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ABSTRACT: 
 

This paper presents an optimal solution to water motion in satellite images. Since temperature patterns are suitable tracers in water 
motion, Sea Surface Temperature (SST) images of Caspian Sea taken by MODIS sensor on board Terra satellite have been used in 
this study. Two daily SST images with 24 hours time interval are used as input data. Computation of templates correspondence 
between pairs of images is crucial within motion algorithms using non-rigid body objects. Image matching methods have been 
applied to estimate water body motion within the two SST images in this study. The least squares matching technique, as a flexible 
technique for most data matching problems, offers an optimal spatial solution for the motion estimation. The algorithm allows for 
simultaneous local (i.e. template) radiometric correction and local geometrical image orientation estimation. Actually, the 
correspondence between two image templates is modeled both geometrically and radiometrically. The next method to extract water 
motion is hierarchical Lucas and Kanade method that implements weighted least squares fit of local first-order optical flow 
constraints in each spatial neighborhood. This method by using coarse-to-fine strategy to track motion in Gaussian pyramids of SST 
image finds water current. This method allows the detection of large motions in coarse resolution layer and gradually leads to more 
precise result in finer layers. The methods used in this study, has presented more efficient and robust solution compared to the 
traditional motion estimation schemes to extract water currents. 

1. INTRODUCTION 
Oceanographic images obtained from environmental 

satellites present a new challenge for geosciences. The wide 
range of remote sensors allows characterizing natural 
phenomena through different physical measurements. For 
instance, Sea Surface Temperature (SST) images, altimetry 
data and ocean color data can be used simultaneously for 
characterizing currents and vortex structures in the ocean.  

A major advantage of environmental remote sensing is the 
regular sampling of the measurements and their availability. 
These regular temporal and spatial data samplings allow 
characterizing the short range evolution of oceanographic 
processes with image sequence processing.  

The purpose of this paper is to derive a relatively complete 
framework for processing large dynamic oceanographic image 
sequences in order to detect global displacements such as 
oceanographic streams or to localize particular structures like 
motion current and vortices and fronts. These characterizations 
will help in initializing particular processes in a global 
monitoring system.  

Processing such image sequences raise some specific 
problems. Indeed, computing an apparent motion field to 
characterize short range evolution must take into account 
discontinuities of the motion field that occur near SST 
temperature fronts. For this purpose, two least squares methods 
have been used to solve the apparent motion which involves 
least squares matching and hierarchical least squares Lucas and 
Kanade.  

The outline of the paper is as follows. In section 2 a brief 
introduction to least squares matching is presented. In section 
3, hierarchical least squares Lucas and Kanade are presented. 
Section 4 describes modifications of these methods concerned 
with variations in the number of parameters used. This aims to 
improve the result of optical flow calculation. Section 5 

presents results of experiments that verify the effectiveness of 
our proposed approach. The conclusion is given in section 6. 

2. LEAST SQUARES MATCHING 
Image matching is a key component in almost all image 

analysis processes regarding a wide range of applications such 
as motion analysis, computer vision, robotics, navigation, 
automatic surveillance and etc. [Gruen, 1985]. Cross-
correlation and related techniques have dominated the field 
since the early fifties. The shortcomings of this class of image 
matching methods have caused a slow-down in the 
development of operational automated correlation systems. 
Illumination and reflectance conditions might distort the 
images radiometrically. Under certain conditions this could 
even cause a geometrical displacement. Noise from the 
electrical components and the sampling rate (pixel size) could 
also influence both the geometrical and the radiometric 
correspondence of the images. Cross-correlation works fast and 
well if the patches to be matched contain enough signals 
without too much high frequency content and under 
assumption that geometrical and radiometric distortions are 
minimum. The latter two conditions are rarely met in remotely 
sensed images.  

