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ABSTRACT: 
 
This paper presents an approach to realizing LiDAR data management in DBMS. We use octree to partition data space, and build a 
local KD tree at each octree’s node. In data organization, we take precise control on the size of the KD tree’s nodes. To effectively 
visualize point cloud data, the display precision is defined. The basic concept is to judge whether a node is displayed or not, by 
computing the size of a node’s data range after projection. We also discusses the method of screen-buffer and makes KD traversing 
from front to back, which can reduce the number of points for displaying and accelerate display speed. This method is particularly 
suitable for very dense data or data far away from the viewpoint. 
 
 

1. INTRODUCTION 

Light Detection and Ranging (LiDAR) is a data acquisition 
technique based on laser technology, which has been used 
widely in recent years. Advantages of using LiDAR include the 
following: LiDAR allows rapid generation of a large-scale 
DTM (digital terrain model); LiDAR is daylight independent, is 
relatively weather independent, and is extremely precise. In 
addition, because LiDAR operates at much shorter wavelengths, 
it has higher accuracy and resolution than microwave radar [1]. 
Depending on specific conditions, the level precision of LiDAR 
system ranges less than 1m, and height precision ranges 
between 15cm and 20cm [2]. After being processed, LiDAR data 
may generate highly accurate digital Elevation model (DEM), 
contour map and orthophoto map. 
 
Because of the huge amount of data and also the limitation of 
computer hardware, there has been no effective approach to 
organize and manage the LiDAR data. The visualization of the 
data has also not been satisfactorily resolved. There are some 
algorithms for the display of large volumes of data, which 
usually are based on the LOD of triangular net[3]. Common 
method to solve the problem is writing the data into a compact 
file, by means of which to speed up frustum clipping and 
processing. 
 
However, for discrete LiDAR points, traditional methods of 
LOD and hidden surface removal [4] are no longer applicable. 
Furthermore, it only considers view frustum clipping, but pays 
no attention to the relationship between the data points, so LOD 
and hidden surface removal are not appropriate. As a result, it 
surely can’t gain a satisfactory result. In this paper, we use 
database to organize data and establish the relationship between 
them, and build local KD tree for data index. The algorithms of 
display precision control are presented. 
 
 

2. KD TREE AND IMPROVEMENT 

In order to process and manage large volumes of LiDAR data, 
an efficient data structure is very important. The KD tree may 
provide suitable solution.   
 

KD tree is a binary tree in a K-dimensional space. In the 
traditional binary search tree, the data classification standard is 
a key word which is usually a number which have a certain 
attribute, such as the coordinate on the X axis. For the K-
dimensional data, only one key word is not enough to 
effectively partition the multidimensional data. KD tree makes 
the key word alterable, which defines key word based on each 
node and the coordinate on each axis will play the role of key 
word in turn[5]. A usually mode is to make the (N%K+1)th-
dimensional coordinate value as key word if the node is in the 
N-level, that is: 
 
 

. . %node split node lefel K 1= +  
 
 
There are two ways to build a KD tree: one is direct insertion, 
but as KD tree hasn’t the ability to balance, the form of tree 
totally depends on the order of input; the other way is to 
calculate the form of KD tree in good balance and get the order 
to establish the balance tree. In this way, the tree would get 
balanced at the cost of pre-calculation.  
 
Compared with the quadtree and octree, the KD tree has several 
advantages, such as balance, constructing based on data 
partition, and no empty nodes. The disadvantage is that, for 
some uniform distribution of data, the depth of the tree will be 
deeper. That’s because each node of KD tree only has two sub-
trees, while quadtree and octree have four and eight 
respectively. 
In traditional KD tree, each node has only one data point, which 
means node must be split into two sub-nodes when it has more 
than one point. This method is very wasteful both for query and 
representation. So, a better standard which determines whether 
the node should be split or not is necessary. 
 
There are two basic methods to judge whether the node will 
split or not: the method based on the number of points, and 
based on the space. 
 
