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ABSTRACT

In geologic imaging spectroscopy studies, typical end products are often mineral maps. These maps are usually ambiguous and form
a limited method of representing geological information that is potentially contained in spectroscopic images. This situation can be
improved by mapping the spatial configuration of the effects of geological processes instead of the solely individual minerals in a
non-spatial context. This so-called process-based mapping opens the way for a truly contextual mapping approach since the spectrally
detectable expressions of processes occur in specific spatial arrangements. The contextual approach will solve the ambiguity problem
occurring in mineral maps and will facilitate targeting of geologic processes. End products of this approach are not mineral maps but a
map of the geological process.
A typical geologic process that is suitable for mapping using airborne imaging spectroscopy is submarine hydrothermal fluid circulation.
Fluid pathways in fossil hydrothermal systems mark the start, the course, and the end fluid circulation from sites of recharge to sites
of discharge. Boundaries between alteration facies along fluid pathways are zones where physico-chemical conditions change and
these are required for reconstruction of the affects of hydrothermal processes and fluid pathways. In this paper, we demonstrate that
we are able to map the various boundary zones in a fossil hydrothermal system using HyMap hyperspectral imagery in a contextual
image processing approach using the RTM algorithm. The boundary zones between specific neighboring alteration assemblages were
identified from spectral indicator images derived form airborne HyMap data. The supervised detection of boundary zones using this
method is unbiased and selective to user-defined settings. Results in this study are useful for studies on hydrothermal systems and in
particular in the search for early life on earth and other planets and in the exploration for hydrothermally formed mineralizations.

1 INTRODUCTION

Detection of boundaries by edge operators is widely applied to
remotely sensed imagery, ranging from grey-level and multispec-
tral to hyperspectral imagery (Bakker and Schmidt, 2002). The
high spectral information content in hyperspectral images allows
a detailed description of boundaries and favours the use of a su-
pervised boundary detection algorithm. A boundary in an im-
age is defined by the existence of at least two spectrally or textu-
rally contrasting areas, and can as such be described by an image
template. This paper presents the results of supervised boundary
detection in a hyperspectral scene by using the “rotation-variant
template matching” (RTM) algorithm (van der Werff et al., 2005).

Template matching is a pattern recognition technique that is
widely used for detection of objects in grey-level images (Tsai
and Chiang, 2002). In the past, it has been applied for machine
vision such as optical character recognition, face detection, object
detection and defect detection (Tsai and Yang, 2005). In our pa-
per, a template is a 1 dimensional image consisting of approx. 10
pixels. This template image contains information of a bound-
ary between two spectrally contrasting regions. The template is
moved over the image like a moving kernel. At every position,
the template is rotated and a statistical fit is calculated for every
pose (figure 1).

Rotation invariance is a desirable and often studied feature in
template matching (Ullah and Kaneko, 2004), as conventional
spatial cross-correlation algorithms cannot be applied when an
object can be rotated (Choi and Kim, 2002). However, the vari-
ance in spectral fit of the template obtained by fitting at different
orientations contains pertinent information that can be used for
interpretation of the spectral signature of an object. The RTM al-
gorithm has consequently been designed to be rotational variant
(van der Werff et al., 2005).

(a) a template moves. . . (b) . . . and rotates

Figure 1: A template is matched by (a) moving it over an image
and (b) changing the template orientation at every position by 45◦

increments up to a total of eight orientations.
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Figure 2: The template consists of 5 components, the centre pixel
and, on each side, a margin of 0 or more pixels and 1 or more
pixels with a user-defined reference value.

The RTM algorithm is first applied to synthetic data to clarify and
evaluate the algorithm output. Next, the algorithm is applied to
a hyperspectral image that covers an Archaic hydrothermal alter-
ation system in the Pilbara, Australia, with the aim of detecting
boundaries between specific mineral assemblages in this system
that resulted from hydrothermal alteration processes.

2 THE RTM ALGORITHM

The RTM algorithm was described by van der Werff et al. (2005)
and applied for the detection of boundaries between several min-
eral assemblages in a hydrothermal alteration systems. The tem-
plates were composed of shortwave infrared (SWIR) spectra and
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(c) optimal orientation

Figure 3: The result of RTM on an artificial image. Careful ex-
amination learns that the algorithm only identifies the boundary
pixels as defined in the template.

matched to an image, using the spectral angle (Kruse et al., 1993)
as a measure for spectral fit. In this paper, the RTM algorithm
matches a user-defined template to a series of grey-scale images,
each representing a product derived from a hyperspectral image.

