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ABSTRACT: 
 
A spatiotemporal data model is incomplete without three components: classes, consistency constraints, and operators. Classes define 
the structure of the model, constraints enforce consistency in the model, and operators operate on the structure of the model. In the 
past, many models have been proposed, but most of them discussed the classes. The studies on operators for spatiotemporal data 
models are not abundant. Operators used to query spatial, temporal, and spatiotemporal relations are the focus of this paper. 
Relations in the spatiotemporal databases can be categorized into three groups: spatial, temporal, and spatiotemporal relations. 
Spatial relations that are valid for a certain time period are called spatiotemporal relations. These spatiotemporal relations are based 
on a cell-tuple-based spatiotemporal data model (CTSTDM). Spatiotemporal relations can be classified into five groups: metric, 
topological, order, set oriented, and Euclidean. This paper elaborates on the topological relations (spatiotemporal topology) derived 
from a simple temporal cell-tuple structure. The operator, operand(s), results, and syntax of the spatiotemporal relations are defined. 
By employing relational algebra, spatiotemporal relations (boundary, contains, overlaps, etc.) can be derived from the cell-tuple-
based spatiotemporal data model. In the past, two common approaches have usually been employed to obtain topological relations. 
The first is called explicit, and the other is implicit. Both approaches have advantages and disadvantages. The cell-tuple-based 
spatiotemporal data model stores spatiotemporal topology implicitly, which is more appropriate for spatiotemporal and network 
databases. The paper concludes with limitations of this implicit topology approach and recommendations for future work. 
 
 

1. INTRODUCTION 

A spatiotemporal data model has three components: the classes, 
consistency constraints, and operators. Classes define the 
structure of the model, constraints enforce consistency in the 
model, and operators operate on the structure of the model. 
These operators can be static or dynamic (Raza, 2004). 
Dynamic operators change the state of the system, for example, 
create, kill, delete, or reincarnate operators. Static operators are 
query operators. Past research on spatiotemporal models (STM) 
mainly focused on the classes of the model. Research on 
operators of STM is not abundant. Static operators are the focus 
of this paper. These operators are utilized to query spatial, 
temporal, and spatiotemporal relations. Relations in 
spatiotemporal databases can be categorized into three groups 
(i.e., spatial, temporal, and spatiotemporal relations). Past 
studies mainly focused on purely spatial or temporal relations. 
Spatial relations that are valid for a certain time period are 
called spatiotemporal relations.  
 
This paper discusses the spatiotemporal relations based on 
temporal cell-tuple structure of an object-oriented, cell-tuple-
based spatiotemporal data model (Raza, 2001; Raza and Kainz, 
1999). The object-oriented cell-tuple-based spatiotemporal data 
model (CTSTDM) consists of three main classes: spatial, 
attribute, and temporal. A spatiotemporal class is the 
aggregation of spatial and temporal classes (Figure 1).  
 

Figure 1. Spatial and temporal class hierarchy for 
spatiotemporal objects 

 
This spatiotemporal class is also a super class of three classes—
ZeroTCellClass (ZeroTCell), OneTCellClass (OneTCell), and 
TwoTCellClass (TwoTCell). TemporalCellTuple class is the 
aggregation of three classes: ZeroTCellClass, OneTCellClass, 
and TwoTCellClass. Operations pertaining to the 
TemporalCellTuple class are the focus of this paper. This paper 
elaborates the topological relations (spatiotemporal topology) 
derived from the simple temporal cell-tuple structure of 
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TemporalCellTuple class. The details of this structure can be 
found in Raza and Kainz (1999).  
 
First, the spatial and temporal relations are briefly discussed in 
§2. The temporal cell-tuple class is explained in §3. Section 4 
elaborates the spatiotemporal relations. The paper concludes  
in §5. 
 
