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ABSTRACT: 

 

Four different data fusion methods for classifying SAR images with different spatial resolutions were tested and compared. Test area 

was Helsinki region in Southern Finland and test data 14 ERS-1/2 Tandem pairs. The best method was a method where a posteriori 

probabilities of lower spatial resolution classification are used as a priori probabilities of higher resolution classification. The increase 

of overall accuracy was 7-14 %-units depending on date and 10.4% on average when compared to original Tandem pairs. Median 

filtering increased classification accuracy, but not that much when data fusion methods were used. This means that the need of spatial 

filtering can be at least partially compensated using data fusion of different spatial resolution images. 

 

 

1. INTRODUCTION 
 

Many governmental institutions have a continuing requirement 

to form and implement laws and policies that involve existing 

or future land cover and land use. Remote sensing offers means 

to provide information about the environment. For example, the 

purpose of CORINE Programme is to gather information 

relating to the environment for the European Union. In order to 

determine and assess the effects of Community’s environment 

policy, it is needed to have a proper understanding concerning 

the different features of the environment like the state and 

geographical distribution of individual environments and natural 

areas, the quality and abundance of water resources, land cover 

and soil state, and natural hazards (Heymann et.al., 1994). 

 

CORINE land cover classification is produced using optical 

satellite images like Landsat ETM. Unfortunately weather 

conditions limit the use of optical data. For example, here in 

Finland summer is usually quite cloudy, there are usually only 

few days when large area of Finland is cloud-free, and during 

winter there is dark also daytime. Finnish IMAGE2000 satellite 

image mosaic consisted of 36 Landsat ETM images. The target 

year was 2000 but only 12 images were taken year 2000 due to 

cloudiness (Härmä et.al., 2004). 

 

Due to the relative insensitivity to weather, SAR images are an 

interesting alternative to produce information about land cover 

and land use. One commercially important application is 

cellular network planning, where topographic (DEM) and 

morphographic data are needed. SAR interferometry is used to 

produce the topographic information. SAR intensity images and 

coherence image produced in interferometric process are used to 

provide information about the land cover. Morphographic 

classes are defined as different land cover types, according to 

how they interact and attenuate electromagnetic radiation. The 

most common morphographic categories are urban, suburban, 

rural, water, open, and forest (Hyyppä et.al., 1999). So, the aim 

here is to acquire required spatial information using only two 

SAR images taken in slightly different places. 

 

Traditional and difficult problem when classifying SAR images 

is speckle, in other words image contains random noise due to 

the measurement process. Due to speckle, the statistics of 

different land cover classes are rather similar, making the 

statistical classification difficult. Speckle can be decreased by 

different kind of filters, but developed methods can be difficult 

to use due to many parameters that can be unknown. Simple 

alternative is performing average filtering. As the area of 

averaging increases class histograms start to resemble normal 

distribution that is good from statistical pattern recognition 

point of view, but spatial resolution decreases at the same time. 

 

This problem is studied from decision based data fusion point of 

view in the article. The main principle is that by merging 

several different classification results made using images with 

different spatial resolutions, it is possible to acquire better 

classification than by using any individual classifications. First, 

ERS SAR-images are averaged using different sizes of filter and 

then these images are classified. Then different methods are 

tested to merge these different classifications to form a better 

one. 

 

The aims of this research are twofold. First, several rather 

simple decision based data fusion methods are introduced and 

their performance compared. Second, due to large number of 

SAR images, 14 ERS-1/2 Tandem pairs, the effect of 

environmental conditions to classification results can be 

assessed. 

  

 

2. DECISION MAKING AND DATA FUSION 

 

Interpretation of remote sensing data can be divided to two 

approaches, modelling and classification. Modelling means that 

some geophysical parameter is estimated from remote sensing 

data, like soil moisture or forest stem volume. The aim of 

classification is to divide measurements to discrete groups or 

classes according to their similarities. This requires that for each 

measurement we make decision about the most proper or likely 

class. 

 

2.1 Decision making  
 

A common means to perform classification is to use statistical 

pattern recognition framework. There are several different 

approaches to classification but the Bayes rule is commonly 



utilized. Bayes rule measures the a posteriori probability P(ωj|x) 

which feature vector x belongs to class j as (Devivjer and 

Kittler, 1982): 
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where Pj is the a priori probability of class j, p(x|ωj) is the value 

of density function of class j and p(x) is the mixture density 

function of x defined as 
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where c is number of classes. 

