relevant. This would show in 
worse results, in our case lower GCV values. Both phenomena 
can be observed in the GCV curves for the different scale 
parameters. Predictions improved until scale parameter 10 
(biomass) or 15 (LAI), and decreased with subsequent scale 
parameter values. 
This study does not aim at determining the exact scale 
parameters that yield optimal predictions, but merely at 
showing that different values yield different results. The 
optimal scale parameter can be derived by varying it with a 
smaller step size. 



 

 
 
Figure 1.  The Generalized Cross Validation (GCV) of Leaf Area Index plotted against the degrees of freedom for 10 different object 
definitions. GCV is equal to the unexplained variance, lower values indicate better estimates. Each plot from upper left to lower right 

corresponds to the scale parameters of table 2. 
 
 

 
 

Figure 2.  The Generalized Cross Validation (GCV) of biomass plotted against the degrees of freedom for 10 different object 
definitions. GCV is equal to the unexplained variance, lower values indicate better estimates. Each plot from upper left to lower right 

corresponds to the scale parameters of table 2. 
 



 

The band setting for the segmentation was remained constant in 
this study by using the first 20 MNF bands for all 
segmentations. Finding optimal band combinations was beyond 
the scope of this paper. 
 
 

6. CONCLUSIONS 

In this paper we studied the effect of increasing heterogeneity in 
object definition on the accuracy of predicting biomass and 
Leaf Area Index values. We used Ridge regression to establish 
equations and by a leave-one-out cross validation the accuracies 
of the estimations were determined. We aimed at answering two 
questions; 1). How does the spatial definition of objects affect 
the statistical relationships between field observations and 
spectral object properties? 2). Is this effect similar for different 
vegetation parameters? 
It can be concluded that different heterogeneities indeed result 
in different estimation accuracy values. Starting with individual 
pixels and increasing the object size, the predictions improve 
until an optimum is reached, after which increasing object size 
results in worse predictions. The question what determines the 
optimal setting is the next issue to study. 
Furthermore, our results show that Leaf Area Index and 
aboveground biomass show different optima for their 
predictions. The explanation for this might be well related to 
the question of the underlying principles of optimal 
heterogeneity values. 
 
 

REFERENCES 
 

Baret, F. and Weiss, M., 2004. CAN_EYE : Processing digital 
photographs for canopy structure characterization. Tutorial. 
INRA Avignon. http://www.avignon.inra.fr/can_eye/. 

Definiens, 2003. eCognition, object-based image analysis. 
München. 

Green, A. A., Berman, M., Switzer, P. and Craig, M. D., 1988. 
Transformation for ordering multispectral data in terms of 

image quality with implications for noise removal. IEEE 
Transactions on Geoscience and Remote Sensing 26 (1), pp. 65-
74. 

Hastie, T., Tibshirani, R. and Friedman, J., 2001. The elements 
of statistical learning. Data mining, inference, and prediction. 
Springer, New York, pp. 59-64. 

Jonckheere, I., Fleck, S., Nackaerts, K., Muysa, B., Coppin, P., 
Weiss, M. and Baret, F., 2004. Review of methods for in situ 
leaf area index determination Part I. Theories, sensors and 
hemispherical photography. Agricultural and Forest 
Meteorology 121, pp. 19–35. 

Ogaya, R., Peñuelas, J., Martínez-Vilalta, J., and Mangirón, M., 
2003. Effect of drought on diameter increment of Quercus ilex, 
Phillyrea latifolia, and Arbutus unedo in a holm oak forest of 
NE Spain.  Forest Ecology and Management 180, pp. 175-184. 

Pereira, J. M. C., Oliveira, T. M., and Paul, J. P. C., 1994. Fuel 
mapping in a Mediterranean shrubland using Landsat TM 
imagery. In: P. J. Kennedy and M. Karteris (eds.), International 
workshop on satellite technology and GIS for Mediterranean 
forest mapping and fire management, Office for official 
publication of the European Communities, Luxembourg, pp. 
97-106. 

Sluiter, R., 2005. Mediterranean land cover change - Modelling 
and monitoring natural vegetation using GIS and remote 
sensing. NGS Studies 333, KNAG, Utrecht, 145 pp. 

Weiss, M., Baret, F., Smith, G. J., Jonckheere, I., and Coppin, 
P., 2004. Review of methods for in situ leaf area index 
determination Part II. Estimation of LAI, errors and sampling. 
Agricultural and Forest Meteorology 121, pp. 37-53. 

 
ACKNOWLEDGEMENTS 

 
Wiebe Nijland, Rogier de Jong and Paul Hiemstra are greatly 
acknowledged for their large contribution to the field campaign.

 


