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ABSTRACT:  
 
This paper presents an integrated GPS/INS/Vision navigation system for Unmanned Aerial Vehicles (UAVs). A CCD (Charge-
Coupled Device) video camera and laser rangefinder (LRF) based vision system, combined with inertial sensors, provides the 
information on the vertical and horizontal movements of the UAV (helicopter) relative to the ground, which is critical for the safety 
of UAV operations. Two Kalman filers have been designed to operate separately to provide a reliable check on the navigation 
solutions. When GPS signals are available, the GPS measurements are used to update the error states in the two Kalman filters, in 
order to estimate the INS sensors, LRF and optic flow modelling errors, and provide redundant navigation solutions. With the 
corrected measurements from the vision system, the UAV’s relative movements relative to the ground are then estimated 
continuously, even during GPS signal blockages. The modelling strategies and the data fusion procedure for this sensor integration 
scenario are discussed with some numerical analysis results, demonstrating the potential performance of the proposed triple 
integration. 
 
 

1. INTRODUCTION 

Over the past decades, UAVs have been increasingly used for a 
wide range of applications, such as reconnaissance, surveillance, 
surveying and mapping, spatial information acquisition, 
geophysics exploration, and so on. The key to operating UAVs 
safely is to develop reliable navigation and control technologies 
suitable for UAV applications. 
 
Currently, the most widely used navigation technologies for the 
UAVs are GPS receivers and INS devices, alone or in 
combination. INS is a self-contained device which operates 
independently of any external signals or inputs, providing a 
complete set of navigation parameters, including position, 
velocity and attitude, with a high data rate. However, one of the 
main drawbacks of INS when operated in a stand-alone mode is 
the rapid growth of systematic errors with time. In contrast to 
INS's short-term positioning accuracy, satellite-based GPS 
navigation techniques can offer relatively consistent accuracy if 
sufficient GPS signals can be tracked during the entire UAV 
mission, however GPS itself does not provide attitude 
measurements.   
 
Integrated GPS/INS navigation systems have been successfully 
implanted for many applications. However, their performance 
heavily depends on the availability and quality of GPS signals. 
The signal blockage can cause a significant deviation in the 
GPS/INS navigation solutions. As the low power of the ranging 
signals makes GPS exceptionally vulnerable, the received GPS 
signals could be easily overwhelmed by either intentional or 
unintentional interferences. There are a variety of unintentional 
inference sources, such as broadcast television, personal 

electronic devices, mobile satellite services, ultra wideband 
communications, and mobile phone signal transmitters.  
 
For UAV navigation, integrated GPS/INS systems are also 
frequently suffered from the absent of GPS signals when 
travelling around high building, trees, etc. In order to increase 
the reliability of UAV navigation, there must be more redundant 
sensors or measurements used in the navigation system. 
Furthermore, the vertical distance and movement of a UAV 
relative to the ground is crucial for UAV automatic navigation 
and landing, but neither GPS nor INS can provide such crucial 
information. On contrary, vision sensors can sense the 
surrounding area directly. As GPS, INS and vision sensors have 
quite different characteristics they can complement each other 
in different situations. 
  
Vision sensors (e.g., such as camera, hyper-spectral sensors, 
laser scanners etc.) are mainly used for mapping and 
environments detection, and usually geo-referenced by other 
sensors. However, Vision-based navigation has also been 
investigated intensively (Jun et al., 2002; Kim and Sukkarieh, 
2004a). Terrain Aided Navigation System (TANS) typically 
makes use of onboard sensors and a preloaded terrain database 
(Chatterji et al., 1997; Ogris et al., 2004). Simultaneous 
Localization And Mapping (SLAM) algorithm can navigate 
vehicles or robots in an unknown environment (Smith and 
Cheeseman, 1987).  As the onboard vision sensors detect 
landmarks from the environments, the SLAM estimator 
augments the landmark locations to a map and estimates the 
vehicle position with successive observations. SLAM has been 
applied to field robot and air vehicle (Dissanayake et al., 2001; 
Kim and Sukkarieh, 2004a).   
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Integrated multi-sensor systems are increasingly used to provide 
cost-effective and robust solution to navigation. Recently, some 
efforts have been made to improve GPS/INS navigation by 
visual aiding. The horizon line can be detected by an onboard 
camera (Winkler et al., 2004) to provide pitch and roll angles of 
a Micro Air Vehicle (MAV). A sequence of stereo imagery is 
processed to determine the platform trajectory, which can 
bridge the poorly determined sections of the platform trajectory 
by GPS/INS (Tao et al., 2001).  
 
An integrated GPS/INS/Vision navigation system for UAVs is 
investigated in this paper. A CCD video camera and LRF based 
vision system are used to sense the environment and observe 
relative vertical and horizontal movements over the ground. The 
system modelling strategies and the data fusion procedure for 
this sensor integration scenario are investigated. Numerical 
analysis is included to show the potential performance of the 
proposed triple integration.  
 
