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ABSTRACT:

Analysis of the full waveform return pulse of laser altimeter systems is@®pl to increase the possibilities and accuracy in well-known
applications of laser altimetry like DTM generation, forestry and earthasarnalysis. NASAs ICESat Geoscience Laser Altimeter
System (GLAS) was launched in 2003 and acquires full waveform datey rofiles covering the entire earth. In this study, the
possibility of using ICESat data for land-cover classification is investigated the Netherlands using data obtained from September
to November 2003. The method, that automatically analyzes raw wavefdivides the footprints of the laser pulses in four categories:
high vegetation (high trees or forest), urban, water, and bare landégetation. First, Gaussian components are fitted to and then
several parameters derived from the Gaussian decompositioneddardiscriminating the land-cover layers. Finally, the accuracy
of the land-cover classes is validated by computing a confusion matredb@sthe CORINE land cover database 2000 (CLC2000)
covering the same study area. Using our method we get 73% accurelegsification.

1. INTRODUCTION from the decomposition are applied in the classification step to
identify land cover type. Moreover, the quality of the fitting step

Creating land cover databases is one of the most important tals @lso analyzed. The footprints are classified independently of

gets in remote sensing. Land cover assessment and monitoring 8¢ other.
its dynamics are essential requirements for sustainable manage- . ot section, we will introduce our study area, the ICE-

ment of natural resources and for environmental protection. Thegat/GLAS dataset and a reference land cover map. Then we

irgr?v':joe :garfr?ggg??nigr:loe:tii:\glr gagﬁgiﬂh;?ogcir&?a?ﬁrggp;%r' ill introduce new methodology for analyzing full waveform data
prog : ' With the purpose of land cover classification. In the results sec-

Eré(_il_?llzagcl)%)land cover information remains in demand (GLCN'tion we will give the total accuracy of the classification based on

computing a confusion matrix between the ICESat data and the

Remotely sensed images are the main source of data used f@ference data. Finally, conclusions will be stated at the end.

land cover classification. The images are acquired from different
platforms as satellite, airplane or ground, from different systems
both passive and active, and from various sensors with different
resolutions. In this article, we consider the possibilities that the
ICESat mission has as a new source for land cover data. For th&1 Study area
purpose we develop a method of classification. The classified re-
sults of ICESat data are validated by comparison to the CORINE he area of study is mostly the Netherlands, bounded approx-
land cover database. imately by 3°E to 7°FE longitude and50°N to 54° N latitude
which contains a large variety of land cover. There are 15 products
ICESat was launched in January 2003 with the principal objecef ICESat data, however, only the products GLA14 and GLAO1
tives to measure: polar ice-sheet elevation change; atmospheiii¢ release 24 are used for this research. The GLA14 contains pre-
profiles of cloud and aerosol properties; land topography profilegise geolocation of footprint centers with height information. The
referenced to a global datum; and height of vegetation canopie§LAQ1 contains the full captured waveform. Release 24 means
These objectives are accomplished using the Geoscience Lagiat these products are processed using currently the most recent
Altimeter System (GLAS) combined with precise orbit determi- version of the NASA processing procedure. A GLAO1 waveform
nation. GLAS uses a laser altimeter to measure the range diss linked to a GLA14 location by index and shot number. The in-
tance between the satellite and the earth surface. GLAS systerdex and shot number are computed by relating the shooting time
atically samples the energy profile returned from the surface as@ef an individual pulse to the starting time of the ICESat oper-
full waveform (Harding and Carabajal, 2005). ICESat data caration and the shooting frequency. The waveform locations are
therefore only be used for classifying profiles, as compared to redisplayed together with a CORINE land cover map in Figure 1.
gions mapped by area-sensors. The full waveform data gives new
possibilities to extract more information about land cover of the2.2 ICESAT/GLAS full waveform data
earth surface.