The method based on the number of points is given a fixed 
number N, which is defined as the largest number of points in 
each node. If the number of point in a particular node is less 
than or equal to N, the node needn’t to be split, otherwise 
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continue to be split down. So, we should add a variable for each 
leaf node to denote the number of points in this node, while 
inserting a new data, examine the variable whether it’s greater 
than N, if it is, split the node. 
 
The method based on the space is given a fixed spatial scales R, 
such as the volume or length of smallest bounding box 
enclosing all data, or the radius of smallest sphere containing all 
data in the node. When the node’s spatial scales are smaller 
than R, the node needn’t to be split. This approach requires 
adding some parameters of smallest bounding box or sphere. 
And after each inserting, KD tree need to modify all parameters 
from the root to the node where the inserted data stayed. 
 
The N and R defined as a standard above should be estimated 
from original data in advance. The above two methods show 
some limitations if data are not evenly distributed. With the 
number-based standard, the node involves a very large region in 
sparse areas, and splits too much in dense areas; while in the 
spaced-based standard, the node contains only one point in 
sparse area, and involves large number of points in dense areas. 
It takes advantage of finding nearest point while based on the 
number of points, and takes advantage of simple operation in 
display while based on the space. For our data management 

purpose, we choose the space-based standard, but some rules 
are added: 
1). Based on the needs of displaying and processing, set a 
normal space scale rMin for splitting. If the node’s spatial scale 
is less than rMin, the node needn’t be split; 
 
2). Considering the operational environment and complexity, 
set the maximum number of points nMax. If the node’s number 
of points is larger than nMax, the node must be split into two 
nodes until the number is less then nMax; 
 
3). While the node’s spatial scale is no less than rMin and the 
number of points is no larger than nMax, we could split the 
node as less as possible by taking in some error. Assume the 
node is P. If it is split into two sub-nodes----A and B, calculate 
the ‘percentage of precision loss’ f(P). Give a variable u, if 
f(P)<u, point P needn’t to be split into two.  
 
PL is the plane which minimizes the squared distances to the 
points of P. g(P) means the squared minimum distances, V1(P) 
and V2 represent the volume of smallest bounding box of P and 
the cube of rMin respectively. k is a specified  coefficient 
defined by the programmer. The formula can be defined as 
f(P)= g(P)/[g(A)+g(B)], and u=k*V1(P)/V2 .  

 
 

  
 

Figure 1. The left figure shows a KD partition based on the space, where the node contains only one point is spares areas, 
and can involves a large number of points in dense areas. The other shows a KD partition based on the number of 7, 

this method can make the region very large or very small depending on the dense. 

 

The structure of KD tree’s node and the tree is: 

template <typename Xtype> 
class KDNode 
{ 
public: 
 int axis ; 
 Xtype x[SD];  
 Xtype (*xList)[SD];   // Definition of data in nodes 
 int dataNum;    // Definition of the number of data in each node 
 void insertData(Xtype x[][3],int n);  //While the node needn’t to split, put all the data into node 
 Xtype bound_cube_min[3];  // The bound of smallest bounding box  
 Xtype bound_cube_max[3]; 
 KDNode(Xtype* x0, int axis0); 
 KDNODE* Insert(Xtype* x); 
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 KDNODE* FindParent(Xtype* x0); // Search node, return the parent node 
 KDNODE* Parent ; 
 KDNODE* Left ; 
 KDNODE* Right ; 
}; 
template <typename Xtype> 
class KDTree 
{ 
public: 
 KDNODE*  Root ; 
 KDTree(); 
 bool    add(Xtype* x);  
 void    insertToKD(Xtype* data);  // The function of add the non-leaf node 
 KDNODE*   find_nearest(Xtype* x0);  // Find the nearest node 
 Xtype    x_min[SD], x_max[SD];  // Set bounding box 
}; 
 
 

3. LOCAL KD TREE 

Building a KD tree for a whole set of LiDAR data in traditional 
way is less possible. One reason is the tremendous volume of 
data. Another reason is that it’s required to sort the whole data 
based on the coordinates in the three axial direction before 
building KD tree, whose complexity is O(N*ln(N)). As large 
data set consumes too much time, data partition is necessary. In 
this way, we divide the data into small pieces and build local 
KD tree for each piece of data, to help the organization and 
management of data. 
 
