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ABSTRACT: 
Floodplain roughness parameterization is one of the key elements of hydrodynamic modeling of river flow, which is directly linked 
to safety level estimation of lowland fluvial areas. Necessary input parameters are median grain size for unvegetated areas, vegetation 
density for forest and vegetation height and density for herbaceous vegetation. This paper presents a method for spatially distributed 
roughness parameterization, in the entire floodplain by fusion of CASI multispectral data with airborne laser scanning (ALS) data. 
The method consists of two stages: (1) image segmentation of the fused dataset and classification into the most important land cover 
classes (overall accuracy = 81 percent, and (2) determination of hydrodynamic surface characteristics for each class separately. In 
stage two, a lookup table provides numerical values that enable roughness computation for water, sand, paved area, meadows and 
built-up areas. For the other classes, forest and herbaceous vegetation, ALS data enabled spatially detailed analysis of vegetation 
height and density. The vegetation density of forest is mapped using a calibrated regression model. Herbaceous vegetation was 
further subdivided in single trees and non-woody vegetation. Single trees were delineated using a novel iterative cluster merging 
method, and their height is predicted (R2 = 0.41). The vegetation density of single trees was determined identically to forest 
Vegetation height and density of non-woody herbaceous vegetation was determined using calibrated regression models. This method 
provides hydrodynamic modelers with a highly automized procedure for roughness mapping with much spatial detail. 
 

1. INTRODUCTION 

Hydrodynamic modelling is essential for river management, not 
only to calculate local water levels for the current design 
discharge, but also to assess the effect of future climate change 
and ecological river restoration measures. In addition to surface 
topography, hydrodynamic roughness of the floodplain surface 
is the key parameter of hydrodynamic models. It is a function of 
the vegetation height and density in case of vegetated areas, and 
of grain size and bed form shape in case of unvegetated areas 
(Baptist, 2005). For vegetated areas, a distinction is made 
between submerged and emergent vegetation with respect to the 
water level during peak flow. Emergent vegetation is described 
by vegetation density, which is the projected plant area in the 
direction of the flow per unit volume (Petryk and Bosmajian, 
1975; Figure 1). Considering vegetation as cylindrical elements, 
this equals the product of number of stems or stalks per unit 
area multiplied by the average stem diameter. Roughness of 
submerged vegetation is determined by vegetation height and 
density (Baptist, 2005). To provide hydrodynamic modelers 
with reliable input, the spatial and temporal distribution of 
surface characteristics is needed. This asks for monitoring 
methods that can cover large floodplain areas, and are detailed 
and fast.  
 
Traditional methods to map roughness patterns within the 
floodplain are based on visual interpretation and manual 
classification of vegetation units derived from aerial 
photographs, as applied for the lower Rhine floodplains (Van 
Velzen et al., 2003). This is a time consuming method that does 
not allow to document within-class variation of vegetation 
roughness. In literature, many studies report successful and 
accurate mapping of natural vegetation using multispectral or 
hyperspectral remote sensing data (Mertes, 2002). Recently, 
spectral information has been combined with height information 
in vegetation classification schemes (e.g., Dowling and Accad 
(2003). Even though the spatial resolution and the level of detail 
of the classification increases with these classifications, still a 

lookup table should be used to convert the vegetation classes to 
vegetation structure values. Airborne laser scanning (ALS), 
however, enables direct extraction of vegetation structural 
characteristics such as forest vegetation height, biomass, basal 
area, and leaf area index (Lefsky et al., 2002). Moreover, 
vegetation height of low vegetation was also mapped for crops, 
and grassland (Cobby et al., 2001; Mason et al., 2003). 
Straatsma and Middelkoop (in press) give an overview of 
studies that extract hydrodynamically relevant vegetation 
characteristics from ALS data. However, the noise level of ALS 
data is around 5 cm for flat unvegetated areas (Davenport et al., 
2000; Hopkinson et al., 2004), which makes extraction of 
surface properties of sandy surfaces or meadows difficult if not 
impossible.  
 