 

Feature vector x can be classified to class j if the a posteriori 

probability of that class is larger than the a posteriori 

probabilities of other classes. In that case the decision rule is 

called Bayes rule for minimum error. If it is thought that 

uncertain classification should not be done, rejection threshold 

λr can be used. In that case decision rule becomes 
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In other words, classification decision is not made if the largest 

a posteriori probability is less than 1 - rejection threshold λr. 

Cost function λ(ωi|ωj) can be used to make some classification 

decisions more important than the others. The purpose of cost 

function is to punish wrong decisions so it can be thought to 

weight different decisions. 

 

The density function measures the distance between feature 

vector x and class j. Remote sensing data is often normally 

distributed, especially optical data, so normally distributed 

density function 
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can be used. Σj is the covariance matrix of class j, µj the mean 

vector of class j and d is the dimensionality of feature space. 

 

2.2 Alternatives for data fusion 
 

Data fusion can be performed on different levels (Pohl and van 

Genderen, 1998): 

 

• Pixel based fusion means that the measurements or measured 

physical parameters have been fused. In other words, the 

feature vector is combined directly from different data 

sources. 

• Feature based fusion means that features have been extracted 

from different data sources using e.g. image segmentation. In 

this case the features can be e.g. size, shape and average 

intensity level of areas. These features form feature vectors 

describing the extracted objects. 

• Decision based fusion means that the objects have been 

identified from individual data sources and then these 

interpretation results are combined using e.g. rules to 

reinforce common interpretation. 

 

2.3 Decision based data fusion methods 
 

One way to perform decision based data fusion is to use the 

class labels of individual classifications and making some kind 

of majority decision. This majority decision can be due to 

simple majority voting (Ho et.al., 1994) or consensus builder 

(Liu et.al., 2002). Other examples of this approach include 

methods for making the decision by ranking the class labels of 

individual classifications (Ho et.al., 1994), using special neural 

network classifier to classify samples if their statistical and 

neural network classifications disagree (Kanellopuolos et.al. 

1993), or using the classification of expert system as input to 

neural network classifier (Liu et.al., 2002). This approach could 

be called hard decision based data fusion. 

 

Soft ecision based data fusion is another alternative. In that case 

probabilities or other kind of measures which pixel belongs to 

certain class are used. This latter approach is used in this study. 

All implemented data fusion methods use the output of Bayes 

decision rule, i.e. a posteriori probabilities, as their input. 

 

2.3.1 Maximum a posteriori probability: In this case 

classification decision is based on the maximum a posteriori 

probability of different classifications cl. Decision rule is 
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This rule corresponds to using fuzzy union operator to combine 

different fuzzy sets (Zimmermann, 2001). The drawback is that 

information about the reliability of different classifications is 

not used. 

 

2.3.2 Maximum joint a posteriori probability: A joint a 

posteriori probability of classification decision can be computed 

as (Swain, 1978) 
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where P(ωi|x) is the a posteriori probability of class j computed 

using feature vector xk from data source k. In this case it is 

assumed that the individual classifications are independent from 

each other, but this is not always the case in real life. Another 

drawback is that information about the reliability of different 

classifications is not used. This can be incorporated by using 

accuracy coefficient αk so that the equation of joint a posteriori 

probability is 

 



Nr Date Track/Fr

ame 

Base 

(m) 

Air temperature 

C°°°° (9:00 UTC) 

Wind speed (direction) 

(m/s, deg.) 

Snow depth 

(cm) 

Precipitation 

between 

images (mm) 

1 17/18 July 1995 408/2385 -2 19.5 17.1 8 (140) 5 (190) 0 0 3.4 

2 21/22 August 1995 408/2385 -72 17.1 21.1 3 (330) 5 (240) 0 0 0 

3 9/10 September 1995 179/2385 -28 11.5 10.3 6 (30) 3 (30) 0 0 14.9 

4 25/26 September 1995 408/2385 239 13.5 11.7 8 (190) 10 (210) 0 0 1.2 

5 14/15 October 1995 179/2385 -221 8.6 6.2 6 (290) 1 (90) 0 0 0 

6 30/31 October 1995 408/2385 -49 5.2 -1.7 2 (260) 5 (340) 0 0 0.1 

7 8/9 January 1996 408/2385 -29 -6.5 -5.0 2 (120) 3 (170) 13 13 0 

8 12/13 February 1996 408/2385 85 -14.9 -10.8 5 (100) 1 (120) 16 19 1.4 

9 2/3 March 1996 179/2385 -76 -4.2 -5.5 4 (10) 3 (50) 32 32 0.1 

10 18/19 March 1996 408/2385 80 -3.2 -4.4 3 (350) 1 (110) 39 38 0 

11 6/7 April 1996 179/2385 37 5.5 7.6 4 (220) 2 (130) 38 (wet snow) 

