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ABSTRACT: 
 
Anthropogenic land use activities are significantly contributing to the ecological degradation of the Earth system. Therefore, having 
actual and reliable land cover information is fundamental to study the impact of such an ecological degradation on our future 
welfare. High spatial resolution sensors, such as Landsat TM, are typically used to derive land cover information from local to 
regional scales. However, current high spatial resolution sensors do not provide an appropriate temporal resolution. This is 
especially true for areas having high cloud coverage throughout all the year. In this respect, The Medium Resolution Imaging 
Spectrometer, MERIS, aboard the ESA-Envisat environmental satellite delivers data every 2-3 days. This increases the chances of 
encountering cloud free regions. Nevertheless, MERIS works at a spatial resolution of 300m (full resolution mode), which might not 
be sufficient to capture the details of   highly fragmented landscapes. This is why the synergic use of these 2 sensors was explored in 
this paper. 
An unmixing-based data fusion technique was used to generate images with the spatial resolution of Landsat TM and with the 
spectral (and eventually temporal) resolution provided by MERIS. More precisely, one Landsat TM and one MERIS full resolution 
image acquired in July 2003 over The Netherlands were fused using the linear spectral mixing model. First an unsupervised 
classification of the Landsat TM image was done to obtain the fractional coverages of the different land cover types present in each 
MERIS pixel. Next, the spectral signatures of each land cover type were retrieved by “inverting” the linear mixing model. This is, 
MERIS “endmembers” were obtained from the known fractional coverages of each pixel. After that, both the fused and the Landsat 
TM images were classified to produce maps of the 8 main land cover types over The Netherlands. These maps were subsequently 
validated using the Dutch land use spatial database (LGN5) as a reference. The paper concludes by describing the potentials and 
limitations of this multi-sensor approach with respect to the solely use of Landsat TM data. 
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1. INTRODUCTION 

1.1 Remote sensing and land cover mapping 

During the last few centuries, human land use activities have 
significantly contributed to the ecological degradation of our 
planet (Christensen et al., 1996). Anthropogenic land use 
activities are responsible for changes in atmospheric 
composition, the reduction of biodiversity and changes in 
climate at regional to global scales (Foley et al., 2005; Pielke 
Sr., 2005). In this context, accurate and up-to-date, land use and 
land cover information is essential to quantify the real 
magnitude of these changes and their potential impact on our 
future welfare.  
Earth observation satellites are the main source of data for land 
cover mapping (Treitz and Rogan, 2004).  Remote sensing data 
has, therefore, been progressively integrated into several 
national and international initiatives aiming at providing land 
use and land cover information (Gutman et al., 2004) .  
Despite the success achieved by these land use land cover 
initiatives, our current understanding of the dynamics of land 
cover change is still far from complete (Foody, 2002). 
Innovative approaches using  the wide variety of remotely 
sensed data as well as new ways of combining ancillary data are 
therefore required to further develop the science of land cover 
mapping (Woodcock and Ozdogan, 2004). In this study we 

illustrate the use of a relatively new approach for land cover 
mapping: data fusion. 
 
1.2 Data fusion 

Current Earth observation satellites provide data at a wide range 
of spatial, spectral and temporal resolutions. Because the data 
gather by different satellites is inherently complementary, it can 
be combined to generate datasets that have more information 
that each of the input datasets alone.  This process of combining 
several kinds of imagery is known as data fusion (Park and 
Kang, 2004). Because fused satellite images contain more 
information than single-sensor imagery, they generally offer 
increased interpretation capabilities and more reliable results 
(Pohl and Van Genderen, 1998).  
Data fusion approaches are commonly used to combine high 
spatial resolution imagery (necessary for an accurate 
description of the shapes, features and structures of the 
landscape) with either high spectral resolution imagery (useful 
to identify objects and to retrieve quantitative information) or 
with high temporal resolution imagery (essential to monitor 
vegetation phenophases and to produce maps over areas with 
persistent cloud coverage).  
Several data fusion methods are available in literature. 
However, most of the them are operator or data  type 
dependent, or they do not properly preserve the spectral 



 

information of the input images (Zhang, 2002; Zhang, 2004). 
An unmixing-based data fusion approach was selected for this 
study because it tries to preserve the spectral information of the 
low resolution image as much as possible (Zhukov et al., 1999; 
Minghelli-Roman et al., 2001). This should facilitate both the 
elaboration of accurate land cover maps and the use of fused 
images to monitor vegetation status.  
 
