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ABSTRACT: 
 
In a large number of spaceborne and airborne multi-detector spectrometer imagery, there commonly exist image stripes and random 
dead pixels. The techniques to recover the image from the contaminated one are called image destriping (for stripes) and image 
inpainting (for dead pixels). In order to constrain the solution space according to a priori knowledge, this paper presents a maximum 
a posteriori (MAP) based algorithm for both destriping and inpainting problems. In the MAP framework, the likelihood probability 
density function (PDF) is constructed based on a linear image observation model, and a robust Huber-Markov model is used as the 
prior PDF. A gradient descent optimization method is employed to produce the desired image. The proposed algorithm has been 
tested on images of different sensors. Experimental results show that it performs quite well in terms of both quantitative 
measurements and visual evaluation. 
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*  Corresponding author.   

1. INTRODUCTION 

Remote sensing images often suffer from the common problems 
of stripe noises and linear or random dead pixels. These 
severely degrade the quality of the measured imagery, and will 
introduce a considerable level of noise when processing data 
without correction of them. The correction of image stripes is 
commonly called as image destriping. The recovery of the dead 
pixels sometimes goes by the name of dead pixel replacement. 
In this paper, however, we use another more attractive name, 
i.e., image inpainting, which has been widely used in the field 
of digital image processing(Bertalmio et al., 2000).  
 
At the highest level, destriping techniques can be divided into 
frequency domain or spatial domain algorithms. The simplest 
frequency domain algorithm is to process the image data with a 
low-pass filter using discrete Fourier transform (DFT). This 
method has the advantage of being usable on geo-rectified 
images, but it often does not remove all stripes and leads to 
significant blurring within the image. Chen et al. (Chen et al., 
2003) proposed a method to distinguish the striping-induced 
frequency components using the power spectrum, and then 
remove the stripes using a power finite-impulse response filter. 
Some researchers remove the stripes using wavelet analysis 
which takes advantage of the scaling and directional properties 
to detect and eliminate striping patterns (Chen et al., 2006; 
Torres and Infante, 2001).  
 
In the spatial domain, most destriping algorithms examine the 
distribution of digital numbers for each sensor, and adjusts this 
distribution to some reference distribution (Gadallah et al., 
2000). These methods are equalization(Algazi and G. E. Ford, 
1981), histogram matching (Horn and Woodham, 1979; 

Wegener, 1990), moment matching (Gadallah et al., 2000), and 
others. More recently, Rakwatin et al. (Rakwatin et al., 2007) 
combined histogram matching with facet filter for stripe noise 
reduction in MODIS data. These methods have a similarity 
assumption for the image data. 
 
For the inpainting problem, the nearest-neighbor, average or 
median value replacement methods are commonly employed 
(Ratliff et al., 2007). The main disadvantage of these methods is 
that they are employable only when the dead area is small (for 
example, the width of the dead line is only one or two pixels). 
Even for dead areas just a little larger, these methods will 
produce obvious artifacts.  
 
In this paper, we formulate the destriping and inpainting 
problems using Maximum A Posteriori (MAP) estimation. Our 
motivation is to constrain the solution space of the ill-posed 
problems according to a priori knowledge on the form of the 
solution using the MAP framework. To our best knowledge, 
this is the first time that remote sensing destriping or inpainting 
problem is formulated using probabilistic approach. 
 
 

2. THE PROPOSED ALGORITHM 

Image Observation Model 

Letting ,x yz and ,x yg  respectively denote the input radiance to 

be measured and the senor output of location ( , )x y , the 
relationship between ,x yz and ,x yg can be related by a linear or 
nonlinear function. In this paper, we assume the degradation 
process can be linearly described as in (Gadallah et al., 2000; 
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Poros and Peterson, 1985), but we permit the existence of 
linear-assumption error as  
 
 
 , , , , ,x y x y x y x y x yg = A z + B + n    (1) 
 
 
where ,x yA and ,x yB are the relative gain and offset parameters 

respectively, ,x yn is the sum of linear-assumption error and 
sensor noise. In matrix-vector form, the relation between the 
observed image and the desired image can be expressed as 
 
 
 = + +g Az B n     (2) 
 
 
In the model, g is the lexicographically ordered vector of the 
observed image, z  represents the desired image, A is a 
diagonal matrix with diagonal elements being the gains of all 
pixels, is the offset vector, and represents the noise vector. B n
 