Therefore, our aim is to use a combination of spectral and ALS 
remote sensing data to map floodplain surface characteristics 
relevant for hydrodynamic modelling. The new method 
consisted of two stages; (1) image segmentation and 
classification into the main hydrodynamically relevant land 
cover types, and (2) determination of roughness input 
parameters of these land cover types using a lookup table and 
direct analysis of vegetation structure. 
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Figure 1. Hydrodynamic parameters; vegetation density (m2m-3) 
the sum of projected plant areas (A) in the direction 
of the water flow (F) per unit volume (cube), and 
vegetation height (Hv) 



  
Figure 2: Gamerense Waard floodplain false colour CASI image (band 732) 
 

2. MATERIALS AND METHODS 

2.1 Study area 

This study uses airborne remote sensing data collected over the 
Gamerense Waard (GW) floodplain, situated on the left bank of 
the embanked river Waal, the main distributary of the River 
Rhine in the Netherlands. The GW floodplain is essentially flat, 
except for the embankments and eroding shorelines of the side 
channels. Land cover is a combination of meadows, open water 
and nature areas that partly consisted of forests (figure 2). In 
addition to the forest patches, also individual trees of variable 
age were present. All vegetation was in winter condition when 
the laser data was acquired and in summer condition at the 
moment of CASI data collection. The typical inundation depth 
is 3 m during periods of high river discharge, but it might rise 
up to 5 m in case of extreme flood events. 
 
2.2 Field data 

A field campaign in June 2004 yielded information on 
important properties of 213 single trees in the study area, north 
of the western side channel. Location, height and circumference 
of these trees were measured to establish a regression model for 
tree height as a check for the single tree delineation from ALS 
data. Locations of the trees were determined using a dGPS in 
real time kinematics mode. Tree height was measured using a 
levelling beacon.  
 
2.3 Remote sensing data 

2.3.1 CASI multispectral image: On July 11 2003, a 
multispectral image was acquired with the airborne 
multispectral scanner: CASI, Compact Airborne Spectral 
Imager. The system is an along-track scanner and acquires data 
in 10 channels between 400 and 900 nm, programmable at 2-nm 
spectral intervals (Lillesand and Kiefer, 1994). For this flight 
campaign, 10 bands were programmed, of which six in the near 
infra red to optimize discrimination of various vegetation types. 
The image was georectified by the data vendor. Table 1, and 2 
give the specific settings for this flight. It turned out that the 
georeferencing by the vendor of the CASI image was of 
insufficient quality match the spectral data acquired together 
with the ALS data. Therefore, additional image registration was 
carried out using rubber sheeting (Hartmann et al., 2004). 
 
2.3.2 Airborne laser scanning: The ALS data of the Gameren 
floodplain were acquired using the FLI-MAP II system 
mounted on a helicopter. FLI-MAP, Fast Laser Imaging and 
Mapping Airborne Platform, is a small-footprint, first pulse, 
scanning laser range finder combined with a dGPS and an 

Inertial Navigation System (INS) for positioning. Table 3 
summarizes the characteristics. In 2003, the FLI-MAP system 
consisted of two laser range finders, resulting in combined pulse 
rate of 20 kHz. The two scanners were facing 7° forward and 
backward to decrease the amount of occlusion in built-up areas. 
Additionally, FLI-MAP II has acquired true-colour, high-
resolution photographs simultaneously with the laser data. A 
georeferenced photo-mosaic was supplied together with the 
laser data, which served to match the CASI data to the ALS 
data. On March 11 2003, the FLI-MAP II system was deployed 
over the GW floodplain. The data vendor filtered the ALS data 
and labelled points as either ground or non-ground points. 