1.3 Research objective 

The aim of this study is to evaluate the synergic use of remotely 
sensed imagery to produce land cover maps over (highly) 
heterogeneous and frequently cloudy areas. More specifically, 
this paper illustrates the use of the linear mixing model to fuse 
Landsat TM and MERIS imagery. The Landsat TM sensor was 
selected because of its high spatial resolution whereas MERIS 
was selected because of its high spectral (15 narrow bands) and 
temporal resolutions (revisit time 2-3 days). 
 
 

2. MATERIALS AND METHODS 

2.1 Study area and remotely sensed data 

The study area covers approximately 40 by 60 km of the central 
part of The Netherlands. This area was selected considering 
both the heterogeneity of the landscape and the availability of 
cloud free imagery over the area. 
A Landsat TM-5 image acquired the 10th of July 2003 and a 
MERIS full resolution level 1b image acquired the 14th of July 
of 2003 were used to illustrate the proposed data fusion 
approach. 
The Landsat TM image was geo-referenced to the Dutch 
national coordinate system (RD) using a cubic convolution 
method. A pixel size of 25m was selected during this re-
projection so that the output resolution was equal to the 
resolution of the reference dataset (c.f. section 2.2).   
Subsequently, the MERIS full resolution level 1b image was 
transformed from digital numbers (DN) to top of atmosphere 
radiances (LTOA) using the metadata provided with the file. 
Then, the image was corrected for the so-called smile effect 
(Zurita-Milla et al., 2006).  Finally, the image was also re-
projected into the RD coordinate system using the ground 
control points provided with the MERIS file.  
The last step of the pre-processing consisted of co-registering 
the input images. The Landsat TM image was used as a base 
image for the co-registration. Finally, a spatial subset 
containing the study area was masked out. 
 
2.2 Reference data 

The latest version of the Dutch land use database, LGN5, was 
used as a reference in this study. This geographical database has 
a grid structure with a cell size of 25 m and a detailed legend 
consisting of 39 classes. The LGN5 is based on multi-temporal 
classification of high resolution satellite data (mainly Landsat 
imagery from the years 2003 and 2004) and the integration of 
ancillary data (Hazeu, 2005). 
The original 39 classes of the LGN5 were aggregated into the 8 
main land cover classes of The Netherlands: grassland, arable 
land, deciduous forest, coniferous forest, water, built-up, bare 
soil (including sand dunes), and natural vegetation. 
 

2.3 Unmixing-based fusion 

2.3.1 Theoretical background 
The selected data fusion approach makes use of the linear 
mixing model to combine different kinds of imagery. The linear 
mixing model assumes that there is no multiple scattering 
occurring within the different land cover types. In this way, the 
signal received per pixel is “just” a linear combination of the 
signals corresponding to “pure” land cover types (endmembers) 
weighted by their area within the pixel (Settle and Drake, 
1993). 
The linear mixing model is normally used to spectrally 
unmixing remotely sensed images (Ustin et al., 1993; Adams et 
al., 1995). In this case, the per-pixel fractional coverages are 
sought after determining the endmembers present in the image. 
However, when high spatial resolution imagery is available, the 
linear mixing model can also be used to spatially unmix low 
resolution images. This spatial unmixing is also known as 
unmixing-based data fusion. In this case, the high spatial 
resolution data is first used to compute the fractional coverages 
of the different classes present in each low resolution pixel. 
Then, the fractions are used to look for per-pixel class 
endmembers. Finally, the high spatial resolution image is used 
to get the spatial distribution of the classes that have been 
unmixed, so that the per-pixel endmembers can spatially 
allocated to create the fused image.   
Contrarily to the linear spectral unmixing, which is solved per 
pixel and for all bands at once, the spatial unmixing problem is 
solved per band for a given neighbourhood.  
Lets use, i to indicate a generic low resolution band, nc to 
specify the number of classes in which the high spatial 
resolution image was classified and k to represent size of a 
square neighbourhood; then, the unmixing-based data fusion 
approach can be written in a compact matrix-vector notation is 
as follows: 
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where: Li,k is a k2 column vector containing all the (radiance) 