2.2 MAP Reconstruction Model 

In recent years, the Maximum A Posteriori (MAP) estimation 
method has been central to the solution of ill-posed inverse 
problems in a wide range of applications (Borman and 
Stevenson, 1998 ), such as image denoising (Hamza and Krim, 
2004), deblurring (Ferrari et al., 1995), super resolution 
reconstruction (Shen et al., 2007), and others. Our purpose is to 
realize the MAP estimate of a destriped or inpainted image , 
given the degraded image

z
g . It can be computed by 

 
 
 ˆ argmax ( )p=

z
z z | g .  (3) 

 
 
Applying Bayes’ rule, equation (3) becomes 
 
 

 ( ) ( )ˆ arg max
( )

p p
p

=
z

g | z zz
g

.  (4) 

 
 
Since is independent of(p z | g) g , ( )p g can be considered a 
constant and hence equation (4) can be rewritten as 
 
 
 ˆ arg max ( ) ( )p p=

z
z g | z z

)

.  (5)                                

 
 
The first probability density functions (PDF) in (5) is the 
likelihood density function. It is determined by the probability 
density of the noise vector in (2), i.e., ( ) (p p=g | z n . Since 
different pixels may be degraded to different degrees in the 
destriping and inpainting problems, we assume the noise is not 
identical, but still independent. Under these assumptions, the 
probability density is given by 
 
 

 1

1

1 1( ) exp ( ) ( )
2

Tp
M

−⎧ ⎫= − − − − −⎨ ⎬
⎩ ⎭

g | z g Az B K g Az B  (6) 

 
 
where 1M is a constant, and is the covariance matrix that 
describes the noise. Since the noise is assumed 
independent, is a diagonal matrix containing the noise 
variances. Thus, we can further rewrite equation (6) as 

K

K

 
 

 2

1

1 1( ) exp ( )
2

p
M

⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

g | z Q g Az B  (7) 

 
 
where is also a diagonal matrix. Q
 
The second density function in (5) is the image prior which 
imposes the spatial constrains on the image. This may include 
such constraints such as positivity, smoothness and so on. Here, 
we employ an edge-preserving Huber-Markov image prior 
model. This prior model can effectively preserve the edge and 
detailed information in the image (Schultz and Stevenson, 1996; 
Shen et al., 2007, doi:10.1093/comjnl/bxm028). It is denoted as 
 
 

    ,
2 ,

1 1( ) exp ( ( ))
2 c x y

x y c C

p d
M

ρ
λ

∈

⎛ ⎞
⎜ ⎟= −
⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑z z  (8) 

 
 
In this expression, 2M is a constant, c is a clique within the set 
of all image cliques C , the quantity is a spatial activity 

measure to pixel
,(c x y )d z

,x yz which is often formed by first-order or 

second-order differences, and ( )ρ ⋅ is a Huber function defined 
as  
 
 

 
2

2

                | |  
( )

2 | |    | | >

i i
i

i i

μ
ρ

μ μ μ

⎧ ≤⎪= ⎨
−⎪⎩

 (9) 

 
 
where μ is a threshold parameter separating the quadratic and 
linear regions. 
 
As for the , we compute the following finite second-
order differences in four adjacent cliques for every 
location

,(c x yd z )

( , )x y in the image  
 
 
   (10)  1

, 1, ,( ) 2c x y x y x y x yd z z z z−= − + 1,+

1               2
, , 1 , ,( ) 2c x y x y x y x yd z z z z− += − +    (11)   

 3
, 1, 1 , 1

1( ) 2
2c x y x y x y x yd z z z z , 1− − + +⎡ ⎤= − +⎣ ⎦  (12) 

  4
, 1, 1 , 1

1( ) 2
2c x y x y x y x yd z z z z , 1− + + −⎡ ⎤= − +⎣ ⎦  (13) 
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Substituting (7) and (8) in (5), using the logarithm function and 
performing some manipulations, 1M , 2M can be safely 
dropped. The maximization of this posterior probability 
distribution is equivalent to the following regularized minimum 
problem 

 2
,

,

ˆ arg min ( ) ( ( ))c x y
x y c C

d zλ
∈

= − − +∑∑z Q g Az B ρ  (14) 

 
 
where λ  is called as the regularization parameter. 
 
