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ABSTRACT:

Analysis of the full waveform return pulse of laser altimeter systems is expected to increase the possibilities and accuracy in well-known
applications of laser altimetry like DTM generation, forestry and earth surface analysis. NASA’s ICESat Geoscience Laser Altimeter
System (GLAS) was launched in 2003 and acquires full waveform data along profiles covering the entire earth. In this study, the
possibility of using ICESat data for land-cover classification is investigatedover the Netherlands using data obtained from September
to November 2003. The method, that automatically analyzes raw waveforms, divides the footprints of the laser pulses in four categories:
high vegetation (high trees or forest), urban, water, and bare land/low vegetation. First, Gaussian components are fitted to and then
several parameters derived from the Gaussian decomposition are used for discriminating the land-cover layers. Finally, the accuracy
of the land-cover classes is validated by computing a confusion matrix based on the CORINE land cover database 2000 (CLC2000)
covering the same study area. Using our method we get 73% accuracy of classification.

1. INTRODUCTION

Creating land cover databases is one of the most important tar-
gets in remote sensing. Land cover assessment and monitoring of
its dynamics are essential requirements for sustainable manage-
ment of natural resources and for environmental protection. They
provide the foundation for environmental, food and humanitar-
ian programmes of international and national. Accurate, detailed,
and reliable land cover information remains in demand (GLCN-
LCTC, 2006).

Remotely sensed images are the main source of data used for
land cover classification. The images are acquired from different
platforms as satellite, airplane or ground, from different systems
both passive and active, and from various sensors with different
resolutions. In this article, we consider the possibilities that the
ICESat mission has as a new source for land cover data. For this
purpose we develop a method of classification. The classified re-
sults of ICESat data are validated by comparison to the CORINE
land cover database.

ICESat was launched in January 2003 with the principal objec-
tives to measure: polar ice-sheet elevation change; atmospheric
profiles of cloud and aerosol properties; land topography profiles
referenced to a global datum; and height of vegetation canopies.
These objectives are accomplished using the Geoscience Laser
Altimeter System (GLAS) combined with precise orbit determi-
nation. GLAS uses a laser altimeter to measure the range dis-
tance between the satellite and the earth surface. GLAS system-
atically samples the energy profile returned from the surface as a
full waveform (Harding and Carabajal, 2005). ICESat data can
therefore only be used for classifying profiles, as compared to re-
gions mapped by area-sensors. The full waveform data gives new
possibilities to extract more information about land cover of the
earth surface.

In this study, the full waveform analysis is investigated in the
context of land cover classification. The paper suggests a new and
potential way to extract land cover classes from the full waveform
data. Firstly, the waveform is assumed to be a sum of Gaussian
components. The waveform is then decomposed into different
Gaussian components. Next, the waveform parameters derived

from the decomposition are applied in the classification step to
identify land cover type. Moreover, the quality of the fitting step
is also analyzed. The footprints are classified independently of
each other.

In the next section, we will introduce our study area, the ICE-
Sat/GLAS dataset and a reference land cover map. Then we
will introduce new methodology for analyzing full waveform data
with the purpose of land cover classification. In the results sec-
tion we will give the total accuracy of the classification based on
computing a confusion matrix between the ICESat data and the
reference data. Finally, conclusions will be stated at the end.

2. STUDY AREA AND DATASET

2.1 Study area

The area of study is mostly the Netherlands, bounded approx-
imately by30E to 70E longitude and500N to 540N latitude
which contains a large variety of land cover. There are 15 products
of ICESat data, however, only the products GLA14 and GLA01
in release 24 are used for this research. The GLA14 contains pre-
cise geolocation of footprint centers with height information. The
GLA01 contains the full captured waveform. Release 24 means
that these products are processed using currently the most recent
version of the NASA processing procedure. A GLA01 waveform
is linked to a GLA14 location by index and shot number. The in-
dex and shot number are computed by relating the shooting time
of an individual pulse to the starting time of the ICESat oper-
ation and the shooting frequency. The waveform locations are
displayed together with a CORINE land cover map in Figure 1.