 

2. VISION AIDED MOVEMENT ESTIMATION 

A wide rang of vision sensors are available to meet the 
requirement of this particular application, which provides a 
flexible enhancement to the integrated system. The study of 
visual motion analysis consists of two basic issues. One is to 
determine optical flow and/or feature correspondences from 
image sequences, and the other is to estimate motion parameters 
using them.  Huang and Netravali (1994) have made a review 
on the algorithms for estimation of motion/structure parameters 
from image sequences in the computer vision context. In order 
to optimally integrate vision component into a GPS/INS 
navigation system, the vision navigation performance should be 
investigated first.  
 
The image sequences taken from the UAV can be used as a 
separate set of self-contained spatial measurements. Given that 
close objects exhibit a higher angular motion in the visual field 
than distant objects, optic flow can be used to calculate the 
range to stationary objects in the field of view, or the true 
velocity of objects with known ranges. In this project, optic 
flow is calculated on the UAV helicopter in real-time at 50Hz 
using an image interpolation algorithm (Srinivasan, 1994), 
which is robust in natural outdoor environments and in the form 
of angular rates of visual motion.  
 
Two steps are needed to determine translation velocities from 
the optic flow derived angular rates. Firstly, the effects of 
rotation are separated from those translations by subtracting the 
known rotation rates, measured by the onboard rate gyroscopes, 
from the optic flow rates. Secondly, the image motion rate is 
multiplied by the range above the ground estimated by a LRF to 
estimate the mean-centred measurement of both lateral and 
longitudinal velocities (Garratt and Chahl, 2003). The vertical 
velocity relative to the ground can be calculated through the 
measurement of LRF. As all the sensors have measurement 
errors, the key issue here is to model and estimate the errors and 
extract the navigation information from the vision and INS data 
streams. 
 
Therefore, the UAV horizontal velocity in the body frame can 
be calculated from the optical flow, LRF and gyro angular rate 
with the following formula:  
 
 
      
      (1) 

where vbxy are the horizontal translation velocities; Ωxy is the 
optical flow measurement of angular rate; φxy at two horizontal 
axis; rotation rates;  rgz is the LRF measurement of the relative 
height from the ground. The integration flow chart is shown in 
Figure 1. 
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Figure 1. Vision based navigation flow chart 
 
There are several error sources in this model. The height from 
the LRF may contain a small fixed offset (up to 10cm) and a 
small scale error (<1%). Optic flow has scale errors. Gyro rates 
also have bias and drift. Other errors include initial attitude 
error and the ground slope etc. The major error sources can be 
estimated using the GPS measurements as discussed below. 
 
 

3. INTEGRATED GPS/INS/VISION NAVIGATION 

The integrated GPS/INS/vision navigation system flow chart is 
shown in Figure 2. Two Kalman filters (KF) are employed in 
the system.  
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When GPS signals are available, precise GPS positioning 
results are used to update the error states in the Kalman filter 
(KF1) of 24 states, to estimate the INS errors and to provide 
navigation solutions. At the same time, the GPS derived 
velocity is used in a second Kalman filter (KF2) of 4 states to 
estimate the LRF and optic flow modelling errors. The corrected 
measurements from the gyro, LRF and optic flow are processed 
by the integrated INS/Vision navigation algorithm introduced in 
Section 2, which estimates horizontal velocity and height above 
the ground. During GPS outages, the measurements form LRF, 
and optic flow and gyro are processed continuously to get 
navigation solutions, which are independent from the GPS/INS 
solutions. 
 
3.1 Integrated GPS/INS Navigation  

The operation of the KF relies on the proper definition of a 
dynamic model, an observation model and a stochastic model 
(Brown and Hwang, 1997). While the observation model 
establishes the relationship between the observations and the 
states to estimated, the dynamic model describes the propagation 
of system states over time. The stochastic model describes the 
stochastic properties of the system process noise and observation 
errors. 
 
 
                                   
      (2)
    
       (3) 
 
 
where x k is the (n×1) state vector, Φk is the (n×n) transition 
matrix, zk is the (r×1) observation vector, Hk is the (r×n)  
observation matrix. wk and vk are the uncorrelated white 
Gaussian noise.  
 
The 24 (8x3) Kalman filter error states are:   
 
 

[ ]= T
GI Nav Acc Gyro Grav Antx X X X X X

   (4) 
 
 
where 
 
 

[ , , , , , , , ,Nav N E D N E D N E Dr r r v v v ]δ δ δ δ δ δ δψ δψ δψ=x  
[ , , , , ,Acc bx by bz fx fy fz= ∇ ∇ ∇ ∇ ∇ ∇x ]

  
[ , , ]Gyro bx by bzε ε ε=x

    (5) 
[ , ,Grav N E Dg g g ]δ δ δ=x  
[ , ,Ant x ]y zl l lδ δ δ=x

  
 
 
The following complete terrestrial INS psi-angle error model is 
adopted in the system: 
 
 
 
 
      (6) 
 
 

The observation vector z includes δrN, δrE, δrD. 
 
