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ABSTRACT 
 
Information on the structural complexity of forest stands is required to inform conservation priorities that guide the sustainable 
management of private native vegetation for multiple objectives of landowners. Whilst research into methods for the operational 
mapping of vegetation structure is expanding, the research is largely exploratory, and no methods have yet seen widespread 
acceptance. This research compares spectral (First principal component, Normalised Difference Vegetation Index, Enhanced 
Vegetation Index, Infrared Vegetation Index) and spatial transformations (Variance, Morans’ I, and G*) of Landsat remotely-sensed 
imagery in combination with environmental attributes (Topographic derivatives and Soil Fertility) for estimating within-stand 
variations in forest structural complexity using linear regression analysis. Dry sclerophyll forests on the Southern Tablelands of New 
South Wales, Australia were used as a case study. Predictions were obtained for all structural attributes with the exception of 
Vegetation Cover 0-0.5m, and Overstorey regeneration. Errors of up to 31 percent of the field measured range of attributes 
accompanied predictions. Environmental attributes were more commonly selected as explanatory variables than derivatives of 
Landsat imagery, with NDVI and spatial autocorrelation measures (Moran’s I and G*) the most commonly selected derivatives. 
Despite the moderate accuracy of predictions, the estimates of forest stand structural complexity are a useful information source for 
natural resource managers who require information on the relative structural complexity of native vegetation stands within the 
landscape. The utility of finer spatial resolution imagery is a key research priority since the moderate resolution of Landsat imagery 
limited the sensitivity of its derivatives in the current study. 
 
 
 

1. INTRODUCTION 
 
Well-managed native forests conserve biodiversity and maintain 
soil and water resources, whilst improving agricultural 
productivity and offering supplementary income for farmers 
from timber products (Parsons, 1999). The establishment of a 
“comprehensive, adequate and representative forest reserve 
system” is the key means identified for achieving long-term 
ecologically sustainable management of Australian forests 
regardless of land tenures (Commonwealth of Australia 1992). 
Due to poor representation in public reserves, the conservation 
of native vegetation is reliant on sympathetic management of 
stands occurring on private lands (NSW NPWS, 2003). Within 
Australia, an extensive legal and policy framework controls 
practices that could adversely affect the values of native 
vegetation. The complexity of current legislation and 
regulations creates uncertainty over the legality of management 
activities thus acting as disincentives to the management 
required to conserve native vegetation, (Dames and Moore, 
1999; Parsons, 1999). Information on the type, quantity and 
condition of native forests on private tenure across Australia is 
limited and inconsistent, yet is required to inform conservation 
policy and prioritise management options for native vegetation 
(Dames and Moore, 1999; Parsons, 1999). 
 
Traditional methods for estimating forest attributes (field 
surveys and air photo interpretation) remain the most accurate 
and comprehensive, but are costly where repeated 
measurements and/or measurement across large extents are 
required, and are limited where vegetation occurs on lands with 
restricted access (Musick and Grover, 1991). Digital analysis of, 
typically satellite, remotely sensed imagery offers a practical 
alternative for inventory and monitoring based on its 
compromise between detail and coverage. The exploration of 

methods suitable for the operational monitoring of indices of 
forest structural complexity based on remotely sensed imagery 
is receiving increasing research attention, yet most research 
remains exploratory (Zerger et. al., 2006). Limitations of 
alternative approaches previously utilised nationally and 
internationally for estimating forest parameters from passive 
satellite imagery include, but are not limited to: 
- An inability to estimate understorey attributes due to the 

omission of environmental variables (Geometric 
Optical/Sub-pixel modelling) (Lees and Ritman, 1991);  

- Incorrect assumptions regarding the spatial distribution of 
trees and homogeneity of scene component reflectance 
(Geometric optical modelling) (Woodcock et al., 1997);  

- Immense field data requirements (decision trees) (Lees and 
Ritman, 1991);  

- Limited output data types (decision trees, neural networks) 
(Lees and Ritman, 1991); and/or  

- An inability to differentiate variations in biophysical 
parameters with similar spectral response (maximum 
likelihood classifiers) (Miller, 2005).  

 
Predictive models based on empirical relationships between 
field inventory, abiotic environmental variables, remotely 
sensed imagery derived using regression analysis may provide 
an alternative method to measure and predict vegetation 
attributes over large areas and on lands with restricted access 
(Franklin et al., 2000).  
 