2.2 ICESAT/GLAS full waveform data

GLAS was designed for a 183-day ground track repeat cycle with
7.5 km spacing between the repeated tracks at 60 degree latitude.
However, due to the problems of the laser system, GLAS changed
to operate in a 91-day repeat orbit to complete a global cover-
age (Ranson, Sun, Kovacs, and Kharuk, 2004). Both data from
ascending and descending orbits are used in this study. A visual-
ization of the footprint sizes is shown in Figure 2.



Figure 1. Study area: ICESat ground tracks (blue) and CLC2000
land cover map (100m resolution)

The full waveform dataset was acquired in the period from 2003-
09-25 to 2003-11-18. There are 3277 waveforms in the study
area. The footprints of these waveforms are elliptical, its power
distribution has a central maximal, while energy decreases to the
boundary. The size of the ellipse is 95 x 52m on average (Hard-
ing and Carabajal, 2005). The footprint separation is 175m along
track. The horizontal geolocation accuracy of the ICESat foot-
prints is 3.7m. The waveform is digitized in 544 nanoseconds
over land area and 200 nanoseconds over sea or ocean. That
means that the waveform can acquire a height of up to 81.6m
over land and 30m over sea with the vertical resolution of 15cm.

Figure 2. A close up of the red rectangle in Figure 1 with elliptical
footprints of 95 x 52 m. The track passes from the North Sea (in
white) onto land (in color).

2.3 CLC2000 land cover data

The CORINE Land Cover 2000 database (CLC2000) is used as
reference data for an accuracy assessment of the classification re-
sults. The land cover database is dated to the year 2000 but actu-
ally was obtained during a 3 years period from 1999 to 2001 with
a horizontal geolocation accuracy of worse than 25m based on
IMAGE2000 and a resolution of 100m. The CLC2000 classifica-
tion is hierarchical and distinguishes 44 classes at the third level,
15 classes at the second level and 5 classes at the first level. De-

tailed information of land cover levels can be found at the meta-
data section of CLC2000 in the European Environment Agency
website (CLC2000, 2006). The total thematic accuracy of the
CLC2000 database is almost 95% and meets the European target
of 85%. The database is geo-referenced in the European refer-
ence system (Hazeu, 2003).

3. WAVEFORM PARAMETERIZATION AND QUALITY
ASSESSMENT

3.1 Pre-processing and initialization

Due to different reference systems of both ICESat and CLC2000,
a conversion of the reference system is taken into account. The
ICESat data is therefore converted to a common reference system
ETRS89 by ArcGIS 9.0 software.

The binary data of GLA01 and GLA14 is converted into ASCII
format by an IDL program developed by the National Snow and
Ice Data Center (NSIDC, 2006). The waveform data that is orig-
inally in counts (from 0 to 255) is converted into voltage units for
further analysis.

The voltage waveform is then normalized by dividing by the total
received energy. This implies that the area under any normalized
waveform equals one. Next, the normalized waveform is further
smoothed. Finally, the smoothed waveform is used for estimation
of the Gaussian parameters in the fitting step.

3.2 Gaussian fitting

In the fitting step, so-called Gaussian components are fitted to the
normalized and smoothed waveformw(t). Every Gaussian com-
ponentWm(t) corresponds to one Gaussian bell curve. So, we
assume that the smoothed waveformw(t) is a sum of Gaussian
componentsWm(t). That is, we write

w(t) =

Np∑

m−1

Wm(t), with Wm(t) = Ame

−(t−tm)2

2σ2
m , (1)

wherew(t) is the amplitude of the waveform at timet, Wm(t)
is the contribution of them-th Gaussian component,Np is the
number of Gaussians found in the waveform,Am is the ampli-
tude of them-th Gaussian,tm its position andm its standard
deviation. In Figure 3, the normalized waveform is given in red,
the smoothed waveform is in gray and the fitted waveform is in
black. The found Gaussian components are displayed in green. A
detailed description of this fitting step and the preprocessing are
found in (Duong, Pfeifer, and Lindenbergh, 2006).

