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ABSTRACT: 
 
In this paper the sensor model evaluation and DEM generation for CARTOSAT-1 pan stereo data is described. The model is 
tested on CARTOSAT-1 data provided under the ISPRS-ISRO Cartosat-1 Scientific Assessment Programme (C-SAP). The 
data has been evaluated using the along track model which is developed in UCL, and the Rational Polynomials Coefficient 
model (RPCs) model which is included in Erdas Photogrammetry Suite (EPS). A DEM is generated in EPS. However, the 
most important progress that is represented in this paper is the use of the Coplanarity Equation based on the UCL sensor 
model where the velocity and the rotation angles are not constant. The importance of coplanarity equation is analyzed in the 
sensor modelling procedure and in DEM generation process.  
 
 

1. INTRODUCTION 

CARTOSAT-1 represents the third generation of Indian 
remote sensing satellites. The main improvement from the 
instrument point of view is the two panchromatic cameras 
pointing to the earth with different angles of view. The first 
one is looking at +26 deg. of nadir while the second one at –5 
deg. of nadir, giving the ability of collecting along track 
stereo images. 
 
In this paper, the rigorous sensor model developed in UCL 
and the RPCs model included on the Erdas Photogrammetry 
Suite (EPS) are used to evaluate Cartosat images along with 
DEM generation on EPS. However, the most important 
progress that is represented in this paper is the use of the 
Coplanarity Equation based on the UCL sensor model where 
the velocity and the rotation angles are not constant. The 
importance of the coplanarity equation is analyzed and 
evaluated in the sensor modelling procedure and in the DEM 
generation process.  
 
 

2. BACKGROUND 

A pushbroom image consists of sequence of framelets which 
are independent one-dimensional images with their own 
exterior orientation parameters, as the scanning effect of line 
CCD scanner on the ground is due to the motion of the 
satellite. In general, the pushbroom sensor model can be seen 
as a sophisticated model, which should simulate 
simultaneously the along track motion, that is closely related 
to the satellite trajectory and the across track perspective 
projection of the framelets. The main drawback of this 
approach is that the exterior orientation parameters of 
neighbouring framelets are highly correlated. 
 
The across track perspective could be represented with the 
well known collinearity equations which should be modified 
in a way that the satellite orbit is taken into consideration. 

The way that the satellite motion is represented leads to 
different sensor models. It is possible to have an even more 
correlated model in the case that more parameters are used in 
this procedure, than are really needed.   
 
Moreover, especially for the along track stereo images it 
sounds very attractive to establish the coplanarity equation 
which could relate conjugate points of images. The coplanarity 
equation establishes a geometric condition along the track 
which can improve the stability of the orientation and the 
accuracy of the DEM generation as the x-parallax is at this 
direction (along track). 
 
Kim (Kim, 2000) investigates the epipolar geometry of 
pushbroom images based on Gugan and Dowman model 
(Gugan and Dowman, 1988). In this model the position and 
kappa rotations are described by second order polynomials 
while the omega and phi rotations are constant. It is reported 
that the coplanarity in pushbroom is different than in frame 
cameras represented by epipolar curves instead of lines. 
However the most important conclusion is that for any two 
conjugate points the epipolar curves are different from each 
other, as the coefficients of the coplanarity equation that was 
developed are varied for each point.  
 
Habib (Habib et al., 2005) represents a comprehensive analysis 
of the epipolar geometry for pushbroom scanners moving with 
constant velocity and attitude trying to produce epipolar lines 
(not curves) and normalized images. It is confirmed that for a 
given point in the left image, there will be multiple epipolar 
planes in the right image. It is mentioned that the key 
difference between frame and line cameras is that the base 
vector will change as the scanner moves along its trajectory. 
Finally, it is concluded that even in that simplified case 
(constant velocity and attitude) the production of normalized 
images are not feasible without having a DEM since the 
normalized and original images do not share the same exposure 
station. 
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3. CARTOSAT-1 SENSOR 