 
Table 1 Metadata for the CASI mission 
Acquisition date 11-7-2003 
Acquisition time 11:45 

Flying height 1700 m 
Strip width 1046 m 

Pixel size at nadir 2 m 
No. of bands 10 

  
Table 2 Spectral properties of the CASI image 

Band 
no. 

Band  
middle (nm) 

Band  
width (nm) Description 

1 450 20 Blue 
2 552 10 Green 
3 670 10 Red 
4 700 10 NIRa 

5 710 10 NIR 
6 740 10 NIR 
7 750 10 NIR 
8 780 10 NIR 
9 820 10 NIR 

10 865 10 NIR 
a NIR = Near Infra Red 
 

Table 3 Meta data for the laser scanning mission 
Acquisition date 11-03-2003 

Scan angle ± 30° 
Scan line 

orientation ± 7° 

No. of sensors 2 
Pulse rate 2*10 kHz 

Flying height 80 m 
Point density 75 m-2 

 



2.4 Data processing 

To make optimal use of the information in the laser-derived 
point data and spectral gridded data, a two-stage method was 
used to derive roughness input values covering the whole 
floodplain. In the stage 1, an object-oriented classification was 
carried out to discriminate between land cover types. A 
supervised classification was carried out to discriminate 
between water, sand, meadow, herbaceous vegetation and 
forest. In stage 2, specific methods were applied to each of the 
land cover types to estimate the input for roughness 
computation. 
 
2.4.1 Stage 1: Segmentation and classification into land 
cover types: The commercial software package Ecognition 
(Definiens, 2003) was used to compute segments from the 
image to derive image objects. The ALS data was fused with 
the CASI data into a multi-source dataset aiming at floodplain 
land cover classification. In a pre-processing step a Digital 
Surface Model (DSM) was computed from the ALS data that 
described the vegetation height of the top of the canopy. 
Therefore, the height above the DTM, the  point height, was 
computed for each non-ground point. The gridded DSM, with 
the same cell size as the CASI data, was computed as the 95 
percentile of the point heights in each cell. Table 4 gives the 
weights assigned to the individual layers during the 
segmentation. The weight of the ALS layer was set to the 
summed weights of the spectral layers.  
 
Table 4. Segmentation weights for the individual layers of the 

multi source dataset. 
Layer Weight 

CASI 1 2 
CASI 2 3 
CASI 3 2 
CASI 4 1 
CASI 5 1 
CASI 6 2 
CASI 7 2 
CASI 8 1 
CASI 9 1 

CASI 10 1 
ALS 16 

 
Different scale settings were tested, and visual inspection 
showed that a scale parameter of 10 resulted in small segments 
appropriate for the vegetation distribution as observed in the 
field. Furthermore, a weight of 0.9 was given to information 
contained in the eleven layers, and a weight of 0.1 was used for 
shape. 
 
The supervised classification of image objects was carried out 
using linear discriminant analysis (Davis, 1986), based on a 
training data set of 217 randomly selected image objects. The 

selected objects were classified based on visual inspection of 
the CASI and ALS data, field knowledge, and the vegetation 
maps of Van Gennip and Bergwerff (2002). A minimum of 15 
objects were classified in each class. The following classes were 
discerned based on their different roughness and spectral 
attributes: water, wet sand, dry sand, paved area, meadow, 
herbaceous vegetation, dry herbaceous vegetation, forest, and 
built-up area. Wet sand and dry sand have different spectral 
values, but the same roughness, and these classes can therefore 
be merged after classification, just like herbaceous vegetation 
and dry herbaceous vegetation. The accuracy of the 
classification was tested using a leave-one-out cross validation. 
This procedure leaves one image object out of the training 
dataset and predicts its class using the remaining reference data. 
The results are presented in an error matrix, and summarized by 
the overall accuracy, and the kappa statistic was computed 
(Lillesand and Kiefer, 1994). 
 