32 (wet snow) 

0 

12 22/23 April 1996 408/2385 -58 14.7 10.0 5 (240) 3 (50) 0 0 0 

13 15/16 June 1996 179/2385 48 15.6 14.9 7 (330) 6 (340) 0 0 0 

14 20/21 July 1996 179/2385 188 16.0 14.6 4 (70) 5 (40) 0 0 0.1 

 

Table 1. The environmental conditions of acquired ERS-1/2 SAR images. Images have been taken approximately 10:35 UTC 

(Pulliainen et.al., 2003). 
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Accuracy coefficient αk can be related to classification accuracy 

(e.g. the estimated classification accuracy of x) or spatial 

resolution giving lower coefficient to classification that is based 

on lower resolution images. 

 

2.3.3 A priori probabilities from lower quality probabilities 
or other data: A priori probability of Bayes rule represents our 

knowledge about the truth of the hypothesis before we have 

analysed the current data. This knowledge could be acquired 

using old classification or derived from statistical data. One way 

to estimate a priori probability is to compute the a posteriori 

probabilities of lower resolution classification and use these as a 

priori probabilities in higher resolution classification (Schneider 

et.al., 2003, Törmä et.al., 2004). In the case of remote sensing, 

this lower resolution could mean that the spatial, radiometric or 

spectral resolution is lower or otherwise less suitable for 

classification problem at hand.  

 

2.3.4 Dempster-Shafer theory of evidence: The mathematical 

theory of evidence is a method to combine different data 

sources to provide a joint inference concerning the correct 

classification. The idea is to assign a so-called mass of evidence 

to various labeling propositions for a feature vector. Each vector 

has its own mass of evidence describing the likelihood of 

different classes as well as some indication about the 

uncertainty about the labeling. For each labeling proposition, 

values of support and plausibility are computed. Support is 

considered to be the minimum amount of evidence in favor of a 

particular labeling for a pixel whereas plausibility is the 

maximum possible evidence in favor of the labeling. The 

difference between the measures of plausibility and support is 

called the evidential interval, the true likelihood that the label 

under consideration is correct for the pixel is assumed to lie 

somewhere in that interval. Orthogonal sum is used to combine 

evidence from different sources. After the orthogonal sum has 

been applied, the user can then compute the support for and the 

plausibility of each class for a feature vector. The final decision 

is based on the support and plausibility. In the simplest case a 

maximum support rule can be used (Richards, 1993). 

 

 

3. SAR IMAGES AND GROUND TRUTH 
 

Study site is the Helsinki region in Southern Finland, covering 

some 50 km x 50 km area. ERS-1/2 images were acquired 

during summer 1995 - summer 1996 consists of 14 Tandem 

image pairs. The temporal separation between image 

acquisitions is 24 hours in a Tandem pair. Measurement 

parameters of ERS are C-band, frequency 5.3 GHz, polarization 

VV, incidence angle 23 degrees and spatial resolution about 30 

m (Kramer, 1996). Two 5-look backscattered intensity images 

and an interferometric coherence image estimated with a 5x5 

pixel Gaussian window were produced from each Tandem pair. 

All image data was orthorectified to national coordinate system 

using an INSAR DEM. Weather conditions within image 

acquisition times were also recorded. Table 1 presents the dates 

and environmental conditions of image acquisitions. The 

intensity and coherence images were scaled to 8-bit integers.  

 

Chosen land cover and use classes are presented in table 2 with 

number of ground truth samples per class for different spatial 

resolutions. Training areas for classes were determined using 

Vantaa city regional map made by Vantaa city authorities and 

National Land Use and Forest Classification made by National 

Land Survey. Regional map and LUFC were combined to one 

map with 20 m pixel. In order to decrease the effect of 

georeferencing errors, 2 pixels were removed from borders of 

map areas. Then the coordinates of pixels were written to ascii-

files and systematically sampled so that the training data of each 

class would contain about 1000 pixels at 20 m spatial 

resolution. 