3.1. Pan camera 

The pixel size of the images is 2.5m on the ground with 1024 
grey levels (10 bits). The time difference between the 
acquisition of the stereo images is about 52 seconds. The 
spacecraft body is steerable to compensate the earth rotation 
effect and to force both Fore and Aft cameras to look at the 
same ground strip when operated in stereo mode. 
Simultaneous stereo pair acquisitions are of great advantage 
since the radiometric parameters of the images will be 
identical. The stereo pairs have a swath of 26 km and a fixed 
B/H ratio of 0.62. Apart from the stereo mode, the satellite is 
also equipped to operate in the wide swath mode. When 
operated in this mode the satellite can be manoeuvred such 
that image strips will fall side by side so that wider swath 
images of 55 km are obtained by the cameras. The spacecraft 
also has a facility to provide various pitch-biases to vary the 
look angle conditions of the stereo pair.  The cameras 
specifications are introduced in table 1.  
 
 

Focal length (both cameras) 1945 mm 
Integration time 0,336 ms 

Quantisation 10 bits (1024) 
Pixel size  7x7 μm 

GIFOV Fore 2.452m (across-track 
GIFOV Aft 2.187(across-track) 

 
Table 1. Cartosat-1 camera specifications 

 
3.2. Metadata file 

The metadata file of CARTOSAT which is attached with 
each image is in text format and provides basic information 
of the imagery. In this file navigation data of the satellite is 
not given. Fortunately, the acquisition time interval between 
the along track images is measured and included in this file, 
which should be known in order to implement the UCL along 
track model.   
 
 

4. REFERENCE DATA 

The authors take part in the C-SAP as principal investigators 
with Test Site 3, which is the UCL test site in Aix-en-
Provence, France. Also, UCL are co-investigators on TS-9 in 
Warsaw, Poland. Unfortunately additional GCPs should be 
measured in the Aix-en-Provence test site in order to have a 
appropriate number of GCPs within the area covered by 
Cartosat. On the other hand Mr. Zych (Goesystems Polska) 
who is Principal Investigator of TS-9 has provided the study 
team with DEMs and with 36 GCPs which are measured in 
the field. These GCPs are well distributed on the images. The 
area covered and the GCPs are shown on Figure 1.  
 
 

5. UCL SENSOR MODEL  

5.1. UCL Kepler model for along track motion 

The along track motion is described by the Kepler equation. 
The fundamental point of an along track model is to benefit, 
from the same orbit acquisition, in order to orientate 
simultaneously all the along track images. The simultaneous 
solution extends the narrow field of view of each satellite 

 
 

Figure 1. Warsaw test site and GCPs distribution 
 
 
image because all along track images are treated as one iconic 
image where its coordinates are found if the acquisition time 
interval of the corresponding  image from the first image is 
added (in general case of more than two images) on the 
framelet coordinates of each image. In other words, in Kepler 
model the transition factor from one image to the next is its 
acquisition time interval.  
 
The formulation of the UCL model for the along track motion 
of two images case is described by the following equations. 
The ground coordinates of the base framelet perspective center 
Xc(t), Yc(t), Zc(t) of both images as a function of time is defined 
as follows: 
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where  
t=τ  for the first image 

dtt +=τ  for the second image 
and 
t is the acquisition time a framelet which is defined in terms of 
each image coordinates  
dt is the time interval between the acquisition of the center 
framelet of the images.  
(Xo,Yo,Zo) is the position vector of the perspective center of 
the center framelet of the first image 
(ux,uy,uz) is the velocity vector of the perspective center of the 
center framelet of the first image 
GM is the Earth gravitational parameter with value of  
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5.2. Modified collinearity equations for along track 
sequence. 