2.4.2 Segmenting herbaceous vegetation into single trees and 
non-woody vegetation 
The class herbaceous vegetation consists of a wide range of 
vegetation types since it is the succession stage between 
meadow and forest. Therefore it might include non-woody 
vegetation as well as young trees. Vegetation structure 
estimation of non-woody herbaceous vegetation is not valid at 
the location of the trees. Therefore a single tree delineation 
method has to segment the laser point cloud into woody and 
non-woody segments.  
 
Different tree delineation methods are available literature. 
Persson et al. (2002), for example, created digital canopy 
models, smoothed at different scales. Alternatively, single tree 
delineation was applied on raw laser data, having the advantage 
that no data points were lost due to gridding (Morsdorf et al., 
2004). For floodplain vegetation, we tested this k-means 
clustering method of Morsdorf et al. (2004). The results were 
unsatisfactory, since the clustering resulted often in two cluster 
centroids for large trees, while adjacent small trees were not 
identified as a separate cluster. Therefore, the method was 
adapted with cluster merging using iterative cross-section 
analysis. This method generates many clusters based on seed 
points that over-represent large trees. Cluster are subsequently 
merged depending on the cross-sections between the clusters. 
Details of the method are described below, and illustrated in 
figure 3. 
 
Firstly, low (< 1.5 m) and isolated vegetation points (< 2 
neighbours in a 1 m neighbourhood) were excluded from 
further analyses, since these often represented herbaceous 
vegetation. Secondly, a k-means cluster analyses was carried 
out using local maxima as seed points (figure 3a). Local 
maxima were identified in the point cloud by assigning the 
highest hit in a local window with a 0.7 m radius to each point 
in a moving window.  

 
Figure 3 Single tree delineation from ALS data using clustering and iterative cross section analysis, see text for explanation 
 



This radius was selected because it was about the average tree 
radius of 0.66 m as observed in the field. In case the vegetation 
height of the point was the same as the highest point in the local 
window, the point was labelled as a local maximum. Thirdly, 
the cross sections between cluster maxima were classified as 
referring to either one or two trees depending on whether or not 
an open space existed of 25 cm in the cross section. Finally, 
clusters were merged iteratively until all cross sections satisfied 
the specified condition (figure 3b). The 2D convex hull of final 
merge gives the polygon that describes the outline of a tree 
(figure 3c).  
 
2.4.2 Stage 2: Determination of hydrodynamic surface 
characteristics: The second stage consisted of class-specific 
methods to estimate the hydrodynamic surface characteristics. 
Therefore, vegetation density should be extracted from the ALS 
data for forest patches, vegetation height and density should be 
mapped for herbaceous vegetation (separated into single trees 
and non-woody vegetation), and a lookup table should be used 
for the other classes; meadow, unvegetated area, and built-up 
area. The lookup table was needed since no method was 
available to extract the hydrodynamically relevant surface 
characteristics of these classes from either ALS of CASI data. 

Forest 
Straatsma (2005) used the percentage index (PI) to map the 
hydrodynamic vegetation density of floodplain forest. The PI 
computes the percentage of laser hits that fall within the height 
range that could be inundated by the water, and is defined as: 
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in which Nh1-h2 is the number of points between height 1 and 2 
above the forest floor, Ntot is the total number of points in the 
field plot including canopy and ground surface points. The 
height interval for PI was set to 0.5 to 2.5 m. The PI is sensitive 
to the number of laser pulses that were emitted of which no 
return was detected by the receiver. However, a check for these 
so-called invalid points showed that the number of invalid 
points for the GW dataset was less than one promille. The 
regression model of (Straatsma, in prep.) was used to predict the 
hydrodynamic vegetation density (Dv): 
 

Dv = 1.36 * PI + 0.008 (R2 = 0.66, N = 22) (2) 

Herbaceous vegetation 
Vegetation height of a delineated tree is derived from a 
regression model based on manually linked tree clusters to field 
derived tree height estimates. The automatic linking of clusters 
to trees was not satisfactory, probably because of the time 
difference of acquisition between the laser data and the field 
data. The vegetation height of the trees were assigned to the 
polygon, which was converted to a grid in a final step to ensure 
a similar output for all land cover classes.  
 