 

3 3 3 21( ) [ ] [ 0 ] ( ) (× ×= − = +T
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]

  (7) 
 
 
where PINS and PGPS are the INS and GPS measured positions,  
respectively.    
 
3.2 Modelling Error Estimation for Vision Sensors 

As mentioned in Section 3.2, there are several error sources in 
the model expressed by Equation (1), for calculating the 
platform’s horizontal velocity. The height from the LRF 
contains a fixed offset and a scale error. Optic flow has scale 
errors in two directions. Therefore, a Kalman filter is designed 
to estimate these errors as four states: 
 
 

[ , , ,LOF b f fx fyδη δη δω δω=x
   

(8) 
 
 
where δηb and δηf are the LRF fixed offset and the scale error, 
respectively; δωfx and δωfy are the optic flow scale errors at x 
axis and at y axis, respectively. 
 
The dynamic model of these four error states is treated as zero-
mean Gaussian white noise as follows: 
 
 
       

                     
(9) 

 

 

The observation vector z includes δvN and δvE. 
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(10) 

 
 
where VH

INS and VH
GPS are the vision and GPS measured 

horizontal velocities, respectively.    
 
According to Equation (1), and the four error parameters listed 
in Equation (8), the optical flow and LRF navigation error 
model is derived as: 
 
 
      
 
  

     

 
 
where ε is the bias introduced by the ground slant and other 
errors.  The Kalman filter error model can then be derived as: 
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Therefore the H2x4 in Equation (10) is  
 
 
 
 
                     (13) 
 
 
 
 
The stochastic model of the Kalman filter and the parameters 
for its tuning are designed according to the sensors’ 
specifications and the system configuration in the field tests. 
 
 

4. SYSTEM CONFIGURATION 

4.1 UAV (Helicopter) Platform 

Experiments were conducted on an RMAX unmanned 
helicopter manufactured by Yamaha. It has 30kg payload with 
endurance of approximately one hour, and comprising a 
conventional helicopter design with a single main rotor and a 
single tail-rotor for anti-torque compensation.  
 
An autopilot system is devised for conducting closed loop 
experiments, in which a control by telemetry approach is taken. 
The sensor information is sent to a ground computer using a 
radio link, which processes the sensor information, calculates 
corresponding control inputs and sends these back to the 
helicopter via another radio link. An onboard PC104 computer 
based on the Pentium III chipset is for vision processing 
(Garratt, 2007). 
 
4.2 Sensors 

The sensors onboard the helicopter includes DGPS, INS 
magnetometer, LRF and CCD camera (imaging payload). Their 
locations are indicated in Figure 3. The data collected for the 
proposed integrated GPS/INS/Vision navigation system are 
listed in Table 1. 
 
 

 
 

Figure 3. UNSW@ADFA RMAX in flight 
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Table 1.  Data collected for the integrated navigation system 
 
An analogue Sony CCD camera is used as the image sensor. 
The camera outputs a PAL standard composite video signal 
which is captured by the frame grabber. The inertial sensors for 
the RMAX were pre-fitted with an isolation system, including 
three gyroscopes and three accelerometers with orthogonal axes.  
 
Highly accurate carrier phase DGPS measurements were 
available to provide a monitoring system to record the 
helicopter motion during closed loop. Novatel OEM4-G2L GPS 
cards are mounted adjacent to the RMAX flight computers. The 
OEM4 cards are used with differential corrections from a 
nearby base station fitted with another OEM4 card. The card 
operates in a Real-Time Kinematic (RTK) positioning mode; to 
provide 20Hz position and velocity with an accuracy of 1-2cm.  
 
Helicopters are dynamically unstable and require constant 
control inputs to prevent them from diverging from a level-
flying attitude. Accurate knowledge of attitude (pitch, roll and 
yaw) is therefore vital to robust control. The RMAX helicopter 
is fitted with an in-house system for attitude determination 
(Garratt, 2007). 
 
