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ABSTRACT: 
 
Security informatics involves the application of information technology to protect public health and security.  A common research 
topic in security informatics is the identification and representation of clusters of events (e.g., a disease cluster or a crime hot-spot).  
Understanding why clusters change shape and move over time would be valuable to researchers in security informatics, providing 
them with greater means for discovering causes as well as examining the effectiveness of mitigation efforts.  A first step towards this 
type of understanding necessitates the establishment of methods for the description of how clustering events evolve over time.  
However, existing approaches for the analysis of clusters are limited in their ability to describe spatiotemporal behaviour such as 
movement and deformation.  This research presents a framework for facilitating such spatiotemporal descriptions based on support 
vector clustering and the spatiotemporal helix.  Benefits of this approach include the absence of bias a prioi regarding the shape or 
number of clusters and the ability to describe spatiotemporal behaviour in terms of both changes in shape and movement.  Results 
based on simulated data suggest the effectiveness of this approach for spatiotemporal analysis in a range of application domains in 
security informatics. 
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1. INTRODUCTION 

Recent technological development has produced important new 
sources for generating spatiotemporal data and has significantly 
enhanced the accuracy of existing data collection techniques.  
The existence of these new data offer real opportunity to 
advance a range of fields.  One such application area where 
these data can offer potential for analysis is in security 
informatics. 
 
Security informatics is an umbrella term describing a diverse 
collection of research domains including homeland security, 
law enforcement, and public health among others.  Broadly, it 
can be defined as the application of information technology for 
the maintenance of public safety and well-being.  A common 
analytical problem in security informatics is the identification 
of regions with elevated concentrations of events.  Illustrative 
examples include the identification of disease clusters and hot 
spots for particular crimes.  Within the realm of security 
informatics, research objectives such as these have been 
characterized by three principal questions (Zeng, Chang et al. 
2004; Chang, Zeng et al. 2005):  1) How to identify regions 
within the study area having high or low concentrations of 
events?  2) How to determine if any areas of variant 
concentration are the result of random variation or are 
statistically significant, and if the variation is not random are 
there explanatory variables that can explain this deviation?  3) 
How to identify significant changes in the distribution of events 
(Zeng, Chang et al. 2004; Chang, Zeng et al. 2005)?   

The first two of these questions are traditional research 
objectives in several research domains in security informatics, 
notably in epidemiology.  Among the methods available to 
identify and delineate potential clusters, the scan statistic has 
recently emerged as popular.  This technique is effective in 
identifying areas with clustering, but has a major drawback in 
terms of its reliance on scanning windows of fixed shape (i.e., 
circular or elliptical) which implies bias a priori regarding the 
shape of clustering events and limits ability to describe changes 
in the spatiotemporal behaviour such as change in cluster shape 
with much detail. 
 
To address these shortcomings, Zeng, Chang et al. (2004) and 
Chang, Zeng et al.(2005) proposed methodologies based on 
support vector clustering (SVC).  SVC is a kernel method and, 
as with all kernel methods, relies on kernel transformation to 
high-dimensional feature space to make non-linear learning 
tractable.  In this feature space a relatively simple decision 
function, the minimum bounding hypersphere, is applied.  
When this representation of cluster boundaries is mapped back 
to the initial input data space the cluster boundaries can be 
complex in shape and composed of multiple polygons.   
 
Products of the SVC algorithm include labels for points 
distinguishing clusters from outliers as well as representation of 
cluster boundaries in input space.  For analysis in security 
informatics, Zeng, Chang et al. (2004) investigated application 
potential for SVC-produced representations of cluster 
boundaries through comparison against the scan statistic and 
hierarchical clustering results.  Conclusions suggested further 
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consideration of SVC for spatiotemporal applications due to 
SVC’s capability to produce more complex representations of 
clusters.  Later consideration of SVC for security informatics 
applications was conducted in spatiotemporal context (Chang, 
Zeng et al. 2005).  In this research the authors incorporated time 
directly into the SVC algorithm and examined the potential of 
SVC-produced point labels for spatiotemporal analysis.  Results 
from this analysis identified points both in space and time that 
were either inside or outside of clusters.  However, with the 
output being clouds of clustered points, this approach offers 
limited ability to describe the spatiotemporal behaviour. 