The well-known collinearity equations need modification 
before they are applied to pushbroom images. They are 
modified based on the above Kepler equations (1) in a way 
where the ground coordinates and the rotations of the 
perspective center are modelled as a function of time.  
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Where: 
c  is the principal distance 
X, Y, Z are the ground coordinates of a point 
Xc(t), Yc(t), Zc(t) are the ground coordinates of the framelet 
perspective center as a function of time, as described in 
equations (1)  
λ is a scale factor which varies from point to point  
M(t) is a 3x3 rotation matrix which brings the ground 
coordinate system parallel to the framelet coordinate system  
as a function of time, where the rotation angles are simulated 
with first order polynomials 
y is the y-framelet coordinates of the corresponding point 
yo is a small offset from the perspective center origin. 
 
5.3. Modified coplanarity equation for along track 
sequence. 

5.3.1 Introduction. In general, coplanarity for the 
perspective geometry is the condition that the two exposure 
stations of a stereopair, any object point, and its 
corresponding image points on the two photos all lie in the a 
common plane (Wolf et all, 2000), as illustrated in figure 2. 
In the figure the points L1, L2, α1,α2 and Α all lie in the same 
plane. The coplanarity condition is  
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In equation (2) subscripts 1 and 2 affixed to terms D, E and F 
indicate that the terms apply to either photo 1 or photo 2. The 
m’s are function of the three rotations angles omega, phi, 
kappa as represented in matrix M(t). One coplanarity 
equation may be written for each object point which appears 
in the stereo photos. The coplanarity equation does not 
contain object space coordinates as unknowns. It contains 

only the elements of the exterior orientation parameters of the 
two photos of the stereo pair.  
 
 

 

 
 
 
 
 Figure 2. The coplanarity condition (Wolf et al., 2000)  
 
5.3.2. Modification of coplanarity equation for pushbroom 
images. The development of the coplanarity equation for a 
pushbroom sensor could be based on the perspective images 
equation (2) where the fundamental characteristic that the 
pushbroom image consist of one-dimensional images, should 
be taken into consideration.  In first instance the D, E and F in 
equation (2) should be modified in case of pushbroom images 
as follows, because of the one dimensional framelets: 
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In general the epipolar curves for linear pushbroom images are 
not very easy to derive (Kim, 2000). The reasons are mainly 
the pushbroom geometry itself, along with the selected sensor 
model. Kim concludes that the problem is that the best sensor 
model has not been developed yet.  
 
In this paper, a slight different approach is followed. We do try 
to use the model which is capable to describe the base vector 
change as the scanner moves along its trajectory. This model 
can be the UCL sensor model which simulates this as functions 
of the exterior orientation parameters of the center point of the 
center framelet of the first along track image.  
 
The development of the coplanarity equation is based on the 
equation of the Kepler model (1). Thus, the velocity of the 
satellite during the acquisition time of the images is not 
constant. Moreover at present, the rotation angles are not 
constant and simulated with first order polynomials.  
 
Based on equations (1) the X object space coordinates of the 
points L1, L2 are: 
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where  
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and t1 and t2 is the acquisition time of the corresponding 
framelets in image 1 and 2 respectively. 
 
Combining the equations (4) based on (2), BBx is defined as 
follows: 
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The above equation clearly shows the important role of the 
UCL sensor model approach because it relates directly the BBx 
only with the state vector of the center point of the first 
pushbroom image, which are the unknown parameters in this 
equation.  
 
Going one step further the acquisition time t1 and t2 can be 
described as:  
 
 

intervalxt ⋅= 11  
intervalxt ⋅= 22  

 
 
where interval is the acquisition time of a framelet which is 
assumed to be constant (Michalis and Dowman, 2004).  
 