In the conventional approach [Ackermann, 1988] to least 
squares matching (LSM), the correspondence between two 
image fragments is modeled by a geometric model (six 
parameters transformation) and a radiometric model (two 
parameters transformation). Pixel gray values in one image 
(called left image in this paper) are arbitrarily chosen to be the 
observables, while pixel gray values in the other image (right 
image) are chosen to be constants. Experience has shown that 
the alignment/ correspondence between two images to be 
matched generally have to be within a few pixels otherwise the 
process will not converge. This is more restrictive than other 



matching methods, and therefore requires good approximation 
of matching window when using least squares methods. 

2.1 Formulation 
A simplified condition equation, considering only the 

geometric parameters would be, 
),(),( '' yxhyxg =                         (1) 

In which the two coordinate systems are related by six 
parameters transformation, 
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An extended model including two radiometric parameters 

for contrast and brightness (or equivalently gain and offset) 
would be, 

2
''

1 ),(),( kyxhkyxg +=                     (3) 
Written in the form of a condition equation it becomes, 
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Where 21321321 ,,,,,,, kkbbbaaa  are the parameters, g 

represents the observation, x, y are constant values, and h is a 
constant. This equation can be linearized into the form: 

fBV =Δ+                               (5) 
Since it is assumed that the images are nearly aligned and 

are radiometrically similar, one can take the initial 
approximation parameter vector to be, 
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The coefficients of the matrix B will consist of partial 
derivatives of equation (4). 
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These can be developed as follows, 
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where the expression is evaluated at the initial approximations, 
and for notational compactness we adopt, 
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In practice, these are computed using gray values from the 
right image as follows, 
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It should be noted that xh  represents a derivative, whereas 

),( '' yxh  represents a gray value in the right image. 
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By similar analysis, 

xh
b
F

y−=
∂
∂

1

      yh
b
F

y−=
∂
∂

2

    
yh

b
F −=

∂
∂

3

              (13)  

),( ''

1

yxh
k
F −=

∂
∂      1

2

−=
∂
∂
k
F  

The term f  in Eq. (5) is, 
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1 kyxhkyxgFf −−−=−=              (14) 
which when evaluated at the approximations (the identity 
transformation), becomes: 

),(),( yxgyxhf −=                         (15) 

2.2 LSM Procedure 
The resulting normal equations may be formed sequentially, 

avoiding the actual formation of the full condition equations. 
They are then solved for the parameter corrections. For the 
second and subsequent iterations, we resample the right image, 

),( '' yxh using the inverse transformation defined by the 
updated six parameters. After several iterations and 
resamplings, the two images should appear to be aligned and 
registered. Following are a few practical hints: 

• Update parameters just like nonlinear least squares, 
i.e. aaa δ+= 01 . 

• Convergence occurs when 0→Δ . 
• The matrix B  and vector f  are computed from the 

resampled right image. 
• The right image is resampled in every iteration, 

following the first, usually by bilinear interpolation. 

3. HIERARCHICAL LEAST SQUARES LUCAS 
AND KANADE (HLK) 

Diffrential techniques compute optical flow (velocity) from 
spatiotemporal derivatives of image intensity or filtered image 
(using low-pass or band-pass filters). The first instances used 
first-order derivatives and were based on image translation 
[Horn & Schunck, 1981] i.e. 

)0,(),( VtxItxI −=                       (16) 
where TvuV ),(= . From a Taylor expansion of (16) or more 
generally from an assumption that intensity is conserved, 

0/),( =dttxdI , the gradient constraint equation is easily 
derived: 

0),,().,,( =+∇ tyxIVtyxI t                       (17) 
where ),,( tyxIt  denotes the partial time derivative of 

),,( tyxI  , T
yx tyxItyxItyxI )),,(),,,((),,( =∇ , and 

VtyxI ).,,(∇  denotes the usual dot product. In effect, Eq. (17) 
yields the normal of motion of spatial contours of constant 
intensity, SnVn = . The normal speed S and the normal 
direction ),,( tyxn  are given by 
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There are two unknown components of V in (17), 

constrained by only one linear equation. Further constraints are 
therefore necessary to solve for both components of V. 