3.3 Quality of fitting

A waveform normally has 544 bins over land, but by visualization
of the dataset we know that the actual waveform often starts after
the 150th bin or after 150 nanoseconds. Therefore, the first 150
bins of the waveform can be used to determine the noise compo-
nent of the waveform signal. For validating the quality of fitting,
two noise levels are taken into account: local noise and global
noise. For the local noise the noise in the first 150 bins of every
raw waveform is used to calculate a standard deviation, the so-
calledσNi

(the index i stands for theith waveform.). The global
noise is the mean local noise of the entire waveform dataset, the
so-calledσ̄N . These parameters ofσNi

andσWFi
are depicted

in Figure 4.



Figure 3. A typical waveform with parameters as begin point,
width, total energy, and number of modes.

Moreover, the remaining bins of the waveform are used to define
two other notions that allow validation of the quality of fitting:
σWFi

andσ̄WF . TheσWFi
is the local standard deviation of the

waveform and is defined as the mean of the bin-wise differences
between the actual waveform and the sum of the fitted Gaussian
components. The actual waveform is that part of the waveform
between the begin point and end point in Figure 3. These points
are obtained using a suited threshold value. Theσ̄WF is the mean
waveform standard deviation of the entire dataset. Figure 3 and
Figure 4 show the location of the actual waveform as bounded
by the dashed blue vertical lines. The locations of these lines are
identified by truncating the fitted waveform (dashed black curve)
by a threshold value based on the local noise intensity (horizontal
dashed blue line) in Figure 3.

To access the quality of the fitting of the waveform, the four de-
scribed parameters of above are used: the noise standard devia-
tion σNi

, the waveform standard deviationσWFi
, the mean noise

standard deviation̄σN = 1

N

∑N

i=1
σNi

, and the mean waveform

standard deviation̄σWF = 1

N

∑N

i=1
σWFi

, whereN is the num-
ber of waveforms in the entire dataset.

Figure 4. A waveform with noise standard deviationσNi
(from 1

to 150 nanoseconds) and waveform standard deviationσWFi
(in

blue). The noise range is from 1 to 150 nanosecond (at vertical
dashed black line). The actual waveform is located between the
two vertical blue lines.

The quality of the fitting is validated and displayed in Figure 5.
The x-axis is the ratio ofσWFi

andσNi
. The y-axis is the per-

centage of waveforms fitted. The continuous and dashed black

Figure 5. Quality of fitting in terms of the noise standard devia-
tion: the solid curve (local) and dashed curve (global).

curves represent the local and global level. Figure 5 shows that
the results for the quality of fit using either local or global noise
are similar. 95 per cent of the waveforms is fitted well within
25 timesσNi

or within 23 timesσ̄N . Therefore, selection of the
local and global noise will give the same result in validating the
quality of fit. Moreover, in terms of mean standard deviations of
waveform and noise, we getσWF = 10.8σ̄N .

3.4 Waveform parameters for classification

The fitting step results in a number of Gaussian components with
Gaussian parameters. However, for the classification purpose,
other parameters are also helpful:widthandtotal energy.

Due to the existing noise in the waveform, the actual width of
the waveform or the actual waveform needs to be identified by
finding the locations of the actual begin and end of the wave-
form. The threshold value for each waveform is defined by tak-
ing the maximum value of the (noise) intensity in the first 150
bins. This threshold value is applied to truncate the waveform by
specifying the locations of the actual begin and end of the wave-
form. Therefore, the begin of the waveform is the intersection of
the horizontal threshold value line and the first rising edge of the
waveform (most left). The end point of the waveform is the last
intersection point (most right). The width of the waveform is the
distance between the begin and the end location of the waveform.
A visualization of the width and the actual waveform is shown in
Figure 3 and Figure 4.