Finally BBx is defined as follows based on the previous 
equations (with exactly the same procedure the By and Bz are 
also calculated ) : 
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The coplanarity equation fc is developed as a combination of 
equations (3) and (5) where the unknown parameters are the 
elements of the exterior orientation of both stereo images 
which are: 
 

• State vector of the center point of the first image ( 6 
unknowns) 

 
• The coefficients of the first order rotation 

polynomials of both images( 12 unknowns) 
 
Thus, the coplanarity equation fc is defined as follows: 
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5.3.3. Coplanarity role in exterior orientation 
determination and in DEM extraction process. The 
coplanarity equation can be used in combination with the 
collinearity equations during the computation of the exterior 
orientation providing additional equations and stability. In 
more detail in the resection process three equations (two 
collinearity equations plus one coplanarity equation) for each 
GCP and one coplanarity equation for each tie point can be 
applied, improving the accuracy and the stability of the 
solution.  
 
Traditionally in perspective center geometry the epipolarity is 
used for the production of normalized images. In this paper a 
different approach is followed as a first step. The coplanarity 
condition is a robust and rigorous equation which can be used 
easily and straightforwardly as a geometrical constraint in the 
matching procedure of the DEM generation process. In more 
detail: just after the correlation process the coplanarity 
equation can be applied to all the conjugate points that are 
extracted by the correlation in order to see if this equation is 
fulfilled, using a threshold related to RMSE of the resection 
solution. The points that do not pass this test are blunders or 
correlation errors in general.  
 
 

6. EVALUATION 

6.1. Introduction.  
6.1.1. RPCs model. The Cartosat data are distributed with the 
rational polynomials coefficients. In EPS there is a module 
where Cartosat RPCs could be imported and used for the 
orientation of the images. 

6.1.2. UCL model. The UCL sensor model could be solved 
directly using navigation data, without GCPs (Michalis and 
Dowman, 2004, 2005). Unfortunately, because in the case of 
Cartosat no navigation data is provided the exterior orientation 
parameters should be calculated using GCPs. The total number 
of exterior orientation parameters of the two Cartosat along 
track stereo images is eighteen. The state vector of the center 
framelet of the first image represents six of these unknown 
parameters, while the corresponding state vector of the second 
image is calculated from the previous one by the Kepler 
equation. The other twelve unknown parameters are the 
rotation angles of the two images; six rotations for each image 
which are the coefficients of the polynomials. Thus, at least 
five GCPs are needed for the solution, when the collinearity 
equations are used. It will be shown that with the simultaneous 
use of the coplanarity equation it is possible to reach accurate 
solution with four GCPs. Moreover even in the case where 
enough GCPs are available for a solution only with the 
collinearity equation the coplanarity ensures a more precise 
solution. 
 
6.2. Evaluation strategy 

As it shown in figure 1 the GCPs are well distributed on the 
images. Nine of the total 36 available points are used as GCPs 
in the evaluation process of both models, while the rest 25 (two 
are not well identified on the images) are used as ICPs 
(Independent Check Points).  The GCPs location is not 
important for the exterior orientation solution (Michalis and 
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Dowman, 2006), thus the GCPs are divided in groups of 
1,2,3,4,5,6,9, GCPs, in order to examine and compare the 
accuracy of the models based only this issue. 
 
Additionally 494 tie points are measured for the UCL sensor 
model evaluation, divided in two groups of 149 and 494 
points, which are implemented in the coplanarity equation.  
 
6.3. RPCs model evaluation.  

In table 2 the accuracy of the ICPs are introduced based on 
the number of the GCPs (first column) when the RPCs are 
used for the orientation.  
 

  RMSE of ICPs 
 GCPs Distribution X(m) Y(m) h(m) 

0  11.33 114.07 760.51 

1 *

 

14.43 2.77 5.38 

2 
*

*

 

14.99 2.37 4.30 

3 
∗

∗∗

 

2.16 1.46 1.74 

4 
∗∗

∗∗

 

1.64 1.68 1.71 

5 
∗∗

∗
∗∗

 

1.61 1.71 1.87 

6 
∗∗
∗∗
∗∗

 

1.72 1.68 1.98 

9 
∗∗∗
∗∗∗
∗∗∗

 

1.70 1.65 1.95 

 
Table 2. RMSE of the 25 ICPs using RPCs model. 