3.1 Lucas and Kanade algorithm 
Lucas and Kanade and others implemented a weighted least 

squares (LS) fit of local first-order constraints (17) to a 
constant model for v in each small spatial neighbourhood Ω  
by minimizing 
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where ),( yxW  denotes a window function that gives more 
influence to constraints at the center of the neighbourhood 



selected pixel than those at the periphery (W are typically 2D 
Gaussian coefficients).The solution to Eq. (19) is given by  

bWAvAWA TT
rr 22 =                          (20) 

Where, for N pixels (for a nn×  neighbourhood 2nN = ), 
Ω∈),( ii yx  at a single time t, 
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The solution to Eq. (20) is bWAAWAv TT
rr 212 ][ −= , witch is 

solved in close form when AWAT 2  is nonsingular, since it is a 
22 ×  matrix: 
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where all sums are taken over pixels (x,y) in the neighborhood 
Ω . We use n=5,7 neighborhood in the algorithms implemented 
here. We set all weights in W to 1.0 as the experimentation 
showed that using Gaussian weights had little effect on the 
accuracy of the result. We use this method in each layer of 
pyramidal method. 

3.2 Hierarchical Framework 
The hierarchical processing can be understood in terms of 

four steps: 
1. Gaussian pyramid construction, 
2. Image velocity (optical flow) calculation, 
3. Image warping and 
4. Coarse to fine refinement, 

They are described in detail in the subsections below. 

3.2.1 Gaussian Pyramid 
Image pyramids are multi resolution representations of an 

image that provide a range of coarse to fine views of the image. 
The coarser images are blurred and subsampled (slowing the 
image motion). We build our Gaussian pyramid in the standard 
way; Level 0 is the original image, Level 1 is constructed by 
blurring Level 0 with a 2D separable Gaussian filter (with a 
standard deviation of 1.0) and then subsampling the blurred 
image by 2 in the images dimensions. Level i is built from 
Level i-1 in a similar manner, by blurring and subsampling. In 
this way an image motion of 20 pixels/frame at level 0 is 
slowed to 10 pixels/frame at Level 1, 5 pixels/frame at Level 2 
and 2.5 pixels/frame at Level 3 (most likely, the root of the 
pyramid in this case). Note that a 512512 ×  image at Level 0 
becomes a 6464 × image at level 3. 

3.2.2 Image Velocity Calculation 
The computation of image velocity can be viewed as three 

steps: 
1. Presmoothing the images to reduce noise and aliasing 

effects, 
2. Computation of spatio-temporal intensity derivatives 

(and thus normal velocities) and 
3. Integration of normal velocities within some 

neighbourhood into full image velocities. 
Below we describe how these steps are performed in this 

algorithm. 

3.2.2.1 Prefiltering and Derivative Calculation 
The derivatives can be estimated from images using first 

differences. It is, however, important to be consistent in how 

the three derivatives are estimated. The three derivative 
estimates should be “centered” at the same point in space and 
time. This can be accomplished by considering a 222 ××  
cube of values of brightness in ),,( tyx space (Fig. 1). 

 
Figure 1: Cube of 2×2×2 for derivative estimation. 

Each of the derivatives is based on the difference between 
the average value over one 22×  side of the cube and the 
opposite 22×  side. For example: 
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Where 

kjiI ,,
 is the brightness at pixel (i, j) (that is, the pixel 

in row i and column j in frame k), and xε  is the pixel spacing 
in the x direction (in this study 1=xε ).  