3.1 Using octree to confirm the bound of local KD tree 

In order to avoid excessive search, we adopt the octree to 
partition space, which makes point’s location known in advance. 
It saves time of comparing with node’s key word during 
searching, and facilitates judging whether it’s in the view 
frustum. 
 
The standard for splitting octree’s node is defined as: if the 
node’s number of points is less than a pre-defined number, it 
needn’t to be split. The pre-defined number is determined by 
the capacity of KD tree. That can make the scale of KD tree 
uniform, which is convenient for post-processing. In order to 
get the balance between the octree’s depth and KD tree’s 
saturation, the number should be defined as 2n. 
 
The definition of a local KD tree includes two steps. Firstly, the 
bound and density of the data should be determined to establish 
octree. Then, each node is split into eight sub-nodes through the 
center position of the bounding box until the node’s number of 
point is less than 2n. The data of each leaf node in octree make 
up of a local KD tree. In the octree, the nodes only store their 
information about bounding box. Each leaf node is given an 
index value for the convenience of research.  
 
3.2 View frustum clipping 

According to the position of viewpoint and the frustum, we 
compute all octree’s nodes in view frustum. Read the data in 
each node and build local KD trees. 
 
The program that computes which nodes are in the view 
frustum can be like this: seek from the root, if the node’s 
bounding box and the view frustum have an intersection, seek 
for node’s two children, otherwise return. 
 

We note that in each vision, we need to identify the called KD 
trees, and then read data from database to build KD trees. The 
process is very cumbersome. In viewing frustum clipping, the 
general view transform only changes the edge of the scene. For 
local KD trees, a view transform is likely to retain most of KD 
trees, only a small part of the trees will be changed into or out 
of the view frustum. As the Figure 2 shows, when the view 
frustum moved right, only several green regions enter the 
frustum and several red regions quit. So, while the scene is 
redrawn, we only need to compute these special trees, destruct 
the red trees and construct the green trees. That will avoid 
destructing and reconstructing many trees. 
 
 

 
 
Figure 2. A view transform is likely to retain most of 

KD trees. In this picture, only the green regions 
enter the frustum and the red regions quit. 

 
3.3 Traverse the octree front to back 

For binary tree, a node has only two sub-nodes, the front to 
back traversing order can be directly derived by comparing the 
view position with the node’s key word. But for octree which 
has eight children, the order from front to back is not so simple. 
Consider the cube shown in the picture, it represents a node of 
octree and it has eight children. If the viewpoint is in node 1, 
it’s certain that we will traverse node 1 first and node 7 at the 
end, because node 1 is in front of any other nodes and node 7 is 
behind any others.  
 
Notice that, three nodes, node 2, 4 and 5, have a public plane 
with node 1 and only node 1 is in front of them. Moreover, they 
are separated by lines AB, CD and EF, any one of which isn’t 
in front of any other. There are three other nodes, i.e., node 3, 6 
and 8, that have a public line with node 1, they are in the back 
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of node 1, 2, 4 and 5, and are separated by the three lines too. 
Thus, the traversing sequence should be: 

[1]——[2, 4, 5]——[3, 6, 8]——[7] 
 
 

 
Figure 3. A cube which has a root and eight sub-

nodes. 
 

Add a variable i for marking the traversing sequence and the 
initial value is 0. Test the three-dimensional coordinates 
respectively, if a coordinate of viewpoint is not in the node’s 
bound, the node’s i will add one. When traversing the eight 
sub-nodes, variable i gives the sequence. 
 
The pseudo-code is below: 

int node.calculateFrontOrBack() 
{ int i=0; 
for(int j=0;j<3;j++) 
 if(!(eye[i]∈node.bound)) 
  i++; 
return i; 
} 
tree.walkNode() 
{… 
 for(int j=0;j<4;j++) 
  for(int k=0;k<8;k++) 
   if(subNode[i].i==j) 
   

 tree.walkNode(subNode[i]); 
…} 

 
For the issue of managing large volume of LiDAR data using 
local KD trees, we choose octree to determine the bound of 
local KD trees. Data are put into RDBMS in specific order in 
pre-process, the KD trees are computed during run time, and 
local KD trees can be quickly built by reading data from the 
database. We also make some improvements on other details. 
These methods are suitable for large amount of data, and can 
achieve a satisfactory processing speed. 
 