Four waveform parameters are used in the classification step:
NModes: Total number of Gaussians as found by the fitting al-
gorithm. TEnergy: Total energy received back by the GLAS
instrument. This is calculated by taking the area under the ac-
tual waveform. The result is converted in energy units (attojoules
= 10−18 joules). BeginWF: Location where a waveform firstly
passes the threshold.Width: Width is the distance between the
begin and the end of the actual waveform.

Again, in Figure 3, the red line represents the normalized wave-
form. The dashed black line represents the fitted waveform with
in this case 5 Gaussian modes. The different Gaussian compo-
nents are displayed by dashed green lines.

4. WAVEFORM CLASSIFICATION

The four waveform parameters described in the above section are
used in the classification step. Waveforms are classified into 4



different classes:high vegetation, urban, bare land/low vegeta-
tion andwater. The flowchart for this classification is shown in
Figure 6.

Water normally absorbs the energy of the laser, therefore the en-
ergy of the recorded waveform over water is mostly lower than
over bare land, urban or high vegetation. Therefore the total en-
ergy is used to extract water waveforms.

Bare land has a flat open surface, so it mostly gives uni-mode
waveforms. Moreover, bare land can also cause the recorded
waveform to have a wider width due to roughness or slope of the
surface. Low vegetation can result in waveforms having multi-
modes. However the extra modes have low amplitude and will be
few. In this particular step, the bare land waveforms are classified
by having only one mode. Moreover, by regarding the effect of
low vegetation, bare land waveforms are selected in the next step
by having a narrower waveform width.

Urban and high vegetation are known as complex areas with dif-
ferent height levels. Therefore, the area usually results in multi-
mode and wide-width waveforms. This is caused both by artifi-
cial objects as well as by high trees. However, waveforms over
high vegetation often have a wider first mode width due to the
scattering from the tree crowns. The urban waveform has a nar-
rower width for all modes due to the reflectance from the sharp
shape of artificial objects like buildings, etc. In other words, the
wider first mode results in an earlier rising of the first edge of the
actual waveform. In this case, the location of the waveform start
is used to separate urban from high vegetation waveforms. Four
representative waveforms for four different land cover classes are
shown in Figure 7.

Figure 6. Flowchart of a classification step.

5. CLASSIFICATION VALIDATION AND RESULTS

From the point of view of image processing, a waveform data
with ellipsoidal footprint size of 95x52 m can be approximated
by a polygon that contains a number of pixels within its boundary.
The polygon of the classified waveform represents the polygon of
pixels in the classified image. The CLC2000 reference data with
100m resolution, is used for validation and represents a known
land cover type. Moreover, the CLC2000 is splitted into 25m pix-
els that inherit the pixel values of the full 100m pixel. In this way,
we obtain a larger number of pixels within the footprint polygon,
which helps in the accuracy assessment. For example, the foot-
print polygon overlaps two reference pixels of 100m resolution.
The first reference pixel has a large common area and the second
has a small common area with the footprint polygon. When using
reference data of 100m resolution, only two reference pixels are
selected. However, if we use 25m resolution reference data, we
can have more pixels of 25m in the first reference pixel and less
in the second one, which improves the precision of the results.

5.1 Confusion matrices

One of the common means of expressing classification accuracy
is the preparation of a classificationconfusion matrix(also called
error matrix or contingency table) (Lillesand, Kiefer, and Chip-
man, 2004). A confusion matrix compares, on a category-by-
category basis, the relationship between known reference data
(ground truth) which is here the CLC2000 data and the corre-
sponding results to be validated, here the classification of the
ICESat data. The matrices are squared, with the numbers of rows
and columns equal to the number of categories or classes whose
classification accuracy is being assessed. The matrix shows how
well a classification is categorized, but also how bad the classifi-
cation errors of omission and commission are.

