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ABSTRACT: 
This paper presents results from two simulation studies which attempt to measure forest height with full waveform lidar. Monte-
Carlo ray tracing is used to simulate a full waveform lidar response over explicitly represented 3D forest models. Gaussian 
decomposition and multi-spectral edge detection are used to estimate tree top and ground positions over a range of forest ages, stand 
densities and ground slopes. The error of the height estimates are precisely quantified by comparison with the 3D model height. This 
paper discusses the development and testing of the inversion of tree height from simulations of lidar data, assuming a fixed set of 
lidar characteristics (corresponding to an LVIS-like instrument). It is shown that Gaussian decomposition performs reasonably well 
(mean 5.3m overestimate for <75% cover) for all but the densest canopies over flat ground. The potential of multi-spectral edge 
detection to separate ground and canopy returns from blurred waveform is demonstrated. The methods presented will be refined and 
extended to instrument-specific cases. 
 
 

Background 
 
Carbon flux models are essential for understanding the complex 
processes involved in the Earth’s climate (Woodward et al, 
2004). These models need variables, such as biomass and leaf 
area at a range of scales and locations (Williams et al, 2005). 
Many areas are inaccessible and it would be prohibitively 
expensive to cover the world with airborne sensors. Space-
borne remote sensing may be the solution. 
 
Empirical relationships and physical models have been 
developed to relate biomass and leaf area to vegetation indices 
from passive optical instruments, such as MODIS (Myneni et al, 
2002). These indices saturate at moderate canopy densities (LAI 
of 3 or 4, Lovell et al, 2003). Synthetic aperture radar suffers 
from similar saturation problems (Waring et al., 1995). This 
saturation would bias any global remotely sensed data 
assimilation scheme. 
 
In contrast lidar derived vegetation parameters are less prone to 
saturation over forests as the light can fit through small gaps 
(Lefsky et al., 1999) and it allows a direct measurement of tree 
height. The capabilities of spaceborne lidars for measuring 
vegetation were demonstrated by the GLAS instrument aboard 
ICESat (Rosette et al., 2008). 
 
Simulation system 
 
There has been a great deal of work on estimating forest 
parameters from full waveform lidar in recent years (Wagner et 
al, 2008, Reitberger et al, 2008). The results of these studies are 
promising; however positional uncertainty of remote 
measurements and the difficulty in seeing the tree top from 
ground level make validation difficult (Hyde et al, 2005). 
 
Computer simulations allow “validation” as the true parameters 
of the virtual forest are known, unlike reality where there is 
always some uncertainty. This paper will use a Monte-Carlo ray 
tracer based upon the RAT library developed from “frat” 
(Lewis, 1999) to simulate a waveform lidar. Frat has been 

validated in the RAdiation transfer Model Inter-comparison 
exercises (RAMI) two and three, (Pinty et al. 2004, Widlowski 
et al, 2007). These exercises have not yet tested range resolved 
simulations but they have shown that the radiometry of a core 
set of explicit 3D models, including frat, agree to within 1% 
over vegetation for most cases. 
 
Explicit geometric forest models, in which every needle is 
described (Disney et al, 2006) were used for the simulations. 
Individual Sitka spruce trees of different ages were created 
using the Treegrow model (Leersnijder, 1992). These trees were 
cloned at random locations, with a minimum separation, over a 
variety of slopes to form forests with a range of stand densities 
and different age mixes. The affect of different light regimes in 
different densities on tree structure was ignored. Figure 1 shows 
a ray traced image of a forest with an equal proportion of trees 
of each age on a 20o slope. In addition to the simulated light 
returns the percentage coverage of each material in each range 
bin were recorded and used for validation of derived 
parameters. Spectra from the Prospect model (Jacquemond and 
Baret, 1990), measurements from the LOPEX dataset (Hosgood 
et al, 1995) and the model of Price (1990) were used for leaf, 
bark and soil spectra respectively. Modelled spectra were 
matched against OTTER field data. In a change to the method 
of Disney et al., (2006), needles were allowed to transmit light, 
trusting in the accuracy of Prospect in the absence of reliable 
transmittance data. 
 