2. STUDY AREA AND DATASET

GLAS was designed for a 183-day ground track repeat cycle with
In this study, the full waveform analysis is investigated in the7.5 km spacing between the repeated tracks at 60 degree latitude.
context of land cover classification. The paper suggests a new aridowever, due to the problems of the laser system, GLAS changed
potential way to extract land cover classes from the full wavefornmto operate in a 91-day repeat orbit to complete a global cover-
data. Firstly, the waveform is assumed to be a sum of Gaussiaage (Ranson, Sun, Kovacs, and Kharuk, 2004). Both data from
components. The waveform is then decomposed into differerdscending and descending orbits are used in this study. A visual-
Gaussian components. Next, the waveform parameters derivagation of the footprint sizes is shown in Figure 2.



g tailed information of land cover levels can be found at the meta-

] data section of CLC2000 in the European Environment Agency
website (CLC2000, 2006). The total thematic accuracy of the
CLC2000 database is almost 95% and meets the European target
of 85%. The database is geo-referenced in the European refer-
ence system (Hazeu, 2003).

3. WAVEFORM PARAMETERIZATION AND QUALITY
ASSESSMENT

3.1 Pre-processing and initialization

Due to different reference systems of both ICESat and CLC2000,
a conversion of the reference system is taken into account. The
ICESat data is therefore converted to a common reference system
ETRS89 by ArcGIS 9.0 software.

The binary data of GLAO1 and GLA14 is converted into ASCII
format by an IDL program developed by the National Snow and

; : i ik s i Ice Data Center (NSIDC, 2006). The waveform data that is orig-
Figure 1. Study area: ICESat ground tracks (blue) and CLC200 atlﬁly in cm:nt; (from O to 255) is converted into voltage units for
land cover map (100m resolution) urther analysis.

The voltage waveform is then normalized by dividing by the total

The full waveform dataset was acquired in the period from 2003_rece|ved energy. This implies that the area under any normalized
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area. The footprints of these waveforms are elliptical, its powe ' Y.

distribution has a central maximal, while energy decreases to th%f the Gaussian parameters in the fitting step.
boundary. The size of the ellipse is 95 x 52m on average (Hard:
ing and Carabajal, 2005). The footprint separation is 175m ann&'

track. The horizontal geolocation accuracy of the ICESat foot- o . )
prints is 3.7m. The waveform is digitized in 544 nanoseconddn the fitting step, so-called Gaussian components are fitted to the

over land area and 200 nanoseconds over sea or ocean. THrmalized and smoothed wavefornit). Every Gaussian com-
means that the waveform can acquire a height of up to 81.6rRONeNtW:.(t) corresponds to one Gaussian bell curve. So, we

over land and 30m over sea with the vertical resolution of 15cm.&SSUme that the smoothed wavefour(y) is a sum of Gaussian
componentd¥V,, (t). That is, we write

2 Gaussian fitting

Np —(t—tm)?
w(t)= 3 Wanlt), With Wou(t) = Ane 75, (1)

m—1

wherew(t) is the amplitude of the waveform at timeW,, (¢)

is the contribution of then-th Gaussian componenl,, is the
number of Gaussians found in the wavefordy, is the ampli-
tude of them-th Gaussiant.,, its position andm its standard
deviation. In Figure 3, the normalized waveform is given in red,
the smoothed waveform is in gray and the fitted waveform is in
black. The found Gaussian components are displayed in green. A
detailed description of this fitting step and the preprocessing are
Figure 2. A close up of the red rectangle in Figure 1 with elliptical found in (Duong, Pfeifer, and Lindenbergh, 2006).

footprints of 95 x 52 m. The track passes from the North Sea (in

white) onto land (in color). 3.3 Quality of fitting

A waveform normally has 544 bins over land, but by visualization

of the dataset we know that the actual waveform often starts after
2.3 CLC2000 land cover data the 150th bin or after 150 nanoseconds. Therefore, the first 150

bins of the waveform can be used to determine the noise compo-
The CORINE Land Cover 2000 database (CLC2000) is used asent of the waveform signal. For validating the quality of fitting,
reference data for an accuracy assessment of the classification te/0 noise levels are taken into account: local noise and global
sults. The land cover database is dated to the year 2000 but actueise. For the local noise the noise in the first 150 bins of every
ally was obtained during a 3 years period from 1999 to 2001 withraw waveform is used to calculate a standard deviation, the so-
a horizontal geolocation accuracy of worse than 25m based ocalledoy, (the index i stands for th&" waveform.). The global
IMAGE?2000 and a resolution of 100m. The CLC2000 classifica-noise is the mean local noise of the entire waveform dataset, the
tion is hierarchical and distinguishes 44 classes at the third leveo-calledsy. These parameters efy, andow r, are depicted
15 classes at the second level and 5 classes at the first level. Die-Figure 4.
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Figure 5. Quality of fitting in terms of the noise standard devia-