values of the low resolution pixels in the neighbourhood 
k and the spectral band-i. 
Pk,nc is a (k2

 x nc) matrix containing the proportions of 
each class for each low resolution pixels present in k. 
Si,k,nc is the per band nc-column vector of the 
endmembers present in a given neighbourhood. 
Ei is a k2 column vector of residual errors. 
N is the number of bands of the low resolution image. 

 
The general formulation of the unmixing-based data fusion 
approach (indirectly) implies the optimalisation of 2 
parameters: the number of classes (nc) in which the high spatial 
resolution image is classified and the size of the neighbourhood 
(k) in which the Eq. 1 will be applied. 
 
2.3.2 Case study 
Figure 1 illustrates the general methodology used in this study. 
First the Landsat TM image was classified into 10, 20, 40, 60 
and 80 classes using an unsupervised ISODATA classification 
rule. In this way we obtained the spatial patterns of the study 
area with different degrees of detail. Then, the classified image 
was aggregated to match the resolution of MERIS (i.e. 300 by 
300m). During this spatial aggregation, the proportion of each 



 

class present in each MERIS-like pixel was computed. Next, a 
sliding window, representing the neighbourhood size, was used 
to generate the class proportion matrices (Pk,nc). Four 
neighbourhood sizes were used in this study: 5 by 5, 9 by 9, 13 
by 13 and 17 by 17. 
 
 

 
 

Figure 1. Scheme of the general methodology 
 
On one hand, the neighbourhood size should be kept as small as 
possible so that the fused image is spectrally dynamic, but on 
the other hand, it should be as large as possible because it 
determines the number of equations available to solve the 
spatial unmixing model. Indeed, the unmixing-based model 
illustrated in Eq.1 is a system of k2 equations with nc 
unknowns. This implies that the number of classes in a given 
neighbourhood cannot be larger than the number of available 
equations; otherwise the system of equations would be 
undetermined. However, the larger the size of the 
neighbourhood the less variability we will have in the fused 
image because each neighbourhood has unique set of 
endmembers. In other words, if we use the whole image as a 
neighbourhood, then only one set of endmembers can be 
calculated and this implies that a given class x will have the 
same spectral signature in the all the pixels of the image.  
Using the same sliding window technique as for the preparation 
of the proportion matrices, we extracted the k2 elements that 
conform the (per band) MERIS radiance vector (Li,k) that we 
needed to solve Eq. 1.  
A constrained least-squares method was subsequently used to 
retrieve the per band vector of the endmembers present in the 
neighbourhood under study (Si,nc). A constrain method was 
needed because the endmembers should fulfil the following 2 
conditions: i) all the radiance values have to be positive and ii) 
the radiance values have to be equal or smaller than the (per 
band) radiance saturation value of the MERIS sensor (www1). 
The per band and per neighbourhood endmembers, Si,nc, were 
finally assigned to the corresponding classes (land ocations) of 
the central pixel of the neighbourhood.  

This spatial unmixing operation was applied to all the low 
resolution pixels and repeated for all the bands and for all the 
combinations nc × k, so that a series of fused images was 
created. 
 