The objective of this research was to compare alternate spectral 
and spatial transformations of remotely sensed imagery, in 
addition to environmental variables for estimating a stand-level 
structural complexity index and its constituent attributes.  

 
 



2. METHODS 
 
2.1 Study Area 
 
The Southern Tablelands of New South Wales is located largely 
in the South-Eastern Highlands Bioregion southeastern 
Australia (148º 35' 28" to 149º 45' 6" E and 35º 38' 46" to 34º 
17' 8" S). The bioregion has a temperate climate with warm 
summers and no dry season. Mean annual rainfall ranges from 
460 to 1883mm, and temperature from 6-16ºC (NSW NPWS, 
2003). Topography of Tablelands comprises the broken ranges 
and plateaus of the Great Dividing Range. Elevation within the 
Bioregion ranges from 500 to 1100m increasing in the 
southwest corner with the Australian Alps and in the east with 
the Great Escarpment (NSW NPWS, 2003). Palaeozoic granites, 
metamorphic sedimentary rocks and tertiary basalts are the main 
substrates occurring within the Murrumbidgee subregion of the 
Bioregion.  
 
Dry sclerophyll forests have been extensively cleared or 
modified in the past. Dry sclerophyll forests now occur 
predominately on private or leasehold land, as disturbed 
regrowth and remnant patches on less fertile and steep terrain 
deemed unsuitable for agriculture. Remnant forest stands 
typically contain three discontinuous strata: an overstorey tree 
stratum dominated by eucalypts, an understorey sclerophyll 
shrub stratum, and a low herbaceous stratum (ACT, 2003).  
 
The target community and study location were driven by a 
related project developing a decision support system to assist 
landowners to categorise and manage native vegetation, 
particular dry sclerophyll forests and woodland, on their 
properties for multiple values. Through the toolbox interface, 
spatially explicit estimates of the McElhinny Index (McElhinny, 
2005) and structural attributes will be made available to 
landowners to extract approximations of the structural 
complexity of dry sclerophyll forest stands occurring on their 
land. The spatial predictions can be used by landowners to 
monitor the structural complexity of, and assess management 
alternatives for, forest stands, facilitating access to alternative 
policy instruments as incentives for conservation works. 
 
2.2 Predictive Vegetation Modelling 
 
Linear regression analysis was used to explore the estimation of 
a structural complexity index, as a function of textural and 
spectral derivatives of Landsat imagery and environmental 
attributes. 
 
Response Variables: The primary intention of the research was 
the estimation of a structural complexity index for forest stands. 
McElhinny (2005) developed an index for determining the 
conservation value, based on the structural complexity, of open 
eucalypt forests and woodlands on the NSW Southern 
Tablelands. The McElhinny Index ranges from 1 to 100, the 
later indicating stands with high structural complexity, such as 
that likely to occur in an undisturbed remnant, the former 
indicating a stand with simplified structure, such as that in a 
disturbed regrowth stand where the forest profile has simplified 
(McElhinny, 2005).  
 
The Index is calculated from thirteen core structural attributes 
including: Number of perennial species (sp./400m2 plot); 
Lifeform richness (lifeforms/400m2 plot); Basal area of live 
trees (m2/ha); Quadratic mean diameter at breast height (dbh) of 
live trees (cm); Vegetation cover 0-0.5m height (%); Vegetation 
cover 0.5-6.0m height (%); Overstorey regeneration (stems with 

dbh <5cm) (stems/ha); Hollow bearing trees (stems/ha); Live 
trees with dbh>40cm (stems/ha); Number of dead trees 
(stems/ha); Length of fallen logs (>10cm diameter) (m/ha); 
Length of large (>30cm diameter) fallen logs (m/ha); and Litter 
dry weight (t/ha). Field samples for the thirteen core forest 
structural attributes were collected in a separate study 
(McElhinny, 2005), using a stratified sampling regime. Between 
winter 2002 to 2003, a representative set of 32 sites was 
established by locating two replicates within each of 24 stratum 
determined by: two vegetation communities (Broadleaved 
Peppermint-Brittle Gum (Eucalyptus. dives-E. mannifera) and 
Scribbly Gum-Red Stringybark (E. rossii-E. macrorhyncha )); 
two catchments (Murrumbidgee and Lachlan), two levels of 
rainfall (600-700mm and 700-800mm) and two levels of 
vegetation condition (relatively undisturbed and disturbed). At 
each site, typically three, but up to six, plots 50 by 20 meters 
were established, providing estimates of stand level structural 
attributes for 100 plots.  
 
