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ABSTRACT: 
 
 
It is found that sub-pixel classifiers for classification of multi-spectral remote sensing data yield a higher accuracy. With this 
objective, a study has been carried out, where fuzzy set theory based sub-pixel classifiers have been compared with statistical based 
sub-pixel classifier for classification of multi-spectral remote sensing data.Although, a number of Fuzzy set theory based classifiers 
may be adopted, but in this study only two classifiers are used like; Fuzzy c-Means (FCM) Clustering, Possibilistic c-Means (PCM) 
Clustering. FCM is an iterative clustering method that may be employed to partition pixels of remote sensing images into different 
class membership values. PCM clustering is similar to FCM but it does not have probabilistic constraint of FCM. Therefore, the 
formulation of PCM is based on modified FCM objective function whereby an additional term called as regularizing term is also 
included. FCM and PCM are essentially unsupervised classifiers, but in this study these classifiers are applied in supervised modes. 
Maximum Likelihood Classifier (MLC) as well as Possibilistic Maximum Likelihood Classifier (PMLC), the new proposed 
algorithm have been studied as statistical based classifier. All the algorithms in this work like; FCM, PCM, MLC and PMLC have 
been evaluated in sub-pixel classification mode and accuracy assessment has been done using Fuzzy Error Matrix (FERM) (Binaghi 
et al., 1999). It was observed that sub-pixel classification accuracy various with different weighted norms.  
 

1. INTRODUCTION: 

Remote sensing images contain a mix of pure and mixed pixels. 
While digital image classification, however, a pixel is 
frequently considered as a unit belonging to a single land cover 
class. But due to limited image resolution, pixels often 
represent ground areas, which comprise two or more discrete 
land cover classes (Foody et al. 1996). For this reason it has 
been proposed that fuzziness should be accommodated in the 
classification procedure so that pixels may have multiple or 
partial class membership (Foody et al. 1996b, Foody and Lucas 
1997). In this case a measure of the strength of membership for 
each class is output by the classifier, resulting in a sub-pixel 
classification technique (Yannis et al.1999). Also Recent 
advances in supervised image classification have shown that 
conventional ‘hard’ classification techniques, which allocate 
each pixel to a specific class, are often inappropriate for 
applications where mixed pixels are abundant in the image 
(Foody et al. 1996a). 
 
Mixed pixels are assigned to the class with the highest 
proportion of coverage to yield a hard classification. Due to 
which a considerable amount of information is lost. To over 
come this loss, sub-pixel classification was introduced. A sub-
pixel classification assigns a pixel to different classes according 
to the area it represents inside the pixel. This sub-pixel 
classification yields a number of fraction images equal to the 
number of land cover classes. Several researchers have 
addressed this sub-pixel mixture problem. Among the most 
popular techniques for sub-pixel classification are artificial 
neural networks (e.g. Kanellopoulos et al. (1992)), mixture 
modeling (e.g. Kerdiles and Grondona (1996)) and supervised 
fuzzy c-means classification (e.g. Foody (1994)) (Verhoeye et 
al. 2000). Other technique for sub-pixel classification is 
Possibilistic Fuzzy c-Means (PCM)  (Raghu et al. 1993). 

Possibilistic Fuzzy c-Means does not have probabilistic 
constraint that the membership of a data point across classes 
sum to one. In possibilistic fuzzy c-means case the resulting 
partition of the data can be interpreted as a possibilistic 
partition, and the membership values may be interpreted as 
degrees of possibility of the points belonging to the classes, i.e., 
the compatibilities of the points with the class prototypes. 
 
In this work Fuzzy as well as Statistical sub-pixel classification 
algorithms like; FCM, PCM, MLC and PMLC have been 
compared with respect to overall classification of sub-pixel 
output using Fuzzy Error Matrix (FERM) (Binaghi et al., 
1999). As commercially available image processing software’s 
were not having sub-pixel classification algorithms used in this 
work. So in-house developed SMIC (Sub-Pixel Multi-Spectral 
Image Classifier) System (Kumar et al., 2005) having Fuzzy 
and Statistical classification algorithms with accuracy 
assessment module was used in this work.  
 