 
From the above table the following conclusions could be 
extracted: 
• The accuracy of the RPCs model where no GCPs are 

used for refinement is not very good, especially in 
height, where the RMSE is close to 800m. 

• With one GCP the accuracy is improved close to 20m. 
• With two and three GCPs the accuracy is improved 

slightly.  
• Four GCPs are enough in order to reach accuracy close 

to one pixel.  
• From 4 to 9 GCPs the RMSE is almost the same. 
 

6.4. UCL sensor model evaluation.  

6.4.1. Introduction. The evaluation of the UCL sensor model 
is divided in three parts as follows: 
• Evaluation of the model based on the collinearity. 
• Evaluation of the solution based on four GCPs with the 

involvement of the coplanarity. 
• Evaluation of the precision of the solution in 

combination with the coplanarity. 
 
6.4.2. Solution of UCL sensor model based on the 
collinearity. Based on paragraph 3 the total number 
unknown exterior parameters is 18. This means that at least 5 
GCPs are needed for the solution based only on the 
collinearity equation. In table 3 the accuracy of the ICPs are 
introduced based on the number of the GCPs (first column) 

when the UCL sensor model collinearity equations are used for 
the orientation.  
 
It seems that using the UCL model sufficient (subpixel) 
accuracy is achieved even in case of five GCPs. Moreover it 
gets better accuracy than the RPCs model in all cases. 
 
 

  RMSE of ICPs 

GCPs Distrib
ution X(m) Y(m) h(m) 

5 
∗∗

∗
∗∗

0.87 1.02 1.47 

6 
∗∗
∗∗
∗∗

0.88 0.94 1.36 

9 
∗∗∗
∗∗∗
∗∗∗

0.71 0.83 1.27 

 
Table 3. RMSE of ICPs using UCL along track Kepler model 

based on the collinearity equations and first order 
rotations and 

 
6.4.3. Solution based on four GCPs with the involvement 
use of coplanarity. In this paragraph the coplanarity equations 
are used in the solution providing one more equation per point 
(GCP, Tie Point) giving the opportunity to have a solution with 
4 GCPs.  In table 4 the accuracy of the ICPs are introduced 
based on the number of the Tie Points used.  
 
It seems that using about 150 Tie points which in reality is 
information that can be extracted from the images the accuracy 
is reach the accuracy of the five GCPs solution.  
 
 

  RMSE of ICPs 

GCPs Tie 
Points X(m) Y(m) h(m) 

4 34 1.07 2.92 2.45 

4 149 0.86 1.09 1.49 

 
Table 4. RMSE of ICPs using UCL along track Kepler model 

based on the collinearity equations and coplanarity 
equation. 

 
The challenge is to examine the possibility to reach an exterior 
orientation solution using less than four GCPs. 
 
6.4.4. Precision of the solution in combination with the 
collinearity. The reference standard deviation So represents the 
precision of the adjustment. The form of the reference standard 
deviation for the unweighted case is 
 

r
So

vvT ⋅
=

 
 
 
In table 5 the reference standard deviation So of the exterior 
orientation solution in cases of 9 and 34 (all) GCPs involved 
are introduced with different combination of Tie Points used in 
the solution through the coplanarity equation. It seems that 
using the coplanarity increases the precision of the solution 
significantly.   
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No of 
GCPs 

No of Tie 
Points oS  

9 9 0.393 
9 34 0.368 
9 149 0.284 
9 494 0.217 

34 34 0.303 
34 194 0.272 
34 494 0.227 

 
Table 5. Reference standard deviation using UCL along track 

Kepler model based on the collinearity equations and 
coplanarity equation with various number of tie 

points. 
 