2.3 Solution Method 

A gradient descent optimization method is used for the 
minimum problem in (14). Differentiating the cost function 
with respect to , we have z
 
 
 '( )T T λ= − − − +r A Q Q g Az B r  (15) 
 
 
where is the derivative of the regularization term. Then, the 
desired image is solved by employing the successive 
approximations iteration 

'r

 
 
 1ˆ ˆn n n nβ+ = −z z r  (16) 
 
 
where is the iteration number,n nβ is the step size.  
 
2.4 Parameter Determination  

In order to use the observation model (2), A (gains) 
and (biases) should be first determined. It is easily 
understood that the gain and bias should be respectively 1 and 0 
for healthy pixels. For dead pixel in image inpainting, the gain 
can be regarded as 0 and the bias the pixel value. For the 
destriping problem, the parameters of pixels in a row or a 
column are often assumed to be the same. We use the moment 
matching method (Gadallah et al., 2000) to obtain the gains and 
biases of the stripe pixels Therefore, the moment matching 

method is a special case of the proposed algorithm 
with

B

λ →∞ and being a unit matrix in equation (14). Q
 
The matrix is diagonal and its elements represent the 
reciprocal of the noise standard deviation in different pixel 
locations. For convenience, we scale the element values to the 
range of 0~1. The difference caused by the scaling can be 
balanced by

Q

λ ( λ  is determined heuristically). For all the 
healthy pixels, the corresponding elements are set as the 
maximum value 1. On the contrary, the elements should be 0 
for dead pixels because they do not have any correlation with 
the true scene. The elements of other bad pixels are between 0 
and 1, and they correlate with the local activity level, the 
validity of moment matching and so on. Generally, we can 
select small element values to recovery the information from 
the neighbors using the prior constraint. On the other hand, 
larger element values should be chosen for sharp regions in 
order to retain the high-frequency information. We use the 
standard deviation as the activity measure, and a simple linear 
function is employed to determine element values.   
 
 

3. EXPERIMENTAL RESULTS  

3.1 Destriping Experiments 

The proposed algorithm was tested for destriping on images of 
the Moderate Resolution Imaging Spectrometer (MODIS) 
aboard the Terra and Aqua platforms. The Terra MODIS data 
used in this paper was acquired on December 31, 2007, and the 
Aqua MODIS data was acquired on December 28, 2003. 
Sections of size 400 400×  were extracted from the original 
images as experimental data. For calculation and display 
convenience, the original data are coded to an 8-byte scale. The 
original images and destriped results of Terra and Aqua are, 
respectively, shown in Figure 1 and  
Figure 2. It can be seen that the moment matching method can 
greatly improve the image quality, but there are still 
considerable radiance fluctuations within the resulting image. 
The proposed algorithm, however, provides a much more robust 
destriping from the visual perspective. 

  

 
(a) original image (b) moment matching (c) the proposed algorithm 

 
 Figure 1. Destriped results of the Terra MODIS image. 
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(a) original image (b) moment matching (c) the proposed algorithm 

 
Figure 2. Destriped results of the Aqua MODIS image.

 

 
(a) original Terra image 

 
(b) destriped Terra image 

 
(c) original Aqua image 

 
(d) destriped Aqua image 

 
Figure 3. Mean cross-track profiles of the original and destriped MODIS images. 

 
 

 
(a) original Terra image 

 
(b) destriped Terra image 
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(c) original Aqua image 

 
(d) destriped Aqua image 

 
Figure 4. Mean column power spectrums of the original and destriped MODIS images. 

 
  
Figure 3 shows the mean cross-track profiles of the original 
images and the destriped results using the proposed algorithm. 
It can be seen that the rapid fluctuations in the original data are 
strongly reduced in the destriped images. The mean column 
power spectrums of the original and destriped images are 
shown in  
Figure 4. For better visualization of noise reduction, very high 
spectral magnitudes are not plotted. It is easily recognized that 
the value of the power spectrum of the frequency components 
where the pulses exist has been strongly reduced in the 
destriped images. 
 