A template is designed as a 1 dimensional image and consists of
five components (figure 2). The centre pixel is the centre of rota-
tion and is also used to store the template matching information
for each position. The value of the centre pixel itself is ignored.
This allows a crisp boundary, which theoretically would fall in
between two image pixels, to be indicated by a double-pixel line
centered around the theoretical position of the boundary. Each
side of a template consists of pixels with a reference value and a
margin. The margin consists of zero or more pixels and can be
used for the detection of fuzzy boundaries. The reference val-
ues are defined in one or more pixels and are defined as a range
in which an image value has to fall in order to be considered
a positive match. A higher number of reference pixels requires
more image pixels to fit in the user-defined range. This results in
a more sensitive (non-binary) boundary detection at the cost of
computational speed.

The RTM algorithm moves the template over an image, and at
each position, the template is rotated in 45◦ increments to find
the optimal fit and its orientation. For each pose of the template,
the fit of the left and right side of the template is calculated as
the mean of the number of reference pixels. In case both sides of
the template have a positive match, the fit of the entire template
is calculated as the mean of the left and right side fit. When all
eight template orientations have been evaluated, the highest fit is
selected and, with its orientation, written to the output image. In
case more than one orientations result in an optimal fit, the mean
angle of these optimal orientations is calculated. An angle be-
tween 1 and 360 indicates a preferred orientation, while an angle
of 0 indicates that there was no preferred orientation found. A

value of -1 is set as preferred orientation when the user-defined
settings of the template are equal for the left and right side. The
resulting image shows, for each pixel, the optimal fit of the tem-
plate and the orientation at which this fit has been found.

In the last step, two of the template matching output images are
combined by finding the pixels that are found to have a positive
template match and, in addition, an equal orientation. The sec-
ond criterium is waved in case either of the input images has no
preferred orientation indicated by an angle of zero or, in case a
symmetric template was applied, -1.

3 ARTIFICIAL IMAGERY

The RTM algorithm was first tested on an artificial image
(Fig. 3(a)). A template of three pixels (value left (8), center
pixel, value right (5)) was designed for detection of only those
boundaries where five-values neighbor eight-values. The tem-
plate matching result obtained on the artifical image is displayed
in Fig. 3(b). Pixels that were positively identified as boundary
pixels are indicated by one-values. The matching angle, i.e. the
rotation angle of the template when it matched, is displayed in
Fig. 3(c). Careful examination of the results shows the method
is successful and that the RTM algorithm only identifies those
boundary pixels that strictly match the template and that it is not
confused by other boundaries.

4 HYMAP IMAGERY

4.1 Geological setting

The RTM algorithm was applied to Hymap (Cocks et al., 1998)
airborne hyperspectral data. The area that was selected was the
hydrothermally altered footwall of the Kangaroo Caves massif
sulfide deposit in the Pilbara, Western Australia (Fig. 5A). The
area, which is part of a greenstone sequence, was strongly af-
fected by hydrothermal processes in the Archean. The hydrother-
mal processes modified mineralogical compositions and varia-
tions in mineralogy reflected changing physico-chemical condi-
tions (Brauhart et al., 1998). Studying boundaries between min-
eral assemblages, or alteration facies, offers opportunities for re-
constructing hydrothermal processes. Cudahy et al. (1999) and
Van Ruitenbeek et al. (2005) demonstrated that various alteration
facies can be identified using spectrally derived indices, presence
of white micas and their Al-content. These indices were mapped
from Hymap imagery using band ratios and multiple regression.
The procedure is described in Van Ruitenbeek et al. (2006) and
involves prediction of the presence of white mica using:
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where Lu equals the radiance value of the airborne spectral band
with centre wavelength u. The resulting white mica probabil-
ity image calculated for the test area is shown in Fig. 5C. The
wavelength position of the reflectance minimum of the main ab-
sorption feature of white micas, which is a measure for their Al-
content, was estimated using:
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where Li equals the radiance value of airborne spectral band
with center wavelength i. The resulting absorption wavelength
image is displayed in Fig. 5D. The white mica probability and
the absorption wavelength images were used as input for the RTM
algorithm. The design of the template that was matched to these
images is described in the following section.



Figure 4: Image values of processed hymap imagery (bottom), expert interpretation of geologic units and boundaries (middle), and
template matching result of homogenous area and boundary detection (top) along transect. Homogenous geologic units are represented
by areas A – E. Boundaries between geologic units which were determined by expert opinion are represented by vertical dashed lines.
Boundaries detected by template matching between various homogenous areas are indicated by triangles (top). For location of transect
see Fig. 5.