2. SUPERVISED SUB-PIXEL TECHNIQUES: 

The Fuzzy and Statistical based different techniques studied in 
this work are Fuzzy c-Means Approach (FCM), Possibilistic c-
Means Approach (PCM), Maximum Likelihood Classifier 
(MLC) and Possibilistic Maximum Likelihood Classifier 
(PMLC).  Possibilistic Maximum Likelihood Classifier 
(PMLC) is the new proposed sub-pixel classification algorithm, 
which is, modified form of Maximum Likelihood Classifier 
(MLC) algorithm. These algorithms are discussed in following 
sections; 
 
2.1 FUZZY C-MEANS APPROACH (FCM): 

Fuzzy c-Means (FCM) was originally introduced by Jim 
Bezdek in 1981. In this clustering technique each data point 
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belongs to a cluster to some degree that is specified by a 
membership grade, and the sum of the memberships for each 
pixel must be unity. This can be achived by minimizing the 
generalized least - square error objective functrion, 
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where Xi is the vector denoting spectral response of a pixel i, x  
is the collection of vector of cluster centers xj , μij  are class 
membership values of a pixel, c and N are number of clusters 
and pixels respectively, m is a weighting exponent (1<m<∞), 

which controls the degree of fuzziness, 2|||| Aji xX −  is the 

squared distance (dij) between Xi and xj, and is given by, 
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where A is the weight matrix. Amongst a number of A-norms, 
three namely Euclidean, Diagonal and Mahalonobis norm, each 
induced by specific weight matrix, are widely used. The formu-
lations of each norm are given as (Bezdek, 1981),  
 
              A = I                     Euclidean Norm 
                   1−= jDA                 Diagonal Norm 

                 1−= jCA                  Mahalonobis Norm 
where I is the identity matrix, Dj is the diagonal matrix having 
diagonal elements as the eigen values of the variance 
covariance matrix, Cj  given by, 
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The class membership matrix μij is obtained by; 
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2.2 POSSIBILISTIC C-MEANS APPROACH (PCM): 
 
The original FCM formulation minimizes the objective 
function given by 
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But in PCM one would like the memberships for representative 
feature points to be as high as possible, while unrepresentative 
points should have low membership in all clusters. The 
objective function, which satisfies this requirement, may be 
formulated as; 
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where ηj is the suitable positive number. The first term 
demands that the distances from the feature vectors to the 
prototypes be as low as possible, whereas the second term 
forces the μij to be as large as possible, thus avoiding the trivial 
solution. Generally, ηj depends on the shape and average size 
of the cluster j and its value may be computed as; 
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where K is a constant and is generally kept as 1. The class 
memberships, μij are obtained from,  
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2.3 MAXIMUM LIKELIHOOD CLASSIFIER (MLC): 

Statistical methods are based on the assumption that the 
frequency distribution for each class is multivariate normal. 
Once this assumption is met, sets of parameters such as mean, 
standard deviation, variance covariance etc are calculated from 
the data. The accurate estimation of these parameters improves 
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the accuracy of the classification. That’s why this method is 
called parametric method. 
 
The decision rule assigns each pixel having pattern measure-
ments or features X to the class c whose units are most prob-
able or likely to have given rise to feature vector X. It assumes 
that training data statistics for each class in each band are nor-
mally distributed (i.e., Gaussian in nature). In other words, 
training data with bi- or tri-modal histograms in a single band 
are not ideal. In such cases the individual modes probably rep-
resent individual classes that should be trained upon individu-
ally and labeled as separate classes. This would then produce 
uni-modal, Gaussian training class statistics that would fulfill 
the normal distribution requirement. 
 