 
Class 80m 40m 20m 

1. Water 74 287 1119 

2. Agricultural and other open area 39 252 1000 

3. Dense forest, stem volume over 

100 m3/ha 

61 265 1030 

4. Sparse forest, stem volume 50-

100 m3/ha 

58 261 1000 

5. Single story houses 48 191 779 

6. Multi-story houses 40 164 705 

7. Industrial area 62 239 1008 

SUM 382 1659 6641 

 

Table 2. Chosen land cover and use classes with number of 

ground truth samples per class for different spatial resolutions. 

 



4. EXPERIMENTS 
 

Statistical classifications were made using Bayes decision rule 

with Maximum Likelihood density function estimation method. 

Classes were supposed to be normally distributed. Classification 

errors were estimated using resubstitution and holdout methods. 

In resubstitution method the same set is used as training and test 

set and in holdout method data is randomly divided to training 

and test sets (Devivjer and Kittler, 1982). In order to decrease 

the effect of random division, all classifications were repeated 

three times and the mean values of accuracy measures 

computed. Because resubtitution method is positively biased 

and holdout negatively biased, final error estimate was mean 

error of these two estimates. Error matrix was used to compare 

the classification results and reference data. Several accuracy 

measures like Overall accuracy, Producer’s accuracies of 

individual classes, and User’s accuracies of individual classes 

were computed from error matrix (Lillesand and Kiefer, 1994). 

 

Data fusion methods presented in chapter 2.3 were implemented 

and used the output of the statistical classifier, i.e. a posteriori 

probabilities, as their input: 

 

• Maximum a posteriori probability (DF1) method was 

implemented as presented in chapter 2.3.1. 

• Maximum joint a posteriori probability (DF2) method has 

four different versions according were and how the reliability 

measures were used. In case A, each individual classification 

has same influence to final decision. In cases B, C and D, the 

individual classifications are weighted using the probability 

of correct classification or fixed values. In case B, the density 

function value of class is weighted by the estimate of the 

probability of correct classification that is same as the a 

posteriori probability of that class. In case C, the density 

function value of class is weighted by the maximum a 

posteriori probability of decision. In case D, fixed values 

were used and they were 0.5 for 80 m spatial resolution 

images, 0.7 for 40 m and 0.9 for 20 m. 

• A priori probabilities from lower quality probabilities or other 

data (DF3) method used the a posteriori probabilities of lower 

spatial resolution classification as a priori probabilities of 

higher spatial resolution classification. 

• Dempster-Shafer theory of evidence (DF4) method was 

implemented according to Richards (1994). There were two 

versions differing how the uncertainty of labeling was 

defined. Case A used a posteriori probabilities of individual 

classifications, as case B had fixed values 0.5 for 80 m spatial 

resolution images, 0.7 for 40 m and 0.9 for 20 m. 

 

 

5. RESULTS 

 

5.1 Effect of spatial resolution to statistical classification 
 

Figure 1 illustrates the effect of spatial resolution to the 

classification accuracy. Horizontal axis corresponds to ERS-1/2 

Tandem pair (table 2) and vertical axis the overall accuracy. 

Solid red line represents the accuracies acquired using 20 m 

spatial resolution images, solid blue line with "x" 40 m images, 

solid green line with "o" 80 m images, dashed red line 20 m 

median filtered images, dashed blue line with "x" 40 m median 

filtered images, and dashed green line with "o" 80 m median 

filtered images. 

 

From classification accuracy point of view, averaging of SAR 

images increases overall accuracies. This is due that the random 

component of class statistics is suppressed. The drawback is that 

the spatial resolution decreases at the same time. When the 

overall accuracies of 20 and 40 m spatial resolution images are 

compared, it is noticed that the difference in accuracies is 0-6 

%-units depending on Tandem pair and 2.9 %-units on average. 

It seems that differences are largest during summer or winter in 

rather dry conditions. In other words, moisture decreases the 

differences of classification accuracies obtained using different 

spatial resolutions. When 20 and 80 m, or 40 and 80 m images 

are compared, the differences are larger. They are on average 

7.5 %-units between 20 and 80 m images and 4.6 %-units 

between 40 and 80 m images. In these cases there are no clear 

correlation between difference and image acquisition times. 