4.2 Template Design

Values of images in Figs. 5C & 5D were extracted along a tran-
sect (Fig. 5A) that cross cuts the various alteration assemblages
present in the area. These values were plotted in Fig. 4 and in-
terpreted. Several geologic units were visually interpreted (Fig. 4
(middle), Table 1) including the boundaries in between. For each
of the units, which are considered to be homogenous areas, min-
imum and maximum values were calculated. Before calculation
of the statistics outlier values were removed. Based on these
statistics templates were designed for 1) detection of homoge-
nous areas and 2) detection of boundaries between some of these
homogenous areas. The settings of the fifteen templates are listed
in Table 1. Each homogenous area or boundary was described by
two templates, one template that matched white mica probability
values and a second that matched the absorption wavelengths. By
designing templates based on calculating statistics it was tried to
keep the procedure objective.

White mica Absorption
probability wavelength (nm)

Area Alterarion style Min. Max. Min. Max.
C Chert 0.08 0.30 2208.9 2212.4
A1 Al-rich white mica alt. 1 0.92 1.00 2198.1 2206.0
A2 Al-rich white mica alt. 2 0.95 0.99 2206.0 2209.2
B1 Al-poor white mica alt. 1 0.79 0.98 2211.6 2216.2
B2 Al-poor white mica alt. 2 0.47 0.79 2211.0 2215.4
D Chlorite-quartz altered 1 0.17 0.84 2204.8 2211.6
D1 Chlorite-quartz altered 1 0.18 0.24 2204.9 2206.7
E Altered felsic 0.59 0.94 2201.6 2205.8

Boundary Number of pixels Margin
A1–C 5 2
A2–A1 0 0
B1–A2 0 0
B2–B1 0 0
D –B2 0 0
D1–D 0 0
E –D1 1 1

Table 1: Template settings.



Figure 5: Lithology (after Brauhart et al., 1998) of study area (A). Transect of Fig. 4 is shown in black. Processed hymap imagery,
showing simulated natural colors (B), white mica probability values (C), and the wavelength position of the reflectance minimum of
the main absorption feature near 2200 nm of white micas (D). Images E to K show results of template matching. In each image two
homogenous areas are displayed in shades of gray and their boundary is displayed as black dots. Boundaries of geologic units from A
were overlain on B – D.



5 RESULTS AND DISCUSSION

The RTM algorithm was run twice for each homogenous area and
boundary. In the first run the white mica probability values were
matched and in the second run the absorption wavelength values
were matched using their respective templates. In an additional
step the matching results of the two runs were combined. The
matching results are displayed in Figs. 4 (top) and 5E – 5K. Re-
sults plotted in the transect in Figure 4 show that the matched ge-
ologic units coincide well with those interpreted by expert. Mis-
matches mainly occur by area D that overlaps with area D1 and
C. This is not surprising since D, D1, and C are spectrally simi-
lar. Most of the boundary zones that were identified by the RTM
algorithm along the transect coincide with those interpreted by
expert. This results demonstrates that the method is successful,
since the transect statistics were used for designing the matching
templates. Only the boundary between A1 and C was not cor-
rectly identified. The reason for this is not yet clear.

Figures 5E–5K show the spatial distribution of the matching re-
sults for each combination of two neighboring geologic units and
their common boundary. It shows that the continuity of the identi-
fied boundaries varies strongly between the quantified boundaries
of Table 1, for instance the B1-A2 boundary in Fig. 5G is rela-
tively continuous contrary to boundary A1-C. Also the number
of matched boundaries in the area various strongly. The A2-A1
boundary is abundant while the A1-C boundary occurs sparsly.
These differences in continuity and abundance are directly the
result of the template design and can be changed by modifying
the templates design.

The position of the boundaries that were identified by template
matching reflect both changing lithology (boundaries A1-C and
E-D1) and alteration conditions (boundaries A2-A1, B1-A2, B2-
B1, D-B2, D1-D). The latter boundaries are the result of changes
in the physico-chemical environment due the hydrothermal alter-
ation processes. Therefore the matched boundaries provide infor-
mation on geologic processes itself.

6 CONCLUSIONS

The RTM algorithm is an effective method for supervised detec-
tion of boundary zones. The characteristics of the boundary zone
have to be defined in a template that is subsequently matched to
an image files at various rotation angles. Application of RTM al-
gorithm to synthetic and Hymap imagery showed that the bound-
ary detection method is selective and only positively identifies
boundaries that are quantified in the template.

Zones of changing mineralogy in the Kangaroo Caves test area
reflect changing physico-chemical conditions due to hydrother-
mal processes. Detection of these boundary zones using airborne
spectral indicator images provides information on the hydrother-
mal processes themselves. It is therefore concluded that the RTM
algorithm provides means for processed based mapping which
goes beyond mapping individual minerals or other surface mate-
rials.
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