 

4. DISPLAY PRECISION 

In displaying LiDAR data using local KD trees, there may be 
some trees or nodes which are far from the viewpoint. Drawing 
these trees or their nodes has less effect to the observer. 
Consider a node far from the viewpoint that the region of data’s 
projection on screen is only one pixel, despite how many points 
the node contains. So only one point can be drawn instead of 
drawing hundreds, even thousands of points from the node. 
Based on this principle, we use the concept of screen precision 
to control display based on local KD tree. That is, if a small 
area on the screen contains many points, we only draw a 

representational point instead of drawing all of them. The small 
area usually to be defined as a pixel and the representational 
point can be the point that splits the node into two. 
 
Based on this idea, it’s needed to get two-dimension 
coordinates on screen from any point after projection. The 
region’s size consisting of the points’ two-dimension 
coordinates on screen will determine whether its sub-nodes will 
been shown or not. 
 
Calculating screen coordinates is very simple in orthographic 
projection. In perspective projection, the formula for 
calculating is shown below. 
 
Let eye position to be eye[3], view[3] means the direction of 
view, and up[3] indicates which direction is up. Calculating the 
vector multiplication exterior, make a coordinate system, eye[3] 
as the origin, exterior as X axis, up as Y axis, view as Z axis. 
For any data P, its projection is indicated in Figure 4. So the 
point P’ will be the mapped point of P on screen. The lengths of 
E’P’ and A’P’ will be the X and Y coordinates of P’. 
 
 

 
 

Figure 4. The eye position is point O, view is Z-axis, 
up is Y-axis, and exterior is X-axis. 

 
OD’ is the distance from P’ to the XY plane, its length can be 
count by the frustum and the size of scene. Because of 
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, we can get: 
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PA, PE and AB respectively are the distance from P to plane 
XZ, YZ and XY. So we could get the length of E’P’ and A’P’. 
 
In order to examine a node’s precision, we need to calculate all 
points in it, he process is time-consuming and very expensive. 
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A simple approach is using the vertexes of convex hull to 
replace the whole data. Assume the data set in a node is S, and 
build a convex hull CH(S), in which the set of vertexes is P(S). 
For any point in P(S), compute its screen coordinates. Let the 
set of two-dimension point is P’(s’), compute its convex hull 
CH(P’(S)). If CH(P’(S)) is small enough, we will not show the 
node’s sub-node. 
 
But in fact, the complexity of computing convex hull is 
O(n*ln(n)), it means that the computing is also time consuming. 
Moreover, the convex hull would also have errors. As shown in 
Figure5, if the green points are vertexes of the convex hull, then 
the CH(P’(S)) is the region encircled by the green lines. But we 
can only guarantee the region that contains green points is 
actually the area we need. The gray area may have no any point 
to be projected to, which indicates the inaccurate area. 
To simplify calculation, we use smallest bounding box along 
the axis to replace convex hull, which makes the computation 
more imprecise (Figure 5). The area using bounding box is the 
region encircled by the red lines. Compared with convex hull, it 
generates four more squares (indicated as pink color). But this 
method may discard the cumbersome computing for convex 
hull, and effectively speed up the processing speed. 
 
 

 
 

Figure 5. The smallest bounding box along the axis 
would take the place of convex hull. 

 
The above approach can reduce the points on screen, and 
accelerate displaying speed. At the same time, some more 
improvement will make the effect more satisfactory. 
 