 

 
Figure 1. The effect of spatial resolution to 

the classification accuracy 

 

The classification accuracies depend quite heavily on 

acquisition time and their environmental and weather 

conditions. The worst classification accuracies were acquired 

using image 4 in relatively windy (wind direction about same in 

different dates) conditions and image 11 in wet snow 

conditions. The dates of best classification accuracies varied 

more and depended on spatial resolution. The best overall 

accuracy, 44.9%, for 20 m images was obtained using image 5, 

46.6% for 40 m spatial resolution using image 8, and 52.8% for 

80 m spatial resolution using image 6. 

 

The median filtering of images increases classification 

accuracy. The increase is 2-6 %-units (average 3.8 %-units) in 

the case of 20 m spatial resolution images, 2-7 %-units (average 

4.3 %-units) in the case of 40 m images and 0-5 %-units 

(average 2.9 %-units) in the case of 80 m images. The best 

overall accuracy, 47.9%, for 20 m images was obtained using 

image 8, 52.3% for 40 m spatial resolution using image 2 and 

55.9% for 80 m spatial resolution using image 3. 

 

5.2 Comparison of data fusion methods  
 

Figure 2 illustrates the classification accuracies of different data 

fusion methods as function of time. Horizontal axis corresponds 

to ERS-1/2 Tandem pair and vertical axis overall accuracy. 

Solid red line represents the accuracies of statistical classifier 

and 20 m spatial resolution images, solid green line with "x" 

data fusion DF1, solid blue line with "o" DF2C, dashed green 

line with "x" DF3 and dashed blue line with "o" DF4A. 

 

Data fusion increased classification accuracies in each case. The 

best method was DF3, the increase of overall accuracy is 7-14 

%-units depending on date and 10.4% on average. DF2C was 

the second best; the increase is 4-10 %-units and 7.2 %-units on 



average. The increase of accuracy was usually smaller during 

spring or autumn. The results of different versions of DF2 were 

close to each other, but DF2C was usually the best. The 

differences between versions of DF4 were larger. The worst 

dates were same as before. The best dates varied between 

different methods. The best overall accuracy, 55.0%, was 

obtained using DF3 and image 2.  

 

 
Figure 2. The classification accuracies of different data fusion 

methods as function of time 

 

Median filtering increased classification accuracy somewhat. 

The increase was larger, varying 2-6 %-units, for DF1 and 

DF4A and smallest, varying 0-3 % units, for DF3. The best 

overall accuracy, 56.5%, was obtained using DF3 and image 2. 

This means that the need of spatial filtering can be at least 

partially compensated using data fusion of different spatial 

resolution images. 

 

5.3 Effect of season 
 

The seasonal comparison was made by computing seasonally 

averaged Tandem pairs. Images 1, 2, 13 and 14 were temporally 

averaged to form summer Tandem pair, images 3, 4, 5, and 6 

autumn Tandem pair, images 7 and 8 winter Tandem pair and 

images 9, 10, 11 and 12 spring Tandem pair. Also, all 14 

Tandem pairs were temporally averaged to form one Tandem 

pair. Figure 3 illustrates the classification accuracies of different 

data fusion methods as function of season. Horizontal axis 

corresponds to seasonal Tandem pair (1: whole year, 2: autumn, 

3: winter, 4: spring and 5: summer) and vertical axis overall 

accuracy. Solid red line represents the accuracies of statistical 

classifier and 20 m spatial resolution images, solid green line 

with "x" data fusion method DF1, solid blue line with "o" 

DF2C, dashed green line with "x" DF3 and dashed blue line 

with "o" DF4A. 

 

Temporal averaging increased classification accuracy but 

surprisingly little. The overall accuracies were about the same 

for best seasonal Tandem pairs and median filtered Tandem 

pairs for DF1, DF2C and DF4A. The increase was larger in the 

case of DF3. When temporal averaging included all Tandem 

pairs, accuracies were much better. The best overall accuracy, 

66.1%, was obtained using DF2C. In the case of DF3, the 

increase of classification accuracy was smaller and actually the 

overall accuracy of summer Tandem pair was higher (60.4%) 

than the Tandem pair of whole year (58.3%). 

 

 
Figure 3. The classification accuracies of different data fusion 

methods as function of season. 