2.4 Data fusion quality  

Assessing the quality of fused images is not straightforward 
because it depends on several factors like the difference in 
resolution of the input images or the type of landscape under 
consideration (Thomas and Wald, 2004). In this study, a 
quantitative quality assessment of the fused images was 
performed to find the combination of nc and k that produces the 
best image (from a spectral point of view). 
Bearing in mind that any fused image should be as identical as 
possible to the original low resolution image once degraded to 
that resolution, we degraded the fused images to 300m using a 
mean filter. After this, we assessed the quality of the fused 
images by comparing the degraded images with the original 
MERIS images. In this study, the ERGAS index was used to do 
such a comparison because this index is independent of the 
units, the number of spectral bands and the resolution of the 
input images (Wald, 2002). The ERGAS index is computed as 
follows:  
 
 

( )( )∑
=

=
N

1
2/21

100
i iMiBRMSE

Nl

h
ERGAS                 (2) 

 
 
where: h is the resolution of the Landsat images. 
 l is the resolution of MERIS. 

N is the number of spectral bands (Bi) involved in the 
fusion. 
M, is the mean value of each MERIS band. RMSE is 
the root mean square error computed between the 
(degraded) fused image and the original MERIS 
image (for the band Bi). 
 

The quality of the fused images was also evaluated in terms of 
their classification accuracy. This was done to study the 
relationship between the ERGAS index and the classification 
accuracy. 
 
2.5 Classification 

All fused images were classified using a supervised maximum 
likelihood classification rule. The LGN5 was used to support 
the selection of the training samples for the 8 main land cover 
types of The Netherlands. The original Landsat TM image (6 
bands) was also classified using the same training set as for the 
fused images. 
In order to compare classification results of spectrally similar 
images, we designed a second experiment where the bands 5 
and 7 of the Landsat TM image were omitted from the 
classification. This was done because MERIS does not collect 
information on this region of the electromagnetic spectrum. 
Additionally, a cubic convolution resampled MERIS image 
(300 to 25m) was also classified to evaluate the added value of 
the fusion process. 
Similar to other studies (Zurita-Milla et al., 2006), the MERIS 
bands 1, 2, 11 and 15 were excluded from all the fused images 
before its classification. These bands are either very susceptible 
to atmospheric influences (bands 1 and 2) or they coincide with 



 

absorption features (bands 11 and 15).  Therefore, they do not 
provided relevant information for land cover mapping.  
The confusion matrix and the kappa coefficient were used to 
compare the classification results. 
 
 

3. RESULTS 

3.1 Data fusion 

Table 1 illustrates the ERGAS values for all the fused images. 
Notice that the neighbourhood size of 5 by 5 did not provided 
enough equations to solve some of the cases. The ERGAS index 
indicates that the quality of the fused image decreases with an 
increase in the number of classes used to classified the Landsat 
TM image and when increasing the neighbourhood size.  
All the fused images yielded ERGAS values below 1, and this 
is consider to be a very good value since a threshold of 3 has 
been defined as the upper limit for a good fusion quality (Wald, 
2002). These very low ERGAS values indicate that the 
unmixing-based data fusion succeeded in preserving the 
spectral information of the MERIS image. Indeed, the 
unmixing-based data fusion approach was selected because it 
takes the spatial details from the high resolution image and the 
spectral information from the low resolution image. 
 

Table 1. ERGAS values  
nc 

 k 10 20 40 60 80 

5 0.687 0.556 -- -- -- 
9 0.844 0.780 0.681 0.612 0.530 
13 0.909 0.858 0.797 0.742 0.698 
17 0.942 0.902 0.854 0.816 0.787 

k is the size of the neighbourhood; nc is the number of classes 
used to classify the Landsat TM image and ‘--’ means that this 
combination could not be fused. 
 
The best ERGAS value was obtained for combination nc=80 
and k=5. Figure 2 shows an RGB color composite of a 25 x 25 
subset of this fused image.  The original Landsat TM and 
MERIS images are also provided in Figure 2.   
 