 

7. DEM GENERATION 

7.1. Introduction.  

This section reports on the generation of a DEM using the 
Erdas Photogrammetry Suite (EPS) version 9.2. The DEM 
generation has a pixel size of 10m and is based on area-based 
matching which is also called signal based matching.  The 
EPS is used because the UCL sensor model has yet to be 
linked to stereo matching software. 
 
In order to check the accuracy of the produced DEM the 
DEM provided by the PI (15m pixel size) is used as a 
reference. The area covered is a hilly area where the 
difference in heights within the whole area is 120m.  
 
7.2. DEM quality.  

For the CARTOSAT data the following strategy of the 
software is used as it produced quite good results. This 
strategy is the following: 

 
• Search Size: 19 x 3 
• Correlation Size: 7 x 7 
• Coefficient Limit: 0.80 

 
7.3. DEM accuracy.  

The accuracy of the DEM is described in table 6.  The 
produced DEM has not been edited for blunders (manually or 
automatically) and it is evaluated as it is extracted by EPS. 
 
 

No of 
GCPs 

MIN 
(m) 

MAX 
(m) 

Absolute 
linear error 
LE90 (m) 

1 -39.20 138.62 13.30 
2 -41.87 231.73 13.45 
3 -40.26 220.94 4.13 
4 -36.51 222.85 4.07 
5 -32.64 89.12 4.04 
6 -32.63 104.10 4.10 
9 -31.23 89.07 3.88 

34 -39.25 87.80 3.97 
 

Table 6. Accuracy of DEM with different number of  GCPs 
used in the orientation 

 
From the results in table 6 it seems that at least 3 GCPs should 
be involved in the orientation in order to reach Absolute Linear 
error LE90, close to 4m. However because of the min and max 
high errors it is needed to edit the produced DEM manually or 
automatically. 
 
As a general conclusion, in the DEM generation from Cartosat 
data when RPCs model is used, 4 GCPs should be measured in 
order to reach the accuracy as described in table 6 which is not 
improved, in reality, if the number of GCPs is increased.   
 
 

8. COPLANARITY IN DEM GENERATION AS A 
GEOMETRIC CONSTRAIN 

As this UCL sensor model is not linked with DEM generation 
software the importance of the coplanarity equation as a 
geometric constrain after the correlation process is tested in the 
similar correlation procedure of auto- tie point generation in 
EPS software. Under Auto-Tie generation procedure 4096 tie 
points are produced which are checked for their accuracy 
manually, where the wrong correlated points are found. On the 
other hand the coplanarity equation is applied on all tie points 
and it is found that all these ‘wrong’ points give values much 
higher than the expected value (close to zero). The above 
procedure denotes the important role that the coplanarity 
equation could have in the DEM generation procedure, which 
should be approved in the near future. 
 
 

9. CONCLUSIONS  

This paper has described the testing of the UCL Kepler Along 
Track Sensor model and the RPCs model on Cartosat data. 
Also a DEM is generated using Erdas Photogrammetry Suite 
software. The results that are introduced within the paper leads 
us to the following conclusions: 
 
• RPCs model reaches close to pixel accuracy when at least 

4 GCPs are used.  
• UCL model sufficient (subpixel) accuracy is achieved 

even in case of five GCPs, better than the RPCs model in 
all cases. 

• For DEM generation it shown again, as in case of SPOT5-
HRS, (Michalis and Dowman, 2004) that the use of the 
along track stereo sensors is a very promising for DEM 
generation, as the image matching quality and the 
achieved accuracy is very high.  

 
However the most important achievement in this study is the 
development of the coplanarity equation. This has the 
following benefits: 
 
• When the coplanarity equation is involved in the solution 

one more equation per point (GCP, Tie Point) is provided, 
giving the opportunity to have a solution with less GCPs, 
with sub-pixel accuracy. 

• The coplanarity equation increases the precision of the 
solution significantly.   

• The coplanarity equation is a robust and rigorous equation 
which can be used easily and straightforwardly as a 
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geometrical constraint in the matching procedure of the 
DEM generation process. 
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