      (3) 

 
The objective of this research is to take a different approach to 
spatiotemporal analysis with SVC that can describe changes in 
shape and movement of clustering events.  Like Zeng, Chang et 
al. (2004), this approach is based on SVC-produced 
representations of cluster boundaries, defining clusters in terms 
of regions with high concentrations of event instances rather 
than as point clouds.  To incorporate a temporal dimension, 
these derivations are repeated through time resulting in data not 
unlike video sequences of image data.  Given this similarity, a 
method already proven capable of describing event evolution in 
video data, the spatiotemporal helix (ST helix), is proposed.  
Developed as a means for the summarization of event behaviour 
in image data, the ST helix readily incorporates SVC-produced 
representations of cluster boundaries and can be used to support 
spatiotemporal queries regarding cluster behaviour over time.  
To demonstrate how SVC can be coupled with the ST helix for 
spatiotemporal analysis of event behaviour, a simulation based 
example is described which highlights topics for future research. 
 
 

2. SUPPORT VECTOR CLUSTERING  

Support vector clustering (SVC) is a non-parametric kernel-
based approach to the problem of describing clustering in data.  
Key advantages of this over popular approaches is the absence 
of any assumptions regarding the number or shapes of clusters.  
Distinguishing SVC from other kernel methods is its use of a 
minimum bounding hypersphere decision function in feature 
space written 
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where  xi are event instances 
 Φ is a non-linear transformation  
 a is the center of the hypersphere 
 R the radius of the min. bounding hypersphere 
 ξi is a slack variable for the soft constraint 

 
To solve for the minimum bounding hypersphere, the following 
Lagrangian is used  
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which describes a convex cost problem.  By imposing 
stationarity (derivatives equal to zero) the following first order 
conditions  
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here C is a user-defined parameter controlling the influence of 

ith the input data x  appearing as a dot product the advantages 

 
w
outliers.  With the interpretation of the hypersphere radius 
delimits clusters, Ben-Hur, Horn, et al. (2001) termed the 
instances located a distance less than the radius from the center 
a as being interior points, those located beyond the radius as 
bounded support vectors, and those on the surface as support 
vectors.  In other words, the hypersphere is a representation of 
the cluster boundary and support vectors appear along the 
boundary.  From Eq. 3 and Eq. 9, it follows that the number of 
bounded support vectors, or outliers, is limited by C so that the 
maximum number of outliers is less that 1/C.  Therefore 1/NC 
where N is the number of event instances can be interpreted as 
an upper bound on the percentage of outliers accepted by the 
cluster boundary. 
 
W i
of the“kernel trick” become accessible, as dot product can be 
replaced by an appropriate kernel function.  The sole constraint 
placed upon functions to be considered as a kernel for this 
substitution is that their Gram matrix be symmetric and positive 
semi-definite to guarantee convexity and a unique solution 
(kernels must be a Mercer kernel).  This research uses Gaussian 
kernels of the form 
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ecause they are not sensitive to outliers (Tax and Duin 1999) 
and because of their previous application in spatial analysis 
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with kernel density estimation.  Following kernel substitution 
with a Gaussian kernel, the problem in Eq. can be written as  
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rom the above formulations, it is evident that the hypersphere 
 determined by the (unbounded) support vectors alone.  As a 

F
is
result, these points, with 0 < αi < C, alone are used to map the 
hypersphere back to input space and produce a representation of 
the cluster boundary in that space.  The process first involves 
the derivation of an input space value R corresponding to the 
radius in feature space.  This value is used to test calculated 
values from a mesh of input space points z ∈ Z.  Those 
locations where the values match R are interpreted as an input 
space representation of the cluster boundary.  R can be written: 
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otivated by its ability to provide complex representations of 
lustering without bias in regards to shape or the number of 

ur 
f clustering phenomena, this research proposes a new approach.  