 

2. SPATIAL AND TEMPORAL RELATIONS 

Static operators are query operators. These operators are used to 
query spatial, temporal, and spatiotemporal relations. Relations 
in spatiotemporal databases can be categorized into three 
classes: 

• Spatial relations 
• Temporal relations 
• Spatiotemporal relations 

 
These spatial relations are grouped into four classes: set-
oriented, metric, topological, and Euclidean relations (Worboys, 
1992).  Spatial order relations were also introduced (Kainz, 
1989). These spatial relations can be grouped into five 
categories: 

• Spatial metric relations 
• Spatial topological relations  
• Spatial order relations 
• Set-oriented spatial relations 
• Euclidean spatial relations 
 

 
 Temporal 

Relations 
Illustration 

1 Before  
 

2 After  
 

3 Equal  
 

4 Meets  
 

5 Met  
 

6 Overlaps  
 

7 Overlapped  
 

8 Covers  
 

9 During  
 

10 Started  
 

11 Finishes  
 

12 Starts  
 

13 Finished  
 

Table 1. Adapted temporal relations for bounded interval (Allen, 
1984) 

Worboys (1992) proposed nine spatial topological relations: 
interior, closure, boundary, components, extremes, begin, end, 
inside, and clockwise. These are valid for spatial objects of 

dimension 0≤ n ≤2. Using the point-set approach, eight 
topological relations between two spatial objects of dimension 2 
and eight topological relations between two spatial objects of  
dimension 1, respectively, were derived (Egenhofer et al., 1993; 
Pullar and Egenhofer, 1988). Similarly, 13 temporal topological 
relations can be realized in a one-dimensional bounded time 
interval (Allen, 1984). Table 1 shows these relations. 
 
Temporal operations refer to temporal relations. Temporal 
operations are isomorphic to the spatial relations. These 
relations could be defined as using metric, topological, and 
order-theory concepts. For example, "two hours" is a metric 
relationship, "one hour later" is a topological temporal 
relationship, and "four weeks in a month" is an order 
relationship.  
 
Therefore, the temporal relations can be subclassified into five 
categories: 

• Temporal metric relations 
• Temporal topological relations  
• Temporal order relations 
• Set-oriented temporal relations 
• Euclidean temporal relations 

 
As mentioned earlier, this paper will focus on temporal 
topological relations. These relations are associated with 
TemporalCellTuple class. 
 
 

3. TEMPORALCELLTUPLE CLASS 

The object of a spatiotemporal class is called an n-tcell. The 
boundaries (∂) of an n-tcell are its (n-1) faces at time t. The 
coboundary (Φ) of an n-tcell produces the (n+1) cells incident 
with n-tcell at time t. In the temporal cell complex, intracell 
complex relations (i.e., relations between cells in the cell 
complex) can be described using boundary and coboundary 
relations. The boundary and coboundary relations capture two 
types of topological relationships: adjacency and containment. 
Relations between spatial objects can be found based on 
boundary/coboundary relations between cells. The boundary 
and coboundary relations are encapsulated in a simple temporal 
cell-tuple structure, which is an extension of the cell-tuple 
structure of Brisson (1990). A cell-tuple T is an (n+1) tuple of 
cells {c0, c1, c2, …., cn}, where any i-cell is incident with a 
(i+1)-cell.  
 
TemporalCellTupleClass preserves the temporal cell-tuple 
structure (Figure 2) and is the aggregation of ZeroTCellClass 
(ZTC), OneTCellClass (OTC), and TwoTCellClass (TTC) 
(Figure 1). The object of TemporalCellTupleClass has a unique 
tuple ID and a unique combination of ZTC, OTC, and TTC. 
Each tuple must have a ZTC, zero or one OTC, and zero or one 
TTC. Therefore, a temporal cell-tuple structure encapsulates the 
spatiotemporal topology of each spatiotemporal object. A 
temporal cell tuple (TCT) is a set of C and T, as follows: 
 