 
Figure 1, Simulated image of mixed age Sitka spruce forest 

model. 
 
Using explicit 3D models is computationally expensive but 
avoids assuming that canopies behave as turbid media; an 
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assumption that ignores the heterogeneity of real trees. It is not 
clear how such an assumption would affect derived results, 
especially when parameters are derived using the same 
assumptions used to create the forests (Widlowski et al, 2005). 
Figure 2 shows a simulated waveform over a single thirty year 
old Sitka spruce tree model. The heterogeneity and subterranean 
echoes caused by multiple scattering are apparent. The ground 
is at a range of 1,200m. 
 

 
Figure 2. Simulated waveform from a single Sitka spruce tree. 

 
Simulations were run with a resolution of 25cm (which can be 
coarsened for analysis), a range of wavelengths (including 
532nm, 850nm, 1064nm, 1650nm and 2060nm), a 30m ground 
footprint (the optimum for forestry, Zwally et al, 2002) and with 
and without a temporal laser pulse (100ns is proposed for A-
scope). Gaussian noise can be added before analysis. The width 
of the Gaussian is defined as a percentage of the maximum 
signal return. The methods will be developed for an 
infinitesimally short pulse before the extra complication of 
deconvolution is added. Systems such as GLAS have short 
pulses (around 2ns) which should not need any deconvolution 
unless the range sampling is significantly finer. 
 
Derivation of parameters 
 
Estimation of forest parameters from lidar relies on the ground 
returns being distinguishable from the canopy returns (Hofton et 
al, 2002). This can either be achieved with multiple first return 
scans (Koetz et al, 2007) or a single full waveform measurement 
(Zwally et al, 2002) to get a distribution of returns from 
throughout the canopy. Due to the speed of spaceborne 
platforms and the subsequent sparsity of sampling only full 
waveform lidar is suitable for measuring vegetation from space. 
 
The standard method is to decompose the waveform into a set 
of Gaussians by non-linear regression (Hofton et al, 2000). The 
distribution of Gaussians can be used to classify cover type 
(Wagner et al, 2008, Reitberger et al, 2008) and (taking into 
account relative cross sections) can be used to derive vegetation 
height (Blair et al, 1999), estimate canopy cover (Lefsky et al, 
2005) and through metrics derive other biophysical parameters 
such as leaf biomass and leaf area index (Lefsky et al, 1999). 
 
Often there is no clear separation of ground and canopy returns, 
either due to dense understory, small separation of canopy and 
ground or topography. Attempts have been made to improve 
height estimates in these situations by using another data source 
to estimate the ground position (Rosette et al, 2008). Care must 
be taken that these ground elevation datasets give the true 
height (for example SRTM saturates over forests). Accurate 
datasets are not available globally. 
 
 

Method 
 
This investigation explores methods that use only the waveform 
to estimate tree height (which can be linked to biomass through 
allometric relationships and stand counts). Other characteristics 
would need to be inferred with additional information and will 
not be investigated in this paper. Fusing lidar with hyper-
spectral and multi-angular data would greatly help in the 
derivation of these biophysical parameters however the lidar 
waveform alone should provide the best height profile. 
 
Before Gaussians are fitted to the simulated signal it is pre-
processed in the following order; 

 
• 5% Gaussian noise was added, as described above. 
• The signal was pre-smoothed by convolution with a 

3m Gaussian. 
• Noise statistics are calculated from a known empty 

portion of signal (above canopy to avoid echoes). 
• The signal was de-noised by subtracting a threshold of 

the mean noise plus (an arbitrary) three standard 
deviations 

• The signal was post-smoothed with a 1m Gaussian. 
 