The key issue in vegetation structure mapping of non-woody 
herbaceous vegetation is point labelling as ground or 
vegetation, since the thin stalks of herbs in senescence are 
difficult to detect by ALS. Therefore, the point labelling of 
herbaceous vegetation was carried out following Straatsma and 
Middelkoop (in prep.). They modelled the histogram of the 
residual vertical distance between the point height and the 
DTM. This point height distribution is considered as the sum of 
the noise distribution of ground points and a uniform 
distribution of the vegetation points. The point of maximum 
upward concavity, the inflection point, is used as a threshold for 
labelling. All points above the threshold were labelled as 
vegetation. The height of the inflection point changes due to 
differences in noise levels, or flight strips that do not match 
exactly. Therefore, this procedure of point labelling was carried 
out separately for each image object segmented in stage 1, 
while points within the tree polygons were excluded. 
Vegetation height (Hv) and density (Dv) were computed from 
regression models determined for the same area in a previous 
study. They are valid for vegetation heights in the order of 0.3 
to 2 m and vegetation densities in the order of 3 * 10-4 to 0.7 
m2/m3 (Straatsma and Middelkoop, in prep.). 
  
 Hv = 1.47 * D95 + 0.28 (R2 = 0.78, N = 31) (3) 
 Dv = 1.18 * PI + 0.03 (R2 = 0.66, N = 43) (4) 
 
where D95 is the 95 percentile of the vegetation points, and PI is 
the Percentage Index computed over the height of the 
vegetation. This resulted in a spatially distributed map of non-
woody vegetation height and density. 
 
2.4.3 Other land cover classes: The land cover classes water, 
sand, paved, meadow, and built-up area were assigned a lookup 
value. Both water and sand should be assigned a median grain 
size only as a roughness parameter. However, depending on 
hydrodynamic conditions sub aqueous dunes will develop. Also 
the median grain size may vary spatially over the distributaries 
of the River Rhine. 
 

 
 
  Figure 4 Classified land cover map using object oriented classification 



 
 
Table 5: Error matrix resulting from leave-one-out cross validation on 217 reference data 

 Water Wet 
sand 

Dry 
sand Paved Meadow Herbs Forest Dry 

herbs Built-uprow 
total 

Users 
accuracy 

Water 30 0 0 0 0 0 0 0 0 30 1.00 
Wet sand 1 10 1 2 0 3 0 0 0 17 0.59 
Dry sand 0 0 13 0 0 0 0 0 0 13 1.00 
Paved 0 3 1 10 0 0 0 0 0 14 0.71 
Meadow 0 2 0 0 25 8 0 0 1 36 0.69 
Herbs 1 0 0 1 11 45 2 2 0 62 0.73 
Forest 0 0 0 0 0 1 17 0 0 18 0.94 
Dry herbs 0 0 0 1 0 0 0 13 0 14 0.93 
Built-up 0 0 0 1 0 0 0 0 14 15 0.93 
Column total 32 15 15 15 36 57 19 15 15   
Prod. accuracy 0.94 0.67 0.87 0.67 0.69 0.79 0.89 0.87 0.93   
 
 

3. RESULTS 

The results of the classification of image objects is shown in 
figure 4. The error matrix is given in table 5. The largest 
errors are related to the distinction between meadow and 
herbaceous vegetation. The overall accuracy is 81 percent 
and the kappa statistic is 0.77. After joining wet and dry sand 
into a single class sand and herbs and dry herbs into herbs, 
the overall accuracy increases slightly to 82 percent, and the 
kappa statistic to 0.78 
 
The field campaign yielded information of the position, 
height and circumference of 213 individual trees. Tree 
heights ranged between 0.5 to 7.5 m, and the average was 3.6 
m. The spatial pattern of the tree distribution is similar to the 
trees extracted from the ALS data. Vegetation height of the 
individual trees was estimated using a regression model 
derived from the field observations (figure 7): 
 