Figure 3. A typical waveform with parameters as begin pOInt’tion: the solid curve (local) and dashed curve (global).

width, total energy, and number of modes.

curves represent the local and global level. Figure 5 shows that
fhe results for the quality of fit using either local or global noise
are similar. 95 per cent of the waveforms is fitted well within

Moreover, the remaining bins of the waveform are used to defin
two other notions that allow validation of the quality of fitting:
owr, andow r. Theow r, is the local standard deviation of the

components. The actual waveform is that part of the waveform ; - ~
between the begin point and end point in Figure 3. These poim\évaveform and noise, we gety » = 10.80.
are obtained using a suited threshold value. &he- isthemean 5 4 \waveform parameters for classification

waveform standard deviation of the entire dataset. Figure 3 and

Figure 4 show the location of the actual waveform as boundeee fitting step results in a number of Gaussian components with

by the dashed blue vertical lines. The locations of these lines arg 4, ssian parameters. However, for the classification purpose,

identified by truncating the fitted waveform (dashed black curve)yiar parameters are also helpfuidth andtotal energy

by a threshold value based on the local noise intensity (horizontal

dashed blue line) in Figure 3. Due to the existing noise in the waveform, the actual width of
. o the waveform or the actual waveform needs to be identified by

To access the quality of the fitting of the waveform, the four de-finging the locations of the actual begin and end of the wave-

scribed parameters of above are used: the noise standard devigim. The threshold value for each waveform is defined by tak-

tiono, , the waveform standard deviatiefy r,, the mean noise  jhg the maximum value of the (noise) intensity in the first 150

standard deviatiosiy = + Zf;l on,, and the mean waveform pins. This threshold value is applied to truncate the waveform by

standard deviatioayw » = % Zﬁil ow r,, WhereN isthe num-  specifying the locations of the actual begin and end of the wave-

ber of waveforms in the entire dataset. form. Therefore, the begin of the waveform is the intersection of
the horizontal threshold value line and the first rising edge of the

w100 i waveform waveform (most left). The end point of the waveform is the last

16 intersection point (most right). The width of the waveform is the
141 . distance between the begin and the end location of the waveform.

A visualization of the width and the actual waveform is shown in
Figure 3 and Figure 4.

Four waveform parameters are used in the classification step:
NModes: Total number of Gaussians as found by the fitting al-
gorithm. TEnergy: Total energy received back by the GLAS
instrument. This is calculated by taking the area under the ac-
tual waveform. The result is converted in energy units (attojoules
= 10~ '® joules). BeginWF: Location where a waveform firstly
passes the thresholivVidth: Width is the distance between the
begin and the end of the actual waveform.

i 100 200 300 400 500

Figure 4. A waveform with noise standard deviatiog, (from 1 Again, in Figure 3, the req line represents th(_a normalized wave-
) N ) form. The dashed black line represents the fitted waveform with

t0 150 nanose_conds) an_d waveform standard deviatiop, (in . in this case 5 Gaussian modes. The different Gaussian compo-

blue). The noise range is from 1 to 150 nanosecond (at verticglapis are displayed by dashed green lines.

dashed black line). The actual waveform is located between the

two vertical blue lines.

4. WAVEFORM CLASSIFICATION
The quality of the fitting is validated and displayed in Figure 5.

The x-axis is the ratio obw r, andon,. The y-axis is the per- The four waveform parameters described in the above section are
centage of waveforms fitted. The continuous and dashed bladksed in the classification step. Waveforms are classified into 4



different classeshigh vegetationurban, bare landlow vegeta- 5. CLASSIFICATION VALIDATION AND RESULTS
tion andwater. The flowchart for this classification is shown in