The varying combination of surrogates and resulting indices 
available for estimating stand structural complexity for 
conservation assessment is broad (for example McElhinny, 
2005; Gibbons et. al., 2004; Parks, Newell and Cheal, 2003; 
Oliver, 2002). To accommodate potential changes in the 
formulation of an index, or the index preferred by natural 
resource agencies, the scope of the research was widened to 
allow the exploration of the estimation of the set of stand 
attributes used to calculate the index, in addition to the 
estimation of the index. 
 
The low number of samples at the site level (32 Sites) would 
have constrained analysis, particular the availability of samples 
to withhold for validation. A comparison of the variance in 
attribute values between plots at a site to the variance between 
plots across all sites indicated that the variance between plots at 
a site was not significantly smaller. Thus, the plots were 
determined not to be clustered and could be treated as 
independent samples. 
 
Explanatory Variables: Forest stand structural complexity is 
an expression of the combined effect of deterministic and 
stochastic factors that influenced a stand during its development  
(Zerger, et. al., 2006; Miller, 2005). 
   
Variables accounting for deterministic factors: Abiotic GIS 
variables have been found to account for deterministic factors in 
predictive vegetation modelling (Austin, 2002; Guisan and 
Zimmermann, 2000). Environmental variables assist in the 
prediction of understorey attributes by models that otherwise 
utilise the spectral response in remotely sensed imagery that is 
hindered by the overstorey and the shadow it projects (Lees and 
Ritman, 1991). 
 
Vegetation within the bioregion is known to vary in relation to 
changes in altitude, temperature and rainfall (NSW NPWS, 
2003). Height, slope and aspect were extracted from a 25m 
digital elevation map. The cosine and sine of aspect were 
calculated to transform the circular measure of aspect linear 
variables depicting degree of ‘north’ and ‘east’, respectively.  
 
The PCTL, an algorithm developed by Gallant and Wilson 
(2000) was used to calculate topographic position. The output 
from the algorithm ranges from 0 to 1. Values approaching 0 
indicate that position is low in the landscape, such as in a valley, 
whilst values approaching 1 indicate that position is high in the 
landscape, such as on an upper slope or hilltop.  
 



The plant productivity index (Kesteven, Landsberg, and URS 
Australia, 2004) is a 250m-resolution raster layer where each 
grid cell value is a relative index of plant productivity. The 
index is a measure of the amount of photosynthetically active 
radiation absorbed by plant canopies (APAR), modified by 
factors to account for soil fertility, atmospheric vapour pressure 
deficits, soil water content and temperature. (Kesteven, 
Landsberg and URS Australia, 2004).  
 
Walker et. al. (2001) have found that substrate fertility can 
influence the type of successional process vegetation is subject 
to, and inturn its structural complexity. A layer representing 
substrate fertility was produced by combining a geology 
coverage grouped by origin (volcanic or sedimentary) with a 
topographic layer grouped by relative elevation (valley or 
ridge). Within the layer, substrates on which progressive 
succession would occur (valleys below ridges of volcanic 
origin) and those substrates on which regressive succession 
would occur (weathered volcanic ridges, those of sedimentary 
origin regardless of topographic position) are separated.  
   
Variables accounting for stochastic factors: Variables derived 
from remotely sensed imagery have been found to account for 
deterministic and stochastic factors in predictive vegetation 
modelling (Miller, 2005). Within Australia, the Landsat 7 
sensor provided the optimal compromise between spatial 
resolution and extent coverage with a relatively regular and 
short repeat capture cycle at a cost that allow repeated 
acquisition for operational monitoring (Wallace and Campbell, 
1998). The relationship between Landsat spectral bands to 
Southern Tablelands dry sclerophyll forests has not been 
studied. Instead, research into the characterisation of wet 
sclerophyll forests in adjacent coastal areas (Lees and Ritman, 
1991) utilising Landsat bands 2, 4, and 7 provided guidance on  
appropriate individual bands selection. 
 
Spectral transformations reduce the dimensionality of the 
regression analysis by condensing the information content of 
multiple spectral bands into a reduced number of variables. Four 
spectral transformations were investigated. The Normalised 
Difference Vegetation Index (NDVI), is extensively used 
vegetation index in vegetation modelling studies (Asner et. 
al.2003) and is defined as  
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Where ρ is reflectance in the near-infrared and red wavelengths 
of the electromagnetic spectrum. 
 