Hmax = 0.7 * Hmax.laser + 1.6 (R2 =0.41, N = 86)  (5) 
 
The vegetation height and density maps of herbaceous 
vegetation is presented in figure 5a, and 5b. The vegetation 
density map of forest is given in figure 5c. Differences in 
vegetation density within a single forest patch are clearly 
visible just below the ‘c’ in figure 5c. With these input maps, 
the hydrodynamic roughness can be computed together with 
the flood water levels. However, the resulting map will also 
display the effect of the differences in water depth due to 
topographic elevation differences. Roughness computation is 
outside the scope of this paper. 
 

4. DISCUSSION  

This paper presents a new method for automatic mapping of 
input for floodplain roughness parameterization using a 
combination of multispectral data, and airborne laser 
scanning data. The ALS data enabled the accurate 
computation of vegetation height and density of herbaceous 
vegetation and forest. This approach gets around the need to 
use a lookup table to characterize the vegetation structure of 
these classes. However, ALS is unsuitable to distinguish 
between land cover classes such as water, paved areas, 
beaches or meadows. The integrated use of spectral remote 
sensing with ALS is a suitable solution to separate these land 
cover classes. 
 

 
Figure 5: a) vegetation height of herbaceous vegetation b) 

vegetation density of herbaceous vegetation, c) 
Vegetation density of forest 

 
Classification of the image objects using a linear discriminant 
analysis proved successful given the overall accuracy of 81 
percent. Linear discriminant analysis has the advantage that it 
can account for many parameters in the discriminant 
function, since it assumes the variance per layer to be equal 
for each group. This limits the size of the training dataset, 
which is especially important when an a-select sampling 
strategy is applied in which classes with a low occurrence are 
not well represented. The distinction between herbaceous 
vegetation and meadows proved the most challenging 



vegetation classes to distinguish with a user accuracy of 
around 70 percentage. This is particularly important, since 
large parts of the floodplain consist of these two land cover 
types. It is advised to focus on this distinction in future 
studies.  
 
The single tree delineation using the iterative cross section 
analysis in this study used only a single attribute of the cross 
section, namely whether or not an open space existed of 25 
cm in the cross section. Alternatively, more features of the 
cross section could be taken into account that characterize the 
shape and position of the cross section by using a 
discriminant analysis to classify the cross sections. This 
makes the new procedure highly flexible for different 
vegetation types and laser point densities. The explained 
variance of the regression model for tree height (R2 = 0.41) is 
relatively low when compared to other studies (Perssonet al., 
2002). The reason might be the time delay between the laser 
campaign and the field inventory of 1.5 year.  
 

5. CONCLUSION 

This paper describes a new method to derive 
hydrodynamically relevant surface characteristics. The fusion 
of multispectral data and airborne laser scanning data 
provides an accurate tool for detailed and accurate floodplain 
roughness assessment. The classification of image objects 
into nine classes showed an overall accuracy of 81 percent. 
Water, unvegetated areas, meadows, and built-up areas are 
best described by using a lookup table, since no roughness 
parameter could be extracted from either data source. The 
spatial distribution of vegetation density of forest, computed 
using the Percentage Index (R2 = 0.66), matched the patterns 
as observed in the field. Vegetation height and density of 
herbaceous vegetation were computed using regression 
models that were calibrated for the specific laser data and 
vegetation type (R2 = 0.78 for vegetation height, R2 = 0.51 
for vegetation density). Moreover, a new single tree 
delineation method is presented. This method first performs a 
clustering using local maxima as seed points. Subsequently, 
clusters are merged based on the attributes of the cross 
section between the clusters. The final result of the combined 
mapping methods is a highly detailed map stack of surface 
properties of the floodplain that can serve as input to 
hydrodynamic models. 
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