TCT = {C, T} 
 
where C is a set of cells  
C = {c0, c1, c2, ….cn | ci ∈ TCC} and  
T is a time interval (1-T) 
T = {TFrom,TUntil | (TFrom < TUntil) ∧ (TFrom,TUntil ∈ ST)}  
Therefore,  
TCT = {c0, c1, c2, ….cn, TFrom,TUntil} 

14

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B2. Beijing 2008 

 



 
Any i-tcell (ci) is incident with an (i+1)-tcell (ci+1). Every ci cell 
is a boundary of a ci+1 cell, where 0 ≤ i ≤ n and n+1 is the 
maximum number of cells in each tuple. For n = m, the first cell 
c0 is a ZTC, the second cell c1 is an OTC, the third cell c2 is a 
TTC, and m-cell cm is an mTC. In {c0, c1, c2, ….cn, TFrom,TUntil} 
at time t, any i-tcell (ci) is either a boundary of an (i+1)-tcell 
(ci+1) or coboundary of an (i-1)-tcell (ci-1). The advantage of 
TCT is that it stores topology implicitly. It is dimension-
independent, that is, it can accommodate objects of dimension k 
(k ≥ 1), and it encapsulates boundary and coboundary and order 
relations over time. We can formulize the spatiotemporal 
relations (Φ and ∂) history of k-tcell at time Ti as 
 

Φ(k-tcell)Ti  = {∀(k+1)tcell | TFrom ≤ Ti} 
∂(k-tcell)Ti  =  {∀(k-1)tcell | TFrom ≤ Ti} 

 

 
Figure 2. Process of assigning temporal cell tuples to 

spatiotemporal cells of dimensions (0 ≤ n ≤ 2) 
 
The process of assigning cell tuples to a ZTC is illustrated in 
Figure 2. A temporal cell tuple is a unique combination of ZTC, 
OTC, and TTC. The world TTC W = {0} is defined NULL. In 
principle, every ZTC gets a TCT. If this OTC is a member of W, 
then there is only one TCT; if it belongs to OTC or TTC, the 
TCTs are assigned accordingly. Every OTC has two TCTs if it 
is not a boundary of TTC (except W), and it gets four TCTs if it 
is a boundary of TTC (except W). The number of TCTs for 
TTC depends on the number of TTC boundaries.  
 
If the ZTC ∈ {W} ∧ ∉ {OTC, TTC}, where ZTC, OTC, and 
TTC ⊂ {W}, then Figure 2[a] shows this configuration for ZTC 
(n), that is, c (n, 0, 0, 1-T). The duration or lifetime of this 
relation is indicated by time interval 1-T. Figure 2[b] shows the 
configuration when the ZTC n1 and n2 are the boundary of 
OTC (a1). In other words, {n1, n2} ∈ {a1} and {a1} ∈ {W}. 
The tuple c1 (n1, a1, 0, 1-T) shows that this tuple belongs to 
ZTC (n1), OTC (a1), and TTC (0). The c2 shows that it belongs 
to ZTC (n2), OTC (a1), and TTC (0). 
 

4. SPATIOTEMPORAL RELATIONS 

Spatial relations that are valid for a certain time period are 
called spatiotemporal relations. Topological relations are 
considered for further discussion. Most of these relations 
(spatiotemporal topology) can be derived from the TCT 
structure. These spatiotemporal relations are preserved in the 
TCT structure. Spatiotemporal relations derived from the TCT 
structure are based on two primary relations: boundary and 
coboundary. In the following subsections, each operation, 

operands, results, and syntax in unified modeling language 
(UML) is presented.  
 
4.1 Boundary (∂) and Coboundary (Φ) 

The boundary (∂) of an n-tcell is its (n-1) faces at time t. The 
coboundary (Φ) of an n-tcell produces the (n+1) cells incident 
with n-tcell at time t. 
 