The enhanced vegetation index, developed to address the 
susceptibility of the NDVI to background influences common in 
open-canopied vegetation such as dry sclerophyll forests (Asner 
et. al.2003), is defined as: 
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(2) 
 
Where the coefficient L is approximated by 1, C1 by 6, C2 by 
7.5, and G by 2.5. 
 

The IFRI, found to detect variations in plant biomass better than 
the NDVI (Treitz and Howarth, 2003), is defined as: 
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Where SWIR is the reflectance in the short-wave infrared 
wavelengths of the electromagnetic spectrum. 
 
The first principal component was also utilised, as a principal 
components analysis provides maximum preservation of the 
information from the original suite of Landsat bands, as 
compared to indices produced from only a few bands. 
 
The spatial information content of remotely sensed imagery can 
assist in the differentiation of stands with different structures 
but common spectral response in remotely sensed imagery 
(Pearson, 2002). For examples, Nel, Wessman and Veblen 
(1994) used image texture to delineate regrowth from remnant 
vegetation, the latter having a higher gap size variance that is 
mirrored in the image texture. Texture measurements analyse 
the heterogeneity of raster images by characterising variations 
in reflectance between a focal pixel and its neighbouring pixels, 
indicating the degree to which any single pixel differs from its 
neighbouring pixels in terms of magnitude of difference and the 
direction of difference (Musick and Grover, 1991). Variance 
seeks to quantify the magnitude of difference between a pixel 
and its neighbourhood, regardless of the direction of the 
difference. It is defined as: 
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Where xi is the attribute value of i, x is the mean and n is the 
number of samples 
 
Local Indicators of Spatial Association (LISA) quantify the 
degree to which a phenomenon is clumped or dispersed in the 
local area (Anselin, 1995), such as that displayed by forest 
canopy texture. Moran’s I and G* are examples of LISA.W 
Moran’s I seeks to quantify the amount and direction by which 
a pixel differs from its neighbours, and is calculated as: 
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Where zi and zj are deviations from the mean of i and j; s2 is the 
variance; and wij(d) is the spatial weight matrix. 
 
In addition to quantifying the magnitude and direction of 
difference between a pixel and its neighbourhood, like Moran’s 
I, G* seeks to also account for the intensity of spectral 
reflectance. G* is defined as: 
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Where d is the lag distance considered; n is the number of 
samples; Wi is the sum of the weights; Sli=Wi for a binary 
weights case; and x(i) is the mean of the entire sample. Wi, Sli, 
x(i), and s(i) are calculated excluding i.  
 
Each algorithm was applied using a moving windows with a 
radius of 3 or 5 pixels, or 75m 125m in Landsat 7 imagery to 
the spectral transformations.  
 
2.3 Predictive Model Development 
 
Values in each explanatory variable corresponding to the 
location of the field plots were extracted and compiled into a 
database for modelling. Within JMP IN 4.0.4 (SAS Institute 
Inc., 2001), stepwise least squares regression was used to 
establishing the empirical relationship between vegetation 
attributes and explanatory variables, and build models for 
predicting the McElhinny Index and the biophysical attributes 
used to calculate the index. Data for 59 randomly selected plots 
was utilised to train the regression models, whilst the remaining 
41 plots were withheld from the analysis for later use in 
validating the model predictions. A significance criterion of 
0.05 was placed on explanatory variable entry and exit during 
the stepwise regression analysis process. The regression 
analysis also assisted in identifying the biophysical attributes 
that could be predicted with sufficient confidence, and which 
explanatory variables were useful for accounting for variations 
in each forest stand attribute. 
 
2.4 Model Validation 
 
The models were subsequently inverted, by applying the 
empirical relationships to the continuous explanatory variables, 
using the Model Maker function in Imagine 8.6 to produce 
spatial predictions of the structural complexity index and each 
attribute over the study region. The root mean square error 
(RMSE) was calculated to assess the accuracy of the resulting 
spatial predictions against the independent validation set 
withheld from the field data. RMSE is the appropriate measure 
for determining the accuracy of predictions of continuous 
spatial attributes.  An indication of the generality of the models 
can be obtained by comparing the RMSE for plots used to train 
the models to those used to validate the models. 
 
 

3. RESULTS 
 
The amount of variance in response variables that was 
explained by the models was low. The models accounted for 
only 15 per cent of the variation in the McElhinny Index, whilst 
up to 38 per cent of variation in some individual biophysical 
attributes were accounted for (Refer Table 1). The average error 
associated with estimates was reasonable for the McElhinny 
Index (+/- 13 per cent for test data), but was quite large for 
some biophysical attributes (+/- 31 per cent for Vegetation 
Cover 0.5m-6.0m) (Refer Table 2). No models with sufficient 
significance (<0.05) were obtained for Vegetation Cover 0-
0.5m, and Overstorey regeneration.  
 