1) The KD tree is divided into three dimensions, after 
projecting to two dimensional planes, there will be many 
overlapping points projected to the same pixel. As a result, the 
larger the data set is, the more there are overlapped points. To 
enhance the efficiency further, we propose a BOOL screen 
buffer, which records whether the pixel on the screen has been 
correctly drawn. When we want to draw a point, examine the 
corresponding pixel on screen, if it has been drawn, we will not 
draw again. 
2) Based on the above improvements, it’s possible that we draw 
a point that is far from us first, and then when we want to draw 
a closer point, we find the pixel has been drawn, so we give up 
drawing. That is, the point isn’t drawn in a ‘correct’ way. In 
order to consider the depth of point, we can use the depth buffer, 
but it spends too much computing resources. A simple approach 
is to traverse the KD tree in a “front to back” way. The order to 
traverse a node is: examine which sub-node contains the 
displayed point, traverse it, then draw the node’s split data, and 
then traverse other nodes. 
3) Classical KD tree defines the split axis of X, Y and Z in turn, 
which ensures the fairness and makes it convenient to deal with. 
But in this way, the different density on three dimensions may 

make the node’s region anomalous. The best definition for split 
axis is the dimension of largest spatial extent [6], which can 
make node’s region nearly the same length in three dimensions 
and ensure a stable efficiency.  
4). After discussion on screen buffer, the standard of node’s 
split can be added as: if pixels in the region after node’s 
projection have all been drawn, the process ends. This standard 
will simplify point display in tremendous volumes of data. 
 
 

5. EXPERIMENTAL RESULTS 

In a computer with Pentium4 2.4GHz CPU, 1G memory, 
NVIDIA GeForce FX 5200 graphics card, we run the program 
in three ways. These respectively include the original method, 
the method using 1.5 pixels display precision, the method of 
using 1.5 pixels display precision and screen buffer. We utilize 
a data set of 3,200,079 points, with a disk size of 87.5M. Four 
pictures for experiment are shown below: 
 
 

 
Number of points: 237953; cost time (ms):6152.31 

 

 
Number of points: 109785; cost time (ms): 3148.24 

 
Number of points: 49468; cost time (ms): 1588.09 

 

 
Number of points: 20202; cost time (ms): 757.467 

 
Figure 6. Experiments results 

 
As shown above, with the decrease of model’s percentage on 
screen, the number of points becomes smaller and the display 
time becomes shorter. The number of points and display time 
maintain a linear relationship. This is consistent with our 
original intention of using the points that will be shown and 
discard the points that need not be shown. 
 
With the increase of the length from viewpoint to model, the 
number and time become smaller and smaller. Compared with 
the way without screen buffer, the screen buffer reduces the 
number in screen but increases the display time, that’s because 
in this way it adds a judge of whether the pixel has been shown 
or not for each ‘big’ node. This drawback can be improved by 
the fourth improvement. 
 
Noted that the number of points and the display time maintain a 
linear relationship, we can get the result that, the display time in 
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this method depends on the number of points shown in the 
screen, not the volume of data, that is, regardless of the amount 

of LiDAR data, we could draw the scene within an acceptable 
time. 

 

with display precision with display precision  
and screen buffer 

Sum of Points Render time(ms) Sum of Points Render time(ms) 

109785 3183.41 38415 3293.98 

49468 1617.26 14467 1646.21 

20202 759.041 4259 769.161 

7743 316.376 1207 320.897 

2700 118.496 321 120.296 

992 47.2825 85 46.4422 

259 11.6568 21 12.4862 

123 5.55098 11 5.99378 

17 0.800381 4 0.850667 

1 0.0798984 1 0.0804572 

 
Table. 1. The parameter in the ways of taking 1.5 pixel precision, and 1.5 pixel precision with screen buffer: 

 
 

6. CONCLUSION 

This paper discusses several aspects in managing and 
displaying LiDAR data, i.e., data partition using octree, 
building local KD trees, improving the KD node, and 
accelerating display of very large LiDAR data. Experiments 
show that the approach is particularly efficient for very dense 
points or points far away from the view point. The display time 
for the whole scene no longer relies on the volume of data, but 
on the amount of points shown on screen. Nevertheless, KD 
tree hasn’t the ability to insert or delete data dynamically. More 
efforts are needed for our methods to process LiDAR data more 
dynamically. 
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