Figure 6. From the point of view of image processing, a waveform data

with ellipsoidal footprint size of 95x52 m can be approximated
Water normally absorbs the energy of the laser, therefore the efy, 5 polygon that contains a number of pixels within its boundary.
ergy of the recorded waveform over water is mostly lower thanthe polygon of the classified waveform represents the polygon of
over _bare land, urban or high vegetation. Therefore the total €Mixels in the classified image. The CLC2000 reference data with
ergy is used to extract water waveforms. 100m resolution, is used for validation and represents a known
) . . land cover type. Moreover, the CLC2000 is splitted into 25m pix-
Bare land has a flat open surface, so it mostly gives uni-modgys that inherit the pixel values of the full 100m pixel. In this way,
waveforms. Moreover, bare land can also cause the recordefe optain a larger number of pixels within the footprint polygon,
waveform to have a wider width due to roughness or slope of thghich helps in the accuracy assessment. For example, the foot-
surface. Low vegetation can result in waveforms having multi-pint holygon overlaps two reference pixels of 100m resolution.
modes. However the extra modes have low amplitude and will be-nhe first reference pixel has a large common area and the second
few. In.thls particular step, the bare land Waveforms are classifieflgs 5 small common area with the footprint polygon. When using
by having only one mode. Moreover, by regarding the effect ofreference data of 100m resolution, only two reference pixels are
low vegetation, bare land waveforms are selected in the next stey|ected. However, if we use 25m resolution reference data, we
by having a narrower waveform width. can have more pixels of 25m in the first reference pixel and less

) ) . inthe second one, which improves the precision of the results.
Urban and high vegetation are known as complex areas with dif-

ferent height levels. Therefore, the area usually results in multi5.1 Confusion matrices

mode and wide-width waveforms. This is caused both by artifi-

cial objects as well as by high trees. However, waveforms ovePne of the common means of expressing classification accuracy
high vegetation often have a wider first mode width due to thds the preparation of a classificatioonfusion matrixalso called
scattering from the tree crowns. The urban waveform has a naerror matrix or contingency table) (Lillesand, Kiefer, and Chip-
rower width for all modes due to the reflectance from the sharpnan, 2004). A confusion matrix compares, on a category-by-
shape of artificial objects like buildings, etc. In other words, thecategory basis, the relationship between known reference data
wider first mode results in an earlier rising of the first edge of the(ground truth) which is here the CLC2000 data and the corre-
actual waveform. In this case, the location of the waveform starsponding results to be validated, here the classification of the
is used to separate urban from high vegetation waveforms. FoU€ESat data. The matrices are squared, with the numbers of rows
representative waveforms for four different land cover classes a and columns equal to the number of categories or classes whose

shown in Figure 7. classification accuracy is being assessed. The matrix shows how
well a classification is categorized, but also how bad the classifi-
cation errors of omission and commission are.
Waveform
A commission error means that a pixel is falsely classified within
a certain class. In this research, the commission error for water
‘ Pre-processing ‘ consist of 1394 pixels that are falsely classified as not water. 644
! are classified as bare land, 706 as high vegetation and 44 as urban.

An omission error occurs when a pixel is falsely omitted from
a class by the classifier method. Thus, the classification based
on full waveform laser altimetry analysis fails to recognize and
correctly identify 589 from 3162 as not water.

‘ Gaussian Fitting ‘

Several other descriptive measures can be obtained from the con-
fusion matrix. Theoverall accuracyis the probability that a pixel
randomly taken from the classified data has the same class as the
corresponding pixel in the reference data and vice versa. The
overall accuracy is computed by dividing the total number of cor-
rectly classified pixels (the sum of the elements along the major
diagonal) by the total number of reference pixels.

Theproducer’s accuracys the probability that a pixel taken ran-
domly from reference data class i has the same class as the cor-
responding pixel in the classified data. It indicates how well the
reference data of the class are classified. The producer’s agcurac
results from dividing the number of correctly classified pixels in
each class by the number of reference pixels used for that class
(the column total).

‘ Urban or High vegetation

Finally, theuser’s accuracys the probability that a pixel taken

e =3
randomly from the classified data class i has the same class as the

- . corresponding pixel in the reference data. It indicates the proba-

[ Bareland J [ High j [ Urban j [ Water j bility that a pixel classified to a class actually represents that class
Vegetation . , . ..

in the reference data. The user’s accuracy is computed by divid-

ing the number of correctly classified pixels in each class by the

Figure 6. Flowchart of a classification step. total number of pixels that were classified in that class (the row

total).