Note that the estimates of the derivatives are centered at 
points that are in-between pixels and in-between image frames 
rather than being aligned with them. In a rectangular array of 
pictures cells, there will be one fewer row and one fewer 
columns of derivative estimates than there are picture cell rows 
and columns. So 

kjixI ,,}{  is the estimate of the x-derivative of 

),,( tyxI  at pixel (i+1/2, j+1/2) at frame (k+1/2). Averaging 
four values has the added benefit of reducing the standard 
deviation of random noise in the signal by one half. Additional 
smoothing may be applied to the image before estimating the 
derivatives in order to further reduce noise, as long as enough 
bits of precision are retained. 

3.2.2.2 Normal Velocity Integration 
Given the spatiotemporal derivatives, Ix, Iy and It computed 

as described in the previous section (and hence, the normal 
velocities) we integrate small neighborhoods of these values 
into image velocities using Constant Velocity Model. In this 
case we assume velocity is constant in local image 
neighborhoods, that is first and second order velocity 
derivatives are zero, i.e. 

)1,,()1,0,0(),,( vuVtyxV ==                     (24) 
In this case we solve for )1,0,0(V in the least squares sense 

using equations of the form ntyxVtyxSn ˆ).,,(),,( =  in small 
local image neighborhoods. For nn ×  neighborhoods we solve 

22 ×n  systems of equations, i.e. we simply have to invert 
22× matrices. 

3.2.3 Image Warping 
The image velocity parametric models introduced in the 

previous section are accurate for small motions but, in the case 
of large motions, images have to be warped before they are 
processed. Image warping is performed by using a computed 
flow field as the initial velocities at each pixel (x,y) in the 
image sequence. The corresponding regions in the image 
sequence at the appropriate frames and displacements from 
(x,y) are collected together to make the image domain 
differentiable in space and time. Each region collected is 
processed as if it were one single image patch for the purposes 



of computing the intensity derivatives at that pixel. This allows 
an image velocity calculation for that region which can be 
added to the initial estimated velocity to obtain a more accurate 
velocity value. Velocities are float vectors so we use bilinear 
interpolation to obtain the actual gray values at each pixel (as 
suggested by Bergen, 1992). Bilinear interpolation uses the 
gray values at the four nearest integer neighbors to compute the 
gray value at a given pixel at a noninteger position. For 
subpixel location (x,y), where i is the integer value of x and j is 
the integer value of y, we have following four nearest 
neighbors, (i,j), (i+1,j), (i+1,j+1) and (i,j+1). If I1, I2, I3 and I4 
are the gray values at points (i,j), (i+1,j), (i+1,j+1), (i,j+1) 
respectively, then the intensity of subpixel (x,y) can be 
computed as follows: 

3421 .)1(.)1)(1(),( IpIpqIpIqpyxI +−++−−=     (25) 
where ixp −=  and jyq −= . A 555 ××  cube of gray 
values is collected about each displaced pixel using estimated 
image velocities, from which intensity derivatives Ix, Iy and It 
are computed. These intensity derivatives are then used by one 
of the parametric models to compute a warped image velocity 
which is added to the initial velocity estimate to obtain a new 
image velocity for that pixel. 

3.2.4 Coarse to Fine Refinement 
Coarse to fine hierarchical algorithms have a control 

strategy that starts at the top of the pyramid and proceeds level 
by level to the bottom of the pyramid and involves single level 
image velocity calculations and projections at each level. The 
steps involved are: 

1. Compute the image velocities at the top level. Here, it is 
assumed that the image motion has been blurred and slowed 
enough by the pyramid that the constant velocity model will be 
sufficient to obtain a reasonable flow field. We use a 
neighborhood size of 2n + 1, where n = 2,3 in the integration 
step of the least square velocity calculation. 

2. Project each computed velocity (after doubling it) at 
location (i,j) to locations (2i,2j), (2i+1,2j), (2i,2j+1) and 
(2i+1,2j+1). We use simple linear interpolation (averaging) to 
obtain the projected velocities at locations (2i+1,2j),(2i,2j+1) 
and (2i+1,2j+1). That is, the velocity at (2i+1,2j) is computed 
as the average of the velocities at (2i,2j) and (2i+2,2j), the 
velocity at (2i+1,2j+1) is computed as the average of the 
velocities at (2i,2j) and (2i+2,2j+2), etc. We also double the 
value of n in one case at each projection step to take into 
account the enlarging of the aperture as we proceed down the 
pyramid. 