The empty tails are cropped from the signal to constrain the 
Gaussian decomposition. The positions and amplitudes of all 
turning points are recorded along with the width of peaks. If 
more features than the number of Gaussians to be fitted are 
found (due to heterogeneous or noisy signals) the Gaussians 
with the largest cross sections are used first. If too few are 
found (skewed Gaussians for example) the extra Gaussians are 
evenly spaced in the gaps. An implementation of the 
Levenberg-Marquardt method was used to minimise the root 
mean square difference between the fitted Gaussians and 
original signal (Press et al, 1994). It has been found that the 
best fits are achieved when the x and y axes are rescaled to 
between 0 and 100.  
 
The fitted Gaussians and the pre-processed signal were analysed 
to derive biophysical parameters. The centre of the last 
Gaussian is taken as the ground position if the energy contained 
within is more than an arbitrary percentage (1%) of the total 
energy. This should avoid any Gaussians fitted to noise or 
subterranean echoes caused by multiple scattering. If the 
Levenberg-Marquardt method fails to find a solution or the 
derived parameters are unrealistic the fitting is repeated with 
one less Gaussian. 
 
The tree top is calculated form the pre-processed signal. Taking 
it as the point at which the signal rises above the noise threshold 
will always lead to an underestimate of height. Data 
assimilation schemes such as the Kalman filter rely on unbiased 
observations (Williams et al, 2005). For this reason it may be 
better to try to estimate a point that could be an over or under 
estimate. The first point at which the signal drops to the mean 
noise level before it rises above the noise threshold would seem 
to be a sensible, unbiased estimate of tree top position. Figure 3 
shows a histogram of the signal start position error with and 
without tracking back from the noise threshold to the mean 
noise value. One hundred simulated waveforms were used with 
ten thousand separate sets of random noise added to give one 
million estimates. A negative error means a premature signal 
start; this was common in both methods. 
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Figure 3. Signal start error histogram. 

 
The non-tracking method gave a mean error of -22.99m 
compared to the tracking method’s error of -23.41m. However, 
the tracking method has a modal error of 0.91m compared to the 
non-tracking method modal error of 2.23m. The tracking 
method error distribution looks less biased than the non-
tracking; however the long tail of premature triggerings have 
distorted the mean. Ground height is unlikely to vary more than 
30m over a 30m footprint in forests and the maximum height of 
trees can be estimated, therefore a gradual increase of the noise 
threshold to ensure the signal start is not more than the footprint 
size plus maximum tree height with a tolerance from the last 
return may eliminate the long tail. 

 
These methods perform reasonably well when the ground return 
contains significant energy and is distinguishable form the 
canopy return. In very dense canopies (>90% coverage) little 
signal reaches the ground. In such cases a proportion of the 
measurements will fail; this proportion needs to be quantified. 
This canopy cover is not uncommon for evergreen broadleaf 
forests (Hofton et al, 2002). Accuracy will be sensitive to the 
ratio of the ground signal to noise. 
 
Figure 4 shows true tree height against derived height for flat 
ground with a range of densities and ages with 5% noise added. 
The five different age classes are visible up the y axis. The 
actual tree height was calculated from the material information, 
taking the range difference between the first leaf return and the 
mean position of the soil returns. This may be slightly different 
to the actual tree height (also recorded) because of the sampling 
of the ray tracer but is the best estimate that can possibly be 
derived from the signal. 

 

 
Figure 4. True against derived tree height with 1:1 line. 

 
Topography blurs the ground and canopy returns together 
(Harding and Carabajal, 2005), even without noise. Figure 5 
shows a return from an old growth forest on a 30o slope. The 
ground and canopy returns cannot be reliably separated by 
Gaussian decomposition. Undertory will have the same effect. 

 

 
Figure 5. Topographically blurred waveform. 
 

Multi-spectral lidar 
 
Two wavelengths with different canopy to ground reflectances 
ratios should allow the ground to be distinguished. Figure 6 
shows the ratio of leaf to soil reflectances against wavelength 
for the spectra used. A canopy also includes bark and this, being 
a similar colour to soil will bring the ratios closer to unity. 
There is still a contrast between the visible and near infra-red. 
Wavelengths of 650nm and 800nm have been used for the 
initial trials as they show a large contrast, although an 
instrument using 1064nm and 532nm will be easier to build. 
Hyper-spectral lidar may also be available one day (Kaasalainen 
et al, 2007). 
 