A commission error means that a pixel is falsely classified within
a certain class. In this research, the commission error for water
consist of 1394 pixels that are falsely classified as not water. 644
are classified as bare land, 706 as high vegetation and 44 as urban.
An omission error occurs when a pixel is falsely omitted from
a class by the classifier method. Thus, the classification based
on full waveform laser altimetry analysis fails to recognize and
correctly identify 589 from 3162 as not water.

Several other descriptive measures can be obtained from the con-
fusion matrix. Theoverall accuracyis the probability that a pixel
randomly taken from the classified data has the same class as the
corresponding pixel in the reference data and vice versa. The
overall accuracy is computed by dividing the total number of cor-
rectly classified pixels (the sum of the elements along the major
diagonal) by the total number of reference pixels.

Theproducer’s accuracyis the probability that a pixel taken ran-
domly from reference data class i has the same class as the cor-
responding pixel in the classified data. It indicates how well the
reference data of the class are classified. The producer’s accuracy
results from dividing the number of correctly classified pixels in
each class by the number of reference pixels used for that class
(the column total).

Finally, theuser’s accuracyis the probability that a pixel taken
randomly from the classified data class i has the same class as the
corresponding pixel in the reference data. It indicates the proba-
bility that a pixel classified to a class actually represents that class
in the reference data. The user’s accuracy is computed by divid-
ing the number of correctly classified pixels in each class by the
total number of pixels that were classified in that class (the row
total).



5.2 Classification validation and results

The CLC2000 data consists of 5 classes at the first level such
asartificial surfaces, agricultural areas, forest and semi natural
areas, wetlands, andwater bodies. Therefore, the five classes
of the CLC2000 data are then reclassified for a suited purpose
of the classification validation. Here, theartificial surfacesis
classified as urban class, theagricultural areasandwetlandsas
bare land/low vegetation class, theforest and semi natural areas
as high vegetation class, and thewater bodiesas water class.

Table 1 shows the confusion matrix between the ICESat and the
CLC2000 classification. The columns contain reference data with
known land cover type, and the rows are the classified waveform
data. The abbreviations ofW, B, HV and U representwater,
bare land/low vegetation, high vegetationandurbanrespectively.
Consider for example the water column containing a total num-
ber of 3967 water pixels. 2573 are classified correctly as water,
644 are classified incorrectly as bare land, 706 are classified in-
correctly as high vegetation, and 44 are classified incorrectly as
urban.

Table 2 shows the classification result. The producer’s accuracy
of the water is 81.37% and the user’ accuracy for the water is
64.86%. Moreover, from Table 1, we obtain the overall accuracy
of the classification of about 75.22%.

Reference Data
Classification

Data W B HV U Total
W 2573 398 185 6 3162
B 644 1175 457 21 2297

HV 706 1873 7410 216 10205
U 44 81 507 4438 5070

Total 3967 3527 8559 4681 15596

Table 1. Confusion matrix

Class Prod. Acc. User Acc. Prod. Acc. User Acc.
(%) (%) (pixels) (pixels)

W 81.37 64.86 2573/3162 2573/3967
B 51.15 33.31 1175/2297 1175/3527

HV 72.61 86.58 7410/10205 7410/8559
U 87.53 94.81 4438/5070 4438/4681

Table 2. Classification results

The most common parameter for the accuracy assessment isk̂

(Lillesand, Kiefer, and Chipman, 2004). Thek̂ statistic is a mea-
sure of difference between the actual agreement between the ref-
erence data and an automated classifier on one side and the chance
agreement between the reference data and a random classifier on
the other side. Conceptually,k̂ can be defined as:

k̂ =
observed accuracy − chance agreement

1 − chance agreement
(2)

where theobserved accuracyis the proportion of correctly classi-
fied entries and thechance agreementis the proportion of classes
from classification data that could be expected to be classified by
chance.