The Φ and ∂ history of k-tcell at time Ti can be formalized as 
 

∂(k-tcell)Ti  =  {∀(k-1)tcell | TFrom ≤ Ti} 
Φ(k-tcell)Ti  = {∀(k+1)tcell | TFrom ≤ Ti} 

 
Whereas, the boundary of k-tcell at time Ti is  
 
∂(k-tcell)Ti   =  {∀(k-1)tcell | TFrom = Ti ∧ k-tcell1 ≠ k-tcell2 } 
 

Where 
 
Φ(k-1)-tcell  = {k-tcell1, k-tcell2} 

 
The coboundary k-tcell at time Ti can be defined as 
 
 

Φ(k-tcell)Ti  = {∀(k+1)tcell | TFrom = Ti} 
 
 
In Figure 3, the boundary of A1 at time T2 can be calculated as 
 
 
 ∂(A1)T2  = {a1, a2, a3} 
 Φ(a1)  = {∅, A1} 
 Φ(a2)  = {∅, A1} 
 Φ(a3)  = {A1, A1} 
 
 
where symbol ∅ represents null.  
 
Therefore, a3 is excluded from the boundary of A1 because the 
coboundary of a3 is the same. 
 
 ∂(A1)T2   = {a1, a2} 
 

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)
c3 (2, 1, 0, T1, *)
c4 (2, 1, 1, T1, *)
c5 (1, 2, 0, T1, *)
c6 (1, 2, 1, T1, *)
c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, *)

n1

n2
a1

a2

c1 c2

c3
c4

c6

c5

c8 c7
A1

n1

n2a1

a2

c1 c2

c3

c4

c6

c5

c8 c7
A1

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)
c3 (2, 1, 0, T1, *)
c4 (2, 1, 1, T1, *)
c5 (1, 2, 0, T1, *)

c6 (1, 2, 1, T1, *)
c7 (2, 2, 0, T1, *)
c8 (2, 2, 1, T1, *)
c9  (3, 3, 1, T2, *)
c10(4, 3, 1, T2, *)

T1T2

n3

c9 c10

n4

a3

Figure 3. OTC intersects with TTC. 
In Figure 4[b], the coboundary of ZTC (n1) at time T1 and T2 
is 
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 Φ(n1)T1  = {∀ OTC | TFrom = T1} = {a1} 
 Φ(n1)T2  = {∀ OTC | TFrom = T2} = {a2, a3, a4} 
 
 

3

n1

c1

c4

a2

2

c3

n2
c5
c6

c9 c10

c7 c8 c11
c12

c14
c13

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 3, 2, T2, *)
c8 (2, 3, 3, T2, *)

a3 a4

c9   (1, 3, 2, T2, *)
c10 (1, 3, 3, T2, *)
c11 (2, 4, 3, T2, *)
c12 (2, 4, 0, T2, *)
c13 (1, 4, 3, T2, *)
c14 (1, 4, 0, T2, *)

3

n1

c1

c4

a2

2

c3

n2

c5
c6

c9 c10

c7 c8
c11
c12

c14
c13

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (1, 2, 2, T2, *)
c4 (1, 2, 0, T2, *)
c5 (2, 2, 2, T2, *)
c6 (2, 2, 0, T2, *)
c7 (2, 3, 2, T2, *)
c8 (2, 3, 3, T2, *)

a3 a4

c9   (1, 3, 2, T2, *)
c10 (1, 3, 3, T2, *)
c11 (2, 4, 3, T2, *)
c12 (2, 4, 0, T2, *)
c13 (1, 4, 3, T2, *)
c14 (1, 4, 0, T2, *)

[a] [b]

a1

T2
c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

T1
n1

c1

c2

1

c1

 
Figure 4. TTC intersects with TTC. 