Maximum likelihood classification makes use of the statistics, 

including the mean measurement vector, jx
−

, for each class 

and the variance covariance matrix ∑ j  and it allocates the 

pixel to a class having highest probability density. The 
probability density function can be written as (Polubinskas et 
al., 1995), 
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where )/( jxp is the probability density function of a pixel 
X as a member of class j, n is the number of bands, X is the 

vector denoting spectral response of pixels, jx
−

 the mean 

vector and ∑ j
variance covariance of a class  are given by 

following equations respectively; 
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where Nt is the total number of the training pixels for class j. 
The soft classification output was derived from MLC using a 
posteriori probability, which was computed from; 
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where )/( jxp is the a posteriori probability of a pixel 

belonging to class j, )( jp is the a priori  probability of the 
class j and c is the number of classes. The a posteriori 
probabilities were used for class proportion in a pixel and thus, 
reflect soft classified outputs. 
 

2.4 POSSIBILISTIC MAXIMUM LIKELIHOOD 
CLASSIFIER (PMLC): 
 
In the new modified Maximum Likelihood Classifier (MLC) 
known as Possibilistic Maximum Likelihood Classifier 
(PMLC) approach, )/( jxp  a posteriori probability is forced 
to be as large as possible, thus avoiding the trivial solution. 
This is done with the help of jη  factor, which depends on the 

shape and average size of the cluster j and its value may be 
computed as; 
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3.  MULTI-SPECTRAL IMAGE: 

A UTM rectified LISS-III image from Resource Sat –1, (IRS-
P6) satellite acquired in four bands have been used. The image 
was acquired in 2003 and covers the rural area of Dehradun 
District, of Uttaranchal State, India. Approximately, 30% of the 
area in the image selected is covered by reserved forest, 30% 
by agriculture land, 15% by barn land, 15% sand, and 10% by 
river water. The size of the image is 250 × 296 pixels, with spa-
tial resolution of 23.5 m. 
 
The five classes of interest, namely forest, water, agriculture, 
barn, and sand have been used for this study work (Figure. 1).  
 

 
Figure 1. False Color composite from the Resource Sat-1 LISS-

III multi-spectral image. 
 
 



 
 

 4 

4. CLASSIFICATION RESULTS: 

All the four classification algorithms mentioned in this paper 
were used as supervised sub-pixel classification approach. In 
the case of FCM, PCM, MLC and PMLC all the three norms  
of weighted matrix A were studied. Accuracy assessment of all 
the sub-pixel output was evaluated using FERM approach. The 
training as well as testing data used for supervised sub-pixel 
classification approach was greater than 10n, were n is 
dimension of data used. Separate data were used at training as 
well as at testing stage. At testing stage 500 samples were taken 
for overall accuracy assessment of sub-pixel output. Results of 
all the four classification approaches are mentioned in table 1. 
  

Sl. 
No. 

Different Sub-pixel 
Classification Algorithms 

Overall 
Accuracy (%) 

1 FCM with Euclidean Norm 97.90 
2 FCM with Diagonal Norm 91.23 
3 FCM with Mahalonobis Norm 90.87 
4 PCM with Euclidean Norm 99.29 
5 PCM with Diagonal Norm 88.85 
6 PCM with Mahalonobis Norm 86.47 
7 MLC with Euclidean Norm 98.12 
8 MLC with Diagonal Norm 87.42 
9 MLC with Mahalonobis Norm 84.47 
10 Possibilistic MLC with 

Euclidean Norm 
98.54 

11 Possibilistic MLC with Diagonal 
Norm 

94.38 

12 Possibilistic MLC with 
Mahalonobis Norm 

87.40 

Table 1. Overall Accuracy while using different Sub-pixel 
classification approaches. 

 
5. CONCLUSION: 

Table: 1, shown in section 4.0, shows that overall sub-pixel 
classification accuracy of multi-spectral remote sensing data 
varies while using different classification approaches with 
different norms. While considering Euclidean Norm, PCM 
approach gives maximum sub-pixel classification accuracy of 
99.29%. In case of diagonal norm, Possibilistic MLC gives 
maximum sub-pixel classification accuracy of 94.38%. While 
considering Mahalonobis Norm, FCM approach gives 
maximum sub-pixel classification accuracy of 90.87%. Form 
this work it gives the level of confidence, which norm can give 
better accuracy while using Fuzzy as well as Statistical sub-
pixel classification algorithm.   
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