3. Given the projected velocities around a pixel, we warp the 
images to remove the effect of the velocities and then perform 
a warped image velocity calculation. This warped velocity is 
added to the projected velocity and taken as the estimated 
velocity for that level. 

4. These projected velocities are then doubled and projected 
to the next level as described in the previous step. Warping is 
then performed again, and so on. 

5. This projection and warping is continued until the bottom 
image of the pyramid is reached. The estimated velocity is 
taken as the final optical flow field. 

4. IMPLEMENTATION 
In principle, temperature patterns are suitable tracers for 

water motion analysis. Therefore, water motion in satellite 
images has been depicted using SST images as input data 
which are two daily SST images with 24 hours time interval of 
Caspian Sea taken by MODIS sensor on board Terra satellite. 
The process begins with registration of the two images. 

Registration is important step to extract optical flow using 
LSM and HLK, because quality of approximation of initial 
value of matching window location in right image affects the 
convergence or divergence of these algorithms. The second 
step is to mask out coastal area due to their pixel values' 
negative impact on the convergence of these algorithms. In the 
next step for LSM method, initial values for geometric and 
radiometric parameters being used are set. In this step, the 
number of iterations is also specified. Then a threshold value is 
set to check all iterations when LSM reaches to a proper 
solution. In this study, 30 iterations have been used mostly in 
all computations and threshold value is 001.0=Δ . When 
either of these criteria is met, computation stops and algorithm 
saves the optical flow results. Template size used is 3131×  for 
both template and matching window in the search area. In HLK 
methods we use two template sizes 55×  and 77 × in nearest 
of selected pixel. The number of pyramid layer being used in 
this study is 3 layers. In implementation of this method, we 
have two alternatives in using template window size. In first 
we can use constant template size in all layers of pyramid and 
in second one, we can use expanding template size through 
coarse-to-fine processing of image motion.  

5. EXPERIMENTAL RESULT 
First, the performance of the algorithm has been examined 

on simulated water motion in sequences of SST images for 
which 2D motion fields are known. Then, the performance has 
been examined on real water motion in the image sequences. In 
the next section, the image sequence used and angular 
measures of error are described. 

5.1 Water motion simulation in SST sequences 
The advantages of using simulation data are their known 2D 

motion fields and that the scene properties can be controlled 
and tested when varying the parameters. In addition, the signal 
content of image is real signal that is taken by MODIS sensor 
in thermal bands. The water motion simulation in image 
sequences is made by sinusoidal transformation that consist of 
two sinusoidal in x and y directions shown in Eq. (26). 
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By applying the transformation to an image and resampling 
it by bilinear resampling method, another image with known 
displacements in all pixels relevant to the first one is generated. 
Figure 2 illustrates result of optical flow in dataset on the first 
and synthetically transformed images in least squares matching 
algorithm. Figure 3 illustrates result of extracted optical flow in 
synthetically transformed images in hierarchical least squares 
Lucas and Kanade algorithm.  

5.2 Analysis of  water motion in real SST sequences 
A sequence of two real SST images of Caspian Sea taken by 

MODIS sensor is used. The images have been registered first 
and then the coastal area and cloud pixels have been removed. 
Figure 4 shows the extracted optical flow from the original 
SST image sequence in LSM methods. Figure 5 illustrates the 
extracted optical flow from SST images pyramidal optical flow 
extraction algorithm. 

5.3 Error Measurement 
Combination of LSM parameters have been tested on both 

simulated and real motion images. The combination includes 
geometric transformation with 2, 4 and 6 parameters together 



with radiometric transformation with 0, 1 or 2 parameters 
(Table 1). 