5.2 Classification validation and results the total number of observations in reyshown as marginal total
) _ to the right of the matrix);; is the total number of observations
The CLC2000 data consists of 5 classes at the first level suciy columni (shown as marginal total at the bottom of the matrix);

asartificial surfaces agricultural areas forest and semi natural is the total number of observations included in the matrix.
areas wetlands andwater bodies Therefore, the five classes

of the CLC2000 data are then reclassified for a suited purposg reality, i usually ranges between 0 and 1. In the case of per-
of the classification validation. Here, tlagtificial surfacesis fect classification, as true agreement (observed) approaches 1 an
classified as urban class, tagricultural areasandwetlandsas  chance agreement approaches: Gyill approach 1. In this re-

bare land/low vegetation class, tfeest and semi natural areas  geqrch, the classification resiiitequals 0.73. It can be thought
as high vegetation class, and thater bodiesas water class. of as an indication that an observed classification is 73 per cent

Table 1 shows the confusion matrix between the ICESat and th@etter than one resulting from chance.

CLC2000 classification. The columns contain reference datawith . ) ) o -
known land cover type, and the rows are the classified wavefornjﬁ—hEk of 0.73 is a quite promising result for the robust classifica-
data. The abbreviations of, B, HV and U representwater, tion m_ethod t_;ased on vyaveform analysis. Moreovgr, we can see
bare landlow vegetationhigh vegetatiormndurbanrespectively. ~MOre interesting points in Table 2. The urban and high vegetation
Consider for example the water column containing a total num{€sults are quite high in both producer’s accuracy and user’s ac-
ber of 3967 water pixels. 2573 are classified correctly as watef€uUracy (87.53% and 94.81% for urban, and 72.61% and 86.56%
644 are classified incorrectly as bare land, 706 are classified ifor high vegetation). These results could lead to the conclusion

correctly as high vegetation, and 44 are classified incorrectly af1at our method is adequate for the purpose of mapping urban and
urban. high vegetation.

Table 2 shows the classification result. The producer’s accuracy

of the water is 81.37% and the user’ accuracy for the water is 6. CONCLUSIONS
64.86%. Moreover, from Table 1, we obtain the overall accuracy

of the classification of about 75.22%.

In this paper, we have developed a new robust method for land

I Reference Data cover classification based on full waveform laser altimetry analy-
Classification sis. For this purpose the waveforms were decomposed into Gaus-
Data w B HV | U | Total sian components. The fitted waveform is the sum of the Gaussian
w 2573 | 398 | 185 6 3162 components. A notion of quality of fitting is defined by com-
B 644 | 1175| 457 | 21 | 2297 paring the residuals of the waveforms after fitting to the back-
HV 706 | 1873 | 7410 | 216 | 10205 ground noise. 95% of the waveform dataset is fitted well within
u 44 81 507 | 4438 | 5070 25 timeso n; of local waveform noise and within 23 timés; of
Total 3967 | 3527 | 8559 | 4681 | 15596 overall waveform noise. Furthermore, by applying the waveform

analysis for land cover classification an accuracy of classifica-

Table 1. Confusion matrix tion was found of 73% compared to the CORINE classification

Class| Prod. Acc.| UserAcc.| Prod. Acc. | UserAcc. | CLC2000. The group of high vegetation and urban waveforms
(%) (%) (pixels) (pixels) and the group of bareland/low vegetation and water are well sep-
w 81.37 64.86 2573/3162 | 2573/3967| arated. The classification step is done by automatic processing of
B 51.15 33.31 1175/2297 | 1175/3527 the waveforms. This research suggests a new and promising way
HV 72.61 86.58 7410/10205| 7410/8559 to determine land cover information. Moreover, the result derived
U 87.53 94.81 4438/5070 | 4438/4681 from the waveform analysis is also useful for comparison, valida-