Environmental variables dominated the explanatory variables, 
but were commonly accompanied by variables derived from 
remotely sensed imagery. Measures of remotely sensed image 
texture were less commonly utilised than had been anticipated. 
Where texture measures were utilised, Moran’s I and G* were 
more commonly selected over the variance measure, and were 
most commonly calculated using a 5-pixel moving window. 

 
Typically, RMSE values for validation plots were typically 
lower than for training plots. Exceptions included: Number of 
perennial species; Quadratic mean diameter at breast height of 
live trees; Vegetation cover 0.5-6.0m height; Number of dead 
trees; Length of large fallen logs (Refer Table 2). 
 
Table 1: Environmental attributes were common selected over 
variables derived from remotely sensed imagery as explanatory 
variables in models providing the most accurate predictions of 
the McElhinny Index and dry sclerophyll forest biophysical 
attributes.    
 
Response 
Variable R2 RMSE 

Prob 
>F 

Explanatory 
Variables 

McElhinny Index 0.15 11.09 <0.01 NDVI M5 
Basal Area 

0.32 7.555 <0.01 
PC1, Substrate , NIR, 
PI 

DBH 
0.18 5.57 0.03 

Substrate, SWIR, IFRI 
G3, Green 

Large Log Length 0.21 55.65 <0.01 Slope, NDVI M5 
Litter Dry Weight

0.32 4.25 <0.01 
SWIR, NDVI G5, 
North, NDVI 

Log Length 
0.38 331.71 <.0.01 

Slope, Green, 
Elevation 

No. Dead Trees 0.12 70.84 0.03 East, Elevation 
No. Hollow Trees 0.22 45.26 <0.01 PI, EVI V5 
No. Large Trees  

0.14 30.82 0.04 
NDVI, SWIR, 
Substrate 

No. Lifeforms 0.12 0.92 0.02 IFRI M5, Slope 
No. Perennial Sp. 0.19 4.80 <0.01 PI, NDVI G5 
Shrub Cover 0.11 2.86 0.01 North 
 
 
Table 2: The similar errors associated with model estimates of 
the McElhinny Index and biophysical attributes for validation as 
compared to training plots, indicating the generality of the 
regression models.  
 

Actual % Field Range Response 
Variable Training Validation TrainingValidation
McElhinny Index 10.71 10.57 13.39 13.21 
Basal Area 8.04 7.22 16.10 14.46 
DBH  5.62 7.33 14.55 18.99 
Large Log Length 58.08 72.32 20.74 25.83 
Litter Dry Weight 5.39 4.95 14.73 13.52 
Log Length 336.20 327.58 20.25 19.73 
No. Dead Trees 92.68 100.50 14.95 16.21 
No. Hollow Trees 42.77 41.68 17.82 17.36 
No. Large Trees 40.56 30.79 28.97 21.99 
No. Lifeforms 1.00 0.91 10.03 9.12 
No. Perennial Sp. 4.60 5.23 14.82 16.87 
Shrub Cover 2.93 4.26 21.52 31.26 

 
 

4. DISCUSSION 
 
A comparison of the RMSE for plots used to train the models to 
those used to validate the models reveals the generality of the 
models. The similarity in RMSE values for test plots as 
compared to RMSE values for validation plots indicates the 
potential robustness and wider applicability of the predictive 
models to situations other than that in which the models were 
parameterized. This indicates that alternative modelling 



methodologies and/or explanatory variables derived from the 
same base abiotic and remotely sensed data sets are unlikely to 
achieve superior model performance.  
 