Table 1: Combination of geometric and radiometric parameters 
6 parameters 4 parameters 2 parameters   

321321 ,,,,, bbbaaa  
3231 ,,, bbaa  

33 ,ba  0 

1321321 ,,,,,, kbbbaaa  
13231 ,,,, kbbaa  

133 ,, kba  1 

21321321 ,,,,,,, kkbbbaaa  
213231 ,,,,, kkbbaa  

2133 ,,, kkba  2 

 
Velocity may be written as displacement per time unit as in 

),( vuV =  pixels/frame, or as a space-time direction vector (u, 
v, 1) in units of (pixel, pixel, frame). Of course, velocity value 
in each direction is obtainable from the direction vector by 
dividing each element (i.e. u and v) to the third component (i.e. 
the number of intervals between the frames which is 1). When 
velocity is viewed (and measured) as orientation in space-time, 
it is natural to measure errors as angular deviations from the 
correct space-time orientation. Therefore, an angular measure 
of error has been used here. Let velocities TvuV ),(= be 
represented as 3D direction vectors. 
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The angular error between the correct velocity, cV
r

, and an 

estimated one, eV
r

, is 

).arccos( ecE VV
rr

=ψ                            (28) 
The error measure is contented because it handles large and 

very small speeds without the amplification inherent error in a 
relative measure of vector differences. It may also include 
some bias. For instance, directional errors at small speeds do 
not give as large angular error as similar directional errors at 
higher speeds. Table 2 shows result of average and standard 
deviation of angular error in the simulated motion analysis in 
LSM methods. 

Table 2: Result of optical flow in simulated motion images 
Transformed image(LSM method) 

Transformation 
Geometric Radiometric 

Average 
Error 

Standard 
Deviation 

2 0 2.85° 2.29° 
4 0 3.09° 2.53° 
6 0 3.09° 2.56° 
2 1 2.76° 2.27° 
4 1 3.03° 2.44° 
6 1 3.13° 2.58° 
2 2 2.99° 2.49° 
4 2 3.06° 2.53° 
6 2 2.76° 1.97° 

 
Table 3 shows result of average and standard deviation of 

angular error in the simulated motion analysis in HLK 
methods. 

Table 3: Result of optical flow in simulated motion images 
Transformed image(HLK method) 

Method Parameters 
Template Size Constant 

Template Size 

Average 
Error 

Standard 
Deviation 

55× 1 0.97° 0.92° 
99× 0 0.98° 0.93° 
77× 1 1.03° 0.97° 
1111× 0 1.05° 1.00° 

6. CONCLUSIONS 
The two least squares methods have been utilized in an 

image motion analysis and optical flow extraction using 
MODIS data. As shown in this study, using daily SST images 
and exploiting temperature patterns as tracer of water bodies in 

Caspian Sea, the optical flow of the currents and motions has 
been generated by LSM and HLK. The reliability of LSM has 
been investigated by a combination of geometric and 
radiometric parameters. Also, the extraction of optical flow 
using hierarchical least squares Lucas & Kanade algorithm has 
produced better result when compared to result of LSM 
method. These techniques may be applied to similar data sets 
to do analysis on cloud motion or water vapor displacement. 

Point tracing by grey level matching, as is the case in this 
study, has increased the precision and reliability of the 
matching procedure. Therefore, using pyramidal method to 
motion tracing has offered some useful features, such as 1) 
obtaining higher matching accuracy 2) better estimation of 
conjugate match through definition of image warping in each 
layer, and 3) extraction of smoother optical flow by using 
variable template window size. In addition, the algorithm is not 
computationally intensive as of least squares matching method 
and generates more reliable result. 
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Figure 2: Optical flow from simulated image using LSM. 
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Figure 3: Optical flow from simulated image using HLK. 
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Figure 4: Optical flow from SST image of Caspian Sea using LSM. 
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Figure 5: Optical flow from SST image of Caspian Sea using HLK. 

 