 
Figure 6. Leaf and soil spectra and their ratio. 

 
In the absence of noise the ground occurs at the point of the 
maximum ratio of 550nm over 850nm. Noise complicates the 
issue, unsurprisingly. 
 

 
Figure 7. Spectral ratio showing edges due to ground start, with 

noise alongside material contributions. 
 
 
If the signals are blurred by topography or understory the 
ground should be visible as a change in the ratio of visible to 
near infra-red reflectance. This can be found with traditional 
edge detection methods. 
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The signal was de-noised, taking care to preserve the energy 
ratio between the bands, assuming that any noise bias does not 
distort the ratio.  The ratio of visible to near infra-red was 
smoothed with Gaussians of decreasing width so that the 
smallest Gaussian to leave a single crossing point of the second 
differential (corresponding to a maximum gradient) was used. 
Using the smallest possible Gaussian ensured the best 
localisation of the edge. To avoid the large gradients of the 
signal start and end only a window between the first and last 
crossing points of the third differential (after smoothing) was 
used. The position of the maximum gradient was taken as the 
start, the last return above noise as the end and the average 
taken as the centre of the ground return respectively. Figure 8 
shows the mean error in derived ground position for one 
hundred simulated waveforms with 5% noise added over forests 
with different canopy covers on a 30o slope. Error bars show the 
standard deviations. 
 

 
Figure 8. Ground position error against canopy cover 

 
The method performs well provided there is a reasonable 
ground return. For very dense canopies the ground return is less 
than the noise threshold and so would be hard to see, even 
without topography. 
 
If it can be assumed that the tallest trees are equally spaced 
across the laser footprint then the tree height will be the 
distance between the first signal return and first ground return. 
The forest is unlikely to be so homogeneous over a 30m 
footprint. The measure of canopy height need not be the tree 
top. Lefsky et al (1999) showed the possibilities of using 
parameters such as the median canopy height to estimate 
biomass and other biophysical parameters through allometrics. 
This can be calculated provided the energy returned from the 
canopy and ground can be separated. The ground start and end 
could be used to further constrain the Gaussian fitting then the 
median of the canopy calculated. How this relates to biomass 
will depend upon the forest’s horizontal and vertical 
heterogeneity. 
 
 

Conclusions 
 

This paper has briefly outlined work in progress on the 
development of algorithms for measuring tree height from 
above canopy waveform lidar. The standard method of Gaussian 
decomposition has been implemented, using realistic 
simulations to precisely quantify the technique’s error (mean 
overestimate of 5.7m for <75% cover; refining of the method is 
needed). 
 
A method for determining ground position of signals blurred by 
topography or understory with dual waveband lidar has been 

introduced and shown to work reliably for all but the densest 
canopy covers and the errors quantified (mean RMSE of 3.2m 
for <65% cover). Relatively few simulations were available 
(100 over sloping and 225 over flat forests); more are being 
processed with a wider range of densities, slopes and tree 
species for use in further investigations. These will explore the 
affect of noise, thresholds, range resolution, canopy cover and 
pulse length on derived tree height error. 
 
A reliable method for determining a measure of canopy height 
over slopes is needed. The median canopy position may be the 
easiest to derive. Its sensitivity to heterogeneity and noise will 
be investigated. 
 
The premature estimation of tree top suggests that the threshold 
used was not high enough. This could be increased to the mean 
noise value plus four or more times the standard deviation, but 
having this fixed would increase the chances of thresholding out 
weak ground returns. An adaptive threshold based upon 
estimates of maximum likely tree heights or signal shape (the 
tree top is unlikely to be isolated from the rest of the tree) may 
give a better solution and should be investigated. 
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