3. SPATIOTEMPORAL HELIX 

The marizing the 
evolution of spatiotemporal 
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of the product of the kernel-based representation of the inner 
product of support vectors with their Lagrangian multipliers αi 
where Ci << α0 .  With the Gaussian kernel in the first term 
equal to one and SX, the only term that varies in Eqs. 14-16 with 
each no  is the second one.   
 
Using these formulations, the radius o
h
points xi ∈ Z where the xi are the support vectors, or 
equivalently 
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gainst the values generated 
through the expression in Eq. 17 and by identifying those points 
z with values that are equal, therefore determining contours 
representing the extent of the clusters in input space.  This can 
be written 
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clusters, SVC has already been twice examined for its 
application potential in security informatics.  The first of these 
investigations examined SVC in a purely spatial context, 
comparing SVC generated representation of cluster boundaries 
against those produced by the scan statistic and hierarchical 
clustering (Zeng, Chang et al. 2004).  The second of these 
investigations considered SVC for spatiotemporal analysis, 
exploiting the ability of kernel methods to handle high-
dimensional data by incorporating time directly into the SVC 
algorithm (Chang, Zeng et al. 2005).  Output from this 
algorithm was successful in identifying clustered points, but by 
consisting of clouds of labelled points this method does not 
allow for direct description of clusters behaviour over time.   
 
To address this inability to describe spatiotemporal behavio
o
Like the work by Zeng, Chang et al. (2004), this approach is 
based on SVC-produced representations of cluster boundaries.  
Given that these boundaries appear in raster-type format and 
that they can be produced through time, there is a resemblance 
of these data to those that occur in video sequences.  
Correspondingly, these SVC-generated results are inputted into 
an existing framework for spatiotemporal analysis of areal 
events in image data, the ST helix. 
 
 

spatiotemporal helix is a framework for sum
phenomena. Designed to allow 

efficient querying of data and to support intuitive visual 
representations of event evolution, the primary strength of the 
ST helix include its ability to facilitate complex description and 
query of event evolution in terms of both the event’s trajectory 
and its deformation.   
   

 
Figure 2. A spatiotemporal helix. 
 

The gray sph  helix’s spine.  
are represented by arrows.  Outward facing arrows 

 determine which changes in velocity and shape are 
significant, and consequently which nodes and prongs 

eres depict nodes and define the  
Prongs 
denote expansion and inward facing arrows indicate contraction.  
Arrow length reflects the magnitude of deformation while their 
angle reflects the azimuth range over which the deformation 
occurred. 

 
In order to

constitute a ST helix, self-organizing map (SOM) and 
differential snakes techniques are applied.  The derivation of 
appropriate nodes is complex in that significant change in 
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trajectory implies consideration not only of the distance 
traveled over time, but also of the direction.  For this reason, a 
sophisticated approach involving a geometric adaptation of self-
organizing maps is used which assigns more nodes to time 
periods of intense change and fewer nodes to periods of 
stability (Partsinevelos, Stefanidis et al. 2001).   
 
To develop the prongs an adaptation of deformable contour 

odels, differential snakes, is used.  This method considers 

opriate parameter values for determining 
ignificance, a concise signature of the evolution of event 

 (19) 

(Stefanidis, Eickhorst et al. 2003).  This signatu
for the development of similarity metrics outlined by Croitoru, 

4. EXPERIMENTS 

To illustrate ribe clustering that 
can be incorporated into the ST helix for modeling 

m
changes in an events shape as a function of differences in the 
distance from an event’s center of mass to points on its 
boundary from time t to time t+dt.  The percentage of change in 
these distances is successively compared against a user defined 
threshold to identify where significant changes have occurred 
(Agouris, Stefanidis et al. 2001).  These significant changes and 
their sign, negative change implying contraction and positive 
change indicating expansion, are recorded as prongs (Agouris 
and Stefanidis 2003). 
 