The inverse coefficient of variation (ICV) and ratio of noise 
reduction (NR) are employed to take the quantitative analysis. 
The ICV index (Nichol and Vohora, 2004; Rakwatin et al., 
2007; Smith and Curran, 2000) is defined as 
 
 

 ICV a

sd

R
R

=   (17) 

 
 
where is the signal response of a homogeneous image region 
and is calculated by averaging the pixels within a window of a 
given size; 

aR

sdR  refers to the noise components estimated by 
calculating the standard deviation of the pixel. In our 
experiments, we selected two 10 10×  homogeneous regions for 
the ICV evaluation. The NR index (Chen et al., 2003; 

Rakwatin et al., 2007) is used to evaluate the image in the 
frequency domain. It is defined by 
 
 

 0

1

NR= N
N

  (18) 

 
 
where is the power of the frequency components produced 
by stripes in the original image, and  stands for that in the 
destriped image. and can be calculated by  

0N

1N

0N 1N
 
 
 ( )i iN P D

℘

= ∑   (19) 

 
 
where is the averaged power spectrum down the columns 
of an image with D being the distance from the origin in 
Fourier space, and

( )iP D

℘ is the stripe noise region of the spectrum. 
The ICV and NR evaluation results are, respectively, shown in 
Table 1 and  
Table 2. The proposed algorithm always obtains the best results 
in the several destriping methods (Butterworth filtering, 
moment matching and histogram matching). 

 
 

 Original Butterworth Moment  Histogram  Proposed 
Sample1 24.08 27.26 39.32 43.93 46.79 Terra 

Band 28 Sample2  17.27 23.93 21.82 21.49 25.87 
Sample1  7.94 14.49 24.42 22.72 26.83 Aqua 

Band 30 Sample2 9.66 15.74 21.03 24.86 30.31 
 

Table 1. ICVs of the original and destriped MODIS data 
 

 Original Butterworth Moment  Histogram  Proposed 

Terra Band 28 1.00 4.39 15.96 17.71 25.81 

Aqua Band 30 1.00 4.26 4.82 5.05 7.56 
 

Table 2. NRs of the original and destriped MODIS data 
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3.2 Inpainting Experiments 

 
(a) 5-pixel dead line  (b) inpainted image of  (a) 

 
(c) 8-pixel dead line (d) inpainted image of  (c) 

 
Figure 5. Inpainting experimental results of CBERS images for 
the recovery of vertical dead lines. 
  
Figure 5 shows the inpainting experiments of CBERS (China-
Brazil Earth Resource Satellite) images for the recovery of 
vertical dead lines.  
Figure 5(a) and  
Figure 5(c) are contaminated 
 

 
(a) scratched image (b) inpainted image of  (a) 

 
(c) 60% dead pixels           (d) inpainted image of  (c)      

 
Figure 6. Inpainting experimental results of IKONOS images. 
 
by dead lines of 5-pixel width and 8-pixel width respectively. It 
is known that the conventional methods are not employable for 
such wide dead lines.  

Figure 5(b) and  
Figure 5(d) are the corresponding inpainted results using the 
proposed algorithm. Although the lost information cannot be 
completely recovered, the visual quality of the resulted images 
s very convincing. i 

Figure 6(a) is a simulated image contaminated by some 
scratches, and  
Figure 6(b) shows the inpainted result. It is seen that most of 
he lost information has been recovered.  t 

Figure 6(c) assumes the image is contaminated by randomly 
distributed dead pixels whose percentage is 60%. The inpainted 
result is shown in  
Figure 6(d). This experiment validates the strong performance 
of the proposed algorithm. Although such random distribution 
of dead pixels is not very familiar to many remote sensing 
users, it is often met in remote sensing pre-processing before 
data distribution. 
 
 

4. CONCLUSIONS 

In this paper, we present a maximum a posteriori (MAP) based 
algorithm for both destriping and inpainting problems. The 
main advantage of this algorithm is that it can constrain the 
solution space according to a priori constraint during the 
destriping and inpainting processes. In the destriping 
experiments, we tested the proposed algorithm on Terra and 
Aqua MODIS images. The quantitative analysis showed that 
the proposed algorithm provides more assurance of desired 
results than the conventional destriping methods. In the 
inpainting experiments, the recovery of vertical, scratched and 
random dead pixels are respectively tested. Experimental 
results validated that the contaminated images can be 
noticeably improved by implementing the proposed algorithm. 
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