Table 2. Classification results tion or updating of classification data obtained by other methods.
The most common parameter for the accuracy assessmént isHowever, the method can be improved as well. There is some
(Lillesand, Kiefer, and Chipman, 2004). Thestatistic is a mea- confusion for classifying individual classes in each group. In the
sure of difference between the actual agreement between the réftoup of high vegetation and urban, the classification method can
erence data and an automated classifier on one side and the chaReimproved more to get better discrimination of between high

agreement between the reference data and a random classifier €S and buildings. The solution of this matter is to consider the
the other side. Conceptuall}}can be defined as: width of every Gaussian models as compared to the width of all

Gaussian models. This is a potential way because the waveform
reflected from buildings and other artificial objects returns a nar-

j, — observed accuracy — chance agreement (2)  rower signal. For high vegetation, the width is expected to be
1 — chance agreement quite wider.

where theobserved accuradsg the proportion of correctly classi-
fied entries and thehance agreemeii the proportion of classes Furthermore, the waveform parameters are not yet good enough

from classification data that could be expected to be classified b{pr discrimination between the groups of bare land/low vegeta-
chance. ion against water. In theory, the water waveform has one mode

. due to the flat water surface while the bare land waveform should
Thek statistic is computed as have more than one mode with a wider width waveform caused
by slope, roughness or low vegetation. However, in practice this
CONY 2= Y (wig - w4) _does not seem to hold. A further step for this _discriminatio_n
b= =17 =1 ‘ 3) is to consider other parameters such as the ratio between first
NZ — Zi:l(xi+ “Tgq) mode and last mode. Moreover, water waveforms over lakes
or rivers somehow show multi-modes where in theory only one
wherer is number of rows in the confusion matrix;; is an  mode should be present. This can be explained by the presence
observation in row and columni (on the major diagonal);; + is of artificial objects like boats or ships.




10 Forast: 235714762:16 Urban: 235714922:14

20 0.035 T T T T . T
Lok
003} A 1
L
0.025 fl P‘ ]
in
0ozt ki i ]
10} IR
0.015} Lir 1
- H18
5t oot} AT 1
o i
yf | 0.005 | £ L .
D) s T, i el O i)

0 100 200 300 400 200 250 300 350 400 450 500

Bareland: 23571457238 Wiater: 23571501231

0.12 012
01t . 0.1 i -
ﬁ fl
4 ik
0.08 }\ 1 0.08 i 1
!_ i
006 i) - nosf i _
H (!
004y ! - 0.04 o
i [R:
ty i
oozt [' } - oozt i -
1 B
[ et % P et S, ‘@h&gﬁ;
DDQ 1 1 1 1 1 1 _DDE 1 1 1 1 1 1
%00 250 300 350 400 450 500 %00 250 300 350 400 450 500

Figure 7. Top Left: High vegetation. Top Right: Urban. Bottom Left: Barallar low vegetation. Bottom Right: Water.

Quality of fit can incorporated into further processing of wave-Duong, H. V., Pfeifer, N., and Lindenbergh, R., 2006. Anéysf
form data based on Gaussian decomposition, by encoding thépeated ICESat full waveform data: methodology and leaf-teaf-

quality in e.g. a Variance- Covariance matrix. ggfrggtrrr;parison. In Proceedings: Workshop on 3D Remote Sensing in
Finally, High Altitude Long Endurance (HALE) UAVs will maybe GLCN-LCTC,  2006. Historical ~ overview of glcn-
in future also carry lasers. With scanning mode or densley arlcs: Land  cover topic  centre,  http://www.glcn-

> ! . » Z - o g
ranged profiles also laser ranging from space can be expected I <_)C:F')?irl%ggg_x'php‘ name=Content&pa=showpage&pid=1last visit

provide area coverage type data in that case (Biesemans, Ever-

. . arding, D. J. and Carabajal, C. C., 2005. ICESat wave-
aerts, and Lewyckyj, 2005). The results of this paper shows th rm measurements of within-footprint topographic reliefdavege-

feasibility of classifying on laser satellite altimetry data alone andation vertical structure. Geophysical research letters32, L21S10,
suggests thus improved results for the combined classification afoi:10.1029/2005GL023471.
active range and passive optical imagery. Hazeu, G. W., 2003. CLC2000 land cover database of the Nattuz:
monitoring land cover changes between 1986 and 20&@eningen, Al-
terra, Green World Research. Alterra-rapport 775/CGl-paypt 03-006
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