The uncommon selection of image texture measures may be 
linked to the spatial resolution of Landsat imagery relative to 
the size of tree canopies in the target vegetation community. 
The spatial resolution of the Landsat imagery may have reduced 
the utility of the measure of image texture to differentiate 
within-stand variations in structure that produce similar spectral 
reflectance. Woodcock and Strahler  (1987) confirmed through 
exploration of image local variance that spectral separability is 
maximised when the resolution-cell size of imagery is less than 
half, and no more than three-quarters, the size of the target 
object. Landsat imagery is unlikely to meet this criterion for 
optimal spatial resolution. With the exception of stands where 
regrowth was significantly overstocked, and thus the forest 
cover homogeneous, the generalisations in moderate spectral 
and spatial resolution imagery suppress inter-pixel variations 
and thus texture (Wulder et. al., 1998). Imagery from finer 
spatial resolution sensors, particularly SPOT 5, should 
increasingly become a viable alternative if the cost of imagery 
for covering regional extents continues to decline, and the 
capacity of computers to store and process the larger data sets 
associated with finer spatial resolution imagery continue to 
increase. Regardless, if the methodology presented in this paper 
is to be utilised for operation monitoring alternative imagery 
will need to be sourced given the demise of the Landsat 7 sensor 
following the commencement of this research. 
 
The common selection of abiotic environmental attributes as 
explanatory variables, particularly for models of structural 
attributes associated with the understorey, suggests that despite 
an open canopy, the overstorey is still interfering with the 
spectral reflectance of understorey vegetation reaching the 
remote sensors (Nagendra, 2001). This also reinforces the value 
of environmental attributes in explaining variations in attributes 
of the understorey whose spectral reflectance contributes little 
to the information in remotely sensed imagery due to 
interference by the overstorey. 
 
The more common utilisation of environmental variables as 
predictor variables in the regression models does not diminish 
the value of variables derived from remotely sensed imagery as 
explanatory variables in predictive vegetation modelling. Zerger 
et. al., (2006) and Pressey et. al. (2000) have already identified 
that environmental variables are unsuitable data on which to 
base a system for the operational monitoring of vegetation due 
to: a) the comparatively coarse resolution, inconsistent coverage 
and infrequent temporal updates of environmental variables and 
b) since environmental variables do not account for changes in 
vegetation attributes due to random factors, such as competition, 
human or natural disturbance, land use management and 
vegetation enhancement activities. Since future changes in 
vegetation structural complexity are likely to result from the 
latter factors as opposed to changes in environmental 
characteristics (Zerger et. al., 2006), data used as the basis of an 
operational monitoring system of vegetation structure must be 
capable of accounting for random factors. Miller (2005) found 
that, in contrast to abiotic environmental variables, variables 
derived from remotely sensed imagery, particularly measures of 
image texture, have the potential to account for random factors 
in predictive vegetation modelling.  
 
Although the model fit was low, the spatial estimates of the 
McElhinny structural complexity index and forest stand 
attributes are still useful for management and monitoring. 

Natural resource managers are more flexible in their 
information requirements than, for example forest scientists or 
forest managers. Forest scientists or managers require accurate 
and precise measurements of the attributes of a native 
vegetation stand to support research and estimate harvesting 
yields, respectively. In contrast, natural resource managers are 
more concerned with the relative value of attributes of a native 
vegetation stand and comparing and contrasting the attributes to 
other stands of native vegetation within the landscape that may 
differ in location, type or condition (Parkes, Newell, and Cheal, 
2004).  
 
 

5. CONCLUSIONS 
 
This research has explored the use of spectral and spatial 
derivatives of remotely-sensed imagery, combined with 
environmental attributes, for estimating the structural 
complexity of open forest stands using linear regression 
analysis. Although the strength of the predictions are moderate, 
information on the structural complexity of stands provided by 
the estimates are still useful for natural resource managers who 
are interested in the relative structural complexity to others in 
the landscape. Nevertheless, the similarity of error in 
predictions of training and validation field samples suggest that 
stronger and more accurate predictions are unlikely to be 
achieved regardless of further research effort. 
 
The research has also provided valuable insights into which 
structural attributes can be estimated with the methodology and 
the utility of alternate explanatory variables. The clarification 
that environmental variables provide in estimating understorey 
attributes and the role of variables derived from remotely-
sensed imagery in accounting for variations in forest stand 
structure that is the consequence of random disturbance as 
opposed to environmental characteristics, findings consistent 
with others in the research literature. The results of this 
research, although preliminary, point to the utility of the 
normalised difference vegetation index and spatial 
autocorrelation (Moran’s I and G*) variables derived from 
remotely-sensed imagery combined with environmental 
variables of site fertility in addition to topographic measures of 
elevation, slope, and aspect. 
 
The demise of the Landsat sensor, combined with the 
identification that the coarse spatial resolution of Landsat 
imagery relative to the target vegetation may be limiting the 
accuracy of textural and spectral explanatory variables; suggests 
that a key future step in achieving an operational methodology 
for monitoring vegetation structural complexity, is the testing of 
finer spatial resolution imagery.  
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