The k̂ statistic is computed as

k̂ =
N

∑r

i=1
xii −

∑r

i=1
(xi+ · x+i)

N2
−

∑r

i=1
(xi+ · x+i)

(3)

wherer is number of rows in the confusion matrix;xii is an
observation in rowi and columni (on the major diagonal);xi+ is

the total number of observations in rowi (shown as marginal total
to the right of the matrix);x+i is the total number of observations
in columni (shown as marginal total at the bottom of the matrix);
N is the total number of observations included in the matrix.

In reality, k̂ usually ranges between 0 and 1. In the case of per-
fect classification, as true agreement (observed) approaches 1 and
chance agreement approaches 0,k̂ will approach 1. In this re-
search, the classification resultk̂ equals 0.73. It can be thought
of as an indication that an observed classification is 73 per cent
better than one resulting from chance.

Thek̂ of 0.73 is a quite promising result for the robust classifica-
tion method based on waveform analysis. Moreover, we can see
more interesting points in Table 2. The urban and high vegetation
results are quite high in both producer’s accuracy and user’s ac-
curacy (87.53% and 94.81% for urban, and 72.61% and 86.56%
for high vegetation). These results could lead to the conclusion
that our method is adequate for the purpose of mapping urban and
high vegetation.

6. CONCLUSIONS

In this paper, we have developed a new robust method for land
cover classification based on full waveform laser altimetry analy-
sis. For this purpose the waveforms were decomposed into Gaus-
sian components. The fitted waveform is the sum of the Gaussian
components. A notion of quality of fitting is defined by com-
paring the residuals of the waveforms after fitting to the back-
ground noise. 95% of the waveform dataset is fitted well within
25 timesσNi of local waveform noise and within 23 timesσ̄N of
overall waveform noise. Furthermore, by applying the waveform
analysis for land cover classification an accuracy of classifica-
tion was found of 73% compared to the CORINE classification
CLC2000. The group of high vegetation and urban waveforms
and the group of bareland/low vegetation and water are well sep-
arated. The classification step is done by automatic processing of
the waveforms. This research suggests a new and promising way
to determine land cover information. Moreover, the result derived
from the waveform analysis is also useful for comparison, valida-
tion or updating of classification data obtained by other methods.

However, the method can be improved as well. There is some
confusion for classifying individual classes in each group. In the
group of high vegetation and urban, the classification method can
be improved more to get better discrimination of between high
trees and buildings. The solution of this matter is to consider the
width of every Gaussian models as compared to the width of all
Gaussian models. This is a potential way because the waveform
reflected from buildings and other artificial objects returns a nar-
rower signal. For high vegetation, the width is expected to be
quite wider.

Furthermore, the waveform parameters are not yet good enough
for discrimination between the groups of bare land/low vegeta-
tion against water. In theory, the water waveform has one mode
due to the flat water surface while the bare land waveform should
have more than one mode with a wider width waveform caused
by slope, roughness or low vegetation. However, in practice this
does not seem to hold. A further step for this discrimination
is to consider other parameters such as the ratio between first
mode and last mode. Moreover, water waveforms over lakes
or rivers somehow show multi-modes where in theory only one
mode should be present. This can be explained by the presence
of artificial objects like boats or ships.



Figure 7. Top Left: High vegetation. Top Right: Urban. Bottom Left: Bare land or low vegetation. Bottom Right: Water.

Quality of fit can incorporated into further processing of wave-
form data based on Gaussian decomposition, by encoding the
quality in e.g. a Variance- Covariance matrix.

Finally, High Altitude Long Endurance (HALE) UAVs will maybe
in future also carry lasers. With scanning mode or densley ar-
ranged profiles also laser ranging from space can be expected to
provide area coverage type data in that case (Biesemans, Ever-
aerts, and Lewyckyj, 2005). The results of this paper shows the
feasibility of classifying on laser satellite altimetry data alone and
suggests thus improved results for the combined classification of
active range and passive optical imagery.
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