 

 
 

Figure 4. Laser scanning system 
 
A LRF with a novel rotating mirror was integrated with the 
RMAX helicopter as shown in Figure 4.1. Due to the 
orientation of the axis of the mirror and the angle of the mirror 
to the axis, the laser traces an elliptical cone shape on the 
ground below. To obtain a sufficiently fast scan rate, the mirror 
is spun at least 1500RPM or 25 cycles per second. The 
rangefinder and encoder signals are read into a PC104 with a 
sample rate of 2 KHz. An AccuRange 4000 LRF from Acuity is 
used for this project, with range accuracy of each point on the 
ground is better than 2cm (Garratt et al., 2007) 
 
4.3 Data Processing 

The data are processed in integrated GPS/INS/Vision navigation 
system described in Section 3. Two Kalman filters (KF) are 
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employed in the system. The DGPS measurements are used to 
update the error states in both the 24 state Kalman filter KF1, to 
estimate the INS errors and to provide navigation solutions. At 
the same time the 4 state Kalman filter KF2 estimates the LRF 
and optic flow modelling errors.  
 
INS drift error is corrected by the DGPS to get high accuracy 
hybrid navigation solutions, through KF measurement updates. 
The CCD camera acquires texture information for optical flow 
measurements. The LRF measures the relative altitude to the 
ground which is used for the relative horizontal movement 
combined with the optical flow and gyro angle rate 
measurements. The data fusion algorithms are implemented in 
real-time processing mode.   
 
As shown in Table 1, the sensors have different data rates. It is 
necessary to select proper data rates for the two Kalman filters, 
considering the data availability and the required data rates (50 
Hz) of navigation solutions, horizontal velocity and height over 
the ground. Therefore, the data rates for the sensors used for 
prediction were all set to 50 Hz. The 25 Hz LRF data were 
extrapolated to 50 Hz based on the fact of its slow change. The 
data rate of the DGPS data used for the Kalman filter 
measurement update was set to be 5 Hz. 
 
 

5. TEST RESULTS 

The field test data from the proposed GPS/INS/Vision 
navigation system were processed in two scenarios: 1) with 
GPS signals available during the entire mission and, 2) with 
simulated GPS signal outages.  
 
5.1 Integrated GPS/INS/Vision navigation 

GPS measurements are used to update the error states in both 
KF1 and KF2, in order to estimate the INS, LRF and optic flow 
modelling errors and provide navigation solutions. However the 
accelerometer used in the system produced very poor results 
due to the strong UAV vibrations in this experiment. The 
advantage of the proposed system design is that there is still a 
functional navigation backup based vision sensors, even some 
of the sensors become faulty during the operations. The 
corrected measurements from the LRF and optic flow are 
processed by the integrated INS/Vision navigation algorithm 
introduced in Section 2 to estimate horizontal velocity and 
height above the ground, which is crucial for UAV automatic 
navigation and landing.  
 
The following figures show the field test results of the proposed 
GPS/INS/Vision navigation system. Figures 5 and 6 plot the 
positioning results in horizontal and vertical components, 
respectively. The vision-based subsystem enables the estimation 
of the horizontal position derived from the velocity and height 
above the ground derived from the LRF. 
 
As shown in Figures 5 and 6, the positioning results from the 
vision-based system closely follow the DGPS positioning 
results. The horizontal positions are derived from the vision 
estimated velocity by accumulating the velocity. The bias of the 
velocity causes the positioning drift. The vertical positioning 
result from the vision subsystem is the height above the ground, 
which is totally different with the DGPS measured relative 
height. The altitude change of terrain under the UAV 
contributes to the difference. For UAV landing, it is more 
important to measure terrain height than the GPS height. 
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Figure 5.  Horizontal positioning results 
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Figure 6. Vertical positioning results 
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Figure 7. Velocities in three directions 
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Figure 8. Attitude estimation from the Gyro measurements 
 
Figure 7 plots the velocities in three directions estimated by the 
vision based subsystem comparing with the DGPS measured 
velocity, while Figure 8 show the attitude results from the gyro 
measurements directly.  The velocity estimated by the vision 
based subsystem follow closely to the GPS measurements.  
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Figure 9.  KF2 error states 
 
The four states of KF2 are plotted in Figure 9, which show a 
relatively quick convergence. The estimated errors are 
consistent with the specifications of the corresponding sensors. 
 
5.2 Integrated navigation with GPS outage 

Simulated GPS outage (90 seconds) is applied to the integrated 
system. Figure 10 shows the positioning results, and velocity 
results are depicted in Figure 11. The measurements from the 
LRF, optic flow and gyros are processed to obtain the vision 
based navigation solutions, which are very sable over time 
without GPS aiding. 
 
 

6. CONCLUDING REMARKS 

The two independent Kalman filtering designs for all the 
sensors onboard the UAV have significant advantages as there 
are redundant navigation solutions to guarantee the reliability of 

the navigation operations. The experiment results have 
demonstrated the feasibility of using optic flow height control 
for a rotorcraft automatic control and landing. The results of 
preliminary investigations are encouraging and this method can 
be further developed with the inclusion of error modelling and 
estimation for gyro biases, etc. 
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Figure 10. Horizontal positioning with GPS outage 
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Figure 11. Velocity estimation with GPS outage 
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