   
 

 
 

Figure 2.  RGB color composite of the Fused (a), Landsat TM 
(b) and MERIS images over the study area 

 
3.2 Classification  

A supervised maximum likelihood classification rule was 
applied to: i) all the fused images, ii) the Landsat TM images 
(all bands and 4 bands cases) and iii) the original MERIS image 
resampled to 25m using cubic convolution. Table 2 summarises 
the best classification results. 
 

Table 2. Classification results 
 O.A [%] K 

Best fused image (nc=20; k=17) 57.54 0.476 
Landsat TM 6 bands 63.32 0.550 
Landsat TM bands 1 till 4 57.98 0.484 
MERIS 25m cubic convolution  40.57 0.295 

O.A. is the overall classification accuracy; K is the kappa 
coefficient 
 
In all cases, the overall classification accuracies and the kappa 
coefficients of the Landsat TM images were better than for the 
fused images. However, the classification results of our second 
experiment, where the mid-infrared bands of Landsat TM were 
omitted, are very similar to the ones obtained for the best fused 
image (Table 2). This indicates that the mid-infrared bands, 
which are missing in MERIS, might play an important role in 
the final classification accuracy. Nevertheless, the temporal 
resolution of MERIS could help to overcome this issue. 
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Figure 3.   Classification results for the Fused (a), and the 
Landsat TM (b) images and the LGN reference 
dataset (c). 

 
The best fused image performed much better than the cubic 
convolution resampling of the original MERIS image. This 
shows that the selected data fusion approach is very useful to 
downscale MERIS imagery. Figure 3 shows the best 
classification results obtained with the fused images together 
with the Landsat TM (all bands) and the LGN5. 
The land cover map produced using the best fused image offers 
a good representation of the main landscape features despite its 
lower classification accuracy. Furthermore, the classification 
results obtained in this study suggest that using larger nc and k 
values might increase the final classification accuracy to exceed 
that of the Landsat TM.  
In addition to this, the co-registration of the input images has to 
be as good as possible because potential errors in the geometry 
of the images have a great impact of the performance of this 
method. This impact can be minimised by using a large 
neighbourhood size. However, that would result in spatially 
averaged endmembers that would reduce the “dynamism” of the 
fused image.  
Finally, special attention should be paid to the pixels that reach 
the upper or lower boundaries of the constrained least-squares 
method used to solve Eq. 1. This could be done by using 
regularisation methods (Golub et al., 2000). 
 
 

4. CONCLUSIONS 

In this paper we have used the linear mixing model to fuse a 
Landsat TM (high spatial resolution) image with a MERIS full 
resolution level 1b (high temporal and spectral resolutions) 
image. This is particularly interesting to produce land cover 
maps over spatially heterogeneous and cloudy areas. 
The unmixing-based data fusion approach was evaluated using 
a quantitative indicator of data fusion quality: the ERGAS 
index. All the fused images had an ERGAS below 1, which is 
considered to be a very good fusion. This indicates that the 
selected approach succeeded in preserving the spectral 
information of the MERIS image.  
The classification results of the Landsat images were better than 
ones obtained for the fused images. Nevertheless, the 
classification accuracy of the best fused image was very similar 
to the one of the Landsat TM 4 bands image. This could 
indicate the mid-infrared region might play an important role on 
the final classification accuracy. However, the fused image 
yielded better classification results that the cubic convolution 
resampling of the original MERIS image. This shows the 
potential of this fusion approach. Furthermore, the classification 
results obtained in this study suggest that using larger nc and k 
values might increase the final classification accuracy. 
Additional research should be devoted to explore the temporal 
dimension of MERIS because producing temporal series of 
fused images might also improve the classification accuracy.  
Finally, the findings presented here should support the use of 
data fusion to downscale medium and low resolution imagery 
since the temporal resolution of provided by these sensors 
offers new possibilities to monitor vegetation status (e.g. in 
terms of FAPAR, LAI or chlorophyll content). 
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