With selection of appr
s
occurring over the time period frame t1 to t2 can be captured by 
a ST helix and written  

 
 

},...;,...{ 112,1 mn
objid

tt prongprongnodenodeHelix =
 

re is the basis 

Agouris et al. (2005) which demonstrated the ability of the node 
and prong data stored in ST helix as capable of differentiating 
the evolution of 25 different hurricanes and facilitated 
discussion regarding the similarity of their evolution.   These 
results suggest that the ST helix could also be used for 
spatiotemporal analysis involving the description of clustering. 
 
 

how SVC can be used to desc

spatiotemporal behavior, this section presents a simulation-
based example.  The simulation consists of 6 frames each 
representing approximately 200 instances and with varying 
amounts of clustering and randomly generated noise.  SVC was 
conducted on the data in each of the 6 frames to generate areal 
representations of clusters which were then inputted into the ST 
helix modeling framework.  Two selected frames appear in 
Figure 3. 
 

   
 
Figure 3.  The two images above depict SVC results occurring 
at different time frames of th

 
A  
ppropriate parameter values.  With SVC with Gaussian kernels, 

these parameters are the bandwidth σ and the parameter C that 

e simulation (q=12, C=0.0077). 

 major criticism of SVC is related to the difficulty of selecting
a

controls the percentage of outliers.  To generate the results 
produced in this research, a variety of parameter settings were 
examined and values were adjusted according to degree of 
clustering and noise in each frame.  Guidelines for the selection 
of appropriate parameter values is an on-going topic of research 
that will need to be addressed before SVC can be implemented.  
The effects on the shape of the boundaries produced by SVC 
can be seen in Figures 4 and 5.  In Figure 4 the bandwidth σ is 
manipulated indirectly by varying the values of q = 1/σ.  As σ 
becomes smaller (as q is increased) the number of support 
vectors increases and boundary shape becomes more complex.  
Likewise, varying C also has a strong effect on cluster shape 
(Figure 5).   Given the dramatic variation in the results shown in 
Figures 3-5, before SVC can become available for widespread 
in security informatics applications, research regarding the 
selection of appropriate parameter values will have to deliver 
suggestions for the ‘best’ parameter values for various datasets. 
 
 

   
 

   
Figure 4. Illustration of the effect of changing kernel bandwidth 

on cluster representation.  Both rows of images are derived 
from the same data with the same value for C as in Figure 3 

 

(C=0.0077). The different boundary representations result from 
different values for q (q=6 in top row, q=24 in bottom row). 

   
 

   
Figure 5. Illustration of the effect of changing C on cluster 

representation.  Both rows of images are derived from the same 
data with the same bandwidth (q=12) as in Figure 3.  The 

different boundary representations result from different values
for C (C=0.01 in top row, C=0.0059 in bottom row). 

 

 4



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008 

Wh er 
c  
ST h ents 

en modeling SVC-produced results for clustering, oth
hallenges materialized.  Principal among these is that existing

elix methodologies were designed for analysis of ev
composed of single polygons.  Meanwhile, SVC-generated 
representations of clustering, as in reality, may be represented 
by multiple polygons at any given time period.  Interaction 
among these polygons implies more complex spatiotemporal 
behavior such as merging/splitting and appearing/disappearing.  
Accurately describing these behaviors could be important to 
many applications in security informatics (e.g., why did two 
criminal hot spots merge?).  The simulation presented here was 
explicitly designed to highlight the types of obstacles presented 
when modeling spatiotemporal phenomena.  In terms of the ST 
helix, modeling of this type of behavior has implications in 
assignment of trajectories (i.e., start/end a trajectory, 
merge/split with an existing trajectory) and is a topic of current 
and future research.  For the helix depicted in Figure 6 a simple 
framework, adapted from Devine and Stefanidis (2008), 
involving trajectory and changes in area over successive frames 
were used to allocate trajectories. 
 
 

 
 

Figure 6. Spatiotemporal helix representing the spatiotemporal 
in the simulation. 

 

5. CONCLUSIONS AND FUTURE WORK 

 limitation of many existing techniques for the description of 
umber 

of clus  in a study area at a given time.  Therefore, these 
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