 

5.4 Individual classes 
 

The classwise accuracies varied a lot. Table 3 presents the best 

producer’s and user’s accuracies for each class, used data fusion 

method and corresponding image. Water and agricultural and 

other open areas were classified rather well, dense forest and 

industrial moderately and other classes rather poorly. The best 

data fusion method seems to be DF3. There was some 

correlation between season and class accuracies. Producer's 

accuracies of class Water were smaller during snow-season than 

other seasons. In the case of Agricultural and other open areas, 

producer's accuracies were larger during dry snow. The user's 

accuracies of classes Water and Dense forest were highest 

during autumn. The user's accuracies of classes Agricultural and 

other open areas and Single story houses were largest during 

winter and Multi-story house the best accuracy was achieved 

just after snowmelt. 

 
Class Producer’s 

accuracies 

User’s accuracies 

1. Water 98%, DF3, 5,14 95%, DF1, 6,14 

2. Agricultural and 

other open area 

78%, DF3, 10 93%, DF1, 9 

3. Dense forest, 

stem volume over 

100 m3/ha 

61%, DF3, 8 73%, DF3, 3 

4. Sparse forest, 

stem volume 50-

100 m3/ha 

44%, DF3, 3 54%, DF3, 8 

5. Single story 

houses 

40%, DF2A, 1 33%, DF3, 9 

6. Multi-story 

houses 

36%, DF3, 13 56%, DF4A, 12 

7. Industrial area 65%, DF3, 6 57%, DF3, 13 

 

Table 3. The best producer’s and user’s accuracies for each 

class, used data fusion method and corresponding image. 

 

Median filtering increased classwise accuracies somewhat, the 

increase varies 1-3 % units depending on accuracy measure and 

date. The most notable difference was class Single story house, 

in which case user's accuracy increases 12 %-units. The 

advantage of medium filtering is that variation of classification 

accuracy decreases between worst and best accuracies. 

 

5.5 Mixing of classes 
 

The mixing of classes to other classes was studied using error 

matrices. Usually mixing happened following way: 



• Water: mixed with Dense forest and Sparse forest 

• Agricultural and other open areas: Multi-story houses and 

Sparse forest 

• Dense forest: Sparse forest and Water 

• Sparse forest: Dense forest and Single story houses 

• Single story houses: Multi-story houses and Sparse forest 

• Multi-story houses: Industrial and Single story houses 

• Industrial: Multi-story houses and Single story houses 

 

As expected, forest classes were mainly mixed with each other 

and build-up classes with each other. Main exception was that 

single story houses and sparse forest was mixed with each other. 

Water was mainly mixed with forest classes. Greatest surprise 

was that agricultural and other open areas were quite heavily 

mixed with multi-story houses. There were little differences 

between different data fusion methods. Largest differences were 

between statistical classification of 20 m spatial resolution 

images and data fusion methods. In statistical classification, 

agricultural and other open areas were more mixed with build-

up areas. 

 

5.6 Merging of classes 
 

The effect of merging of classes from seven classes to four 

classes was tested using image 6. Four classes were water, 

agricultural and other open areas, forest (classes dense and 

sparse forest), and build-up area (classes single story houses, 

multi-story houses and industrial). Overall classification 

accuracies increased quite a lot, as expected. This increase was 

about 20 %-units, from 18.8 %-units in case of statistical 

classification of 20 m spatial resolution images to 23.7 %-units 

in case of DF2B. The best classification accuracy, 77.7%, was 

achieved with DF3. Mixing of classes was mainly as water was 

mixed with forest, agricultural with build-up, forest with build-

up, and build-up with forest. There were no differences with 

different data fusion methods in this sense. 

 

 

6. CONCLUSIONS 
 

Four different data fusion methods for classifying SAR images 

with different spatial resolutions were tested and compared. The 

best method was DF3 where a posteriori probabilities of lower 

spatial resolution classification are used as a priori probabilities 

of higher resolution classification. The increase of overall 

accuracy was 7-14 %-units depending on date and 10.4% on 

average when compared to original Tandem pairs. The increase 

of accuracy was usually smaller during spring or autumn. 

Median filtering increased classification accuracy, but not that 

much when data fusion methods were used. This means that the 

need of spatial filtering can be at least partially compensated 

using data fusion of different spatial resolution images. 
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