 
Similarly, in Figure 5, the coboundary of OTC (a1) at time T1 
and T2 is 
 
 
 Φ(a1)T1  = {∀ TTC | TFrom = T1} = {1, 0} 
 Φ(a1)T2  = {∀ TTC | TFrom = T2} = {1,2} 
 

1

T2
c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, *)

T1
n1

c1

1
c1

n1

c1 c1

3
c3

2

2
c5
c4n2

a1

a2

c1 (1, 1, 0, T1, *)
c2 (1, 1, 1, T1, T2)
c3 (1, 1, 3, T2, *)
c4 (2, 2, 3, T2, *)
c5 (2, 2, 2, T2, *)

a1

c2

Figure 5. Interior of TTC intersects with boundary-interior of 
TTC'. 

 
4.2 Disjoint (Ω) 

The two n-tcells (n = 1,2) are disjoint if the intersection of their 
faces is empty. Disjoint relations of point and ZTC are 
straightforward. The Ω relations of OTC and TTC can be 
expressed as 
Disjoint(P:TTCT1, P:TTCT2): Boolean 
{2-tcellT1 Ω 2-tcellT2 = true | ∂(2-tcellT1) ∩ ∂(2-tcellT2) = ∅} 
 

Disjoint(P:OTCT1, P:OTCT2): Boolean 
{1-tcellT1 Ω 1-tcellT2 = true | ∂(1-tcellT1) ∩ ∂(1-tcellT2) = ∅} 
For example, consider Figure 4[a], 
Ω(TTC2T2, TTC3T2)  = FASLE because 
Ω(TTC2T2, TTC3T2) = ∂(TTC2)T1 ∩ ∂(TTC3)T2 
    = {(a2, a3) ∩ (a3, a4) } 
    = { a3 } 
 
4.3 Contains (α) 

The containment relations can be between spatiotemporal 
objects of the same spatial dimension or different spatial 
dimensions. For example, a TTC can contain a TTC, an OTC, 
or a ZTC; these relations are depicted in Figure 5, Figure 3, and 
Figure 6, respectively. 
 
 

c1   (1 , 1 , A , T 1 , * )
c2   (1 , 1 , 0 , T 1 , * )
c3   (2 , 1 , A , T 1 , * )
c4   (2 , 1 , 0 , T 1 , * )
c5   (2 , 2 , A , T 1 , * )
c6   (2 , 2 , 0 , T 1 , * )
c7   (1 , 2 , A , T 1 , * )
c8   (1 , 2 , 0 , T 1 , * )

A

n1

n2

c1c2

c3

c4

c5 c6

c8

c7

a1

a2

A

n1

n2

c1c2

c3

c4

c5 c6

c8

c7

a1

a2

n3

c1   (1 , 1 , A , T 1 , * )
c2   (1 , 1 , 0 , T 1 , * )
c3   (2 , 1 , A , T 1 , * )
c4   (2 , 1 , 0 , T 1 , * )
c5   (2 , 2 , A , T 1 , * )
c6   (2 , 2 , 0 , T 1 , * )
c7   (1 , 2 , A , T 1 , * )
c8   (1 , 2 , 0 , T 1 , * )
c9   (3 , 0 , A , T 2 , * )

c9

Figure 6. ZTC interior of TTC 
 
At time Ti, 2-tcellj contains 2-tcellk; 
Contains(P:TTC, P:TTC): Boolean 
 
{2-tcellj α 2-tcellk = true | TFrom = Ti ∧ ∂(2-tcellj) ∩ ∂(2-tcellk) = 
∂(2-tcellk) } 
 
At time Ti, 2-tcell contains 1-tcell; 
Contains(P:TTC, P:OTC): Boolean 
 
{ 2-tcell α 1-tcell = true | TFrom = Ti ∧ ∂ (∂(2-tcell) ) ∩ ∂(1-tcell) 
= ∂(1-tcell) 
 
At time Ti, 2-tcell contains 0-tcell; 
Contains(P:TTC, P:ZTC): Boolean 
 
{ 2-tcell α 0-tcell = true | TFrom = Ti ∧ ∂ (∂(2-tcell) ) ∩ 0-tcell = 
0-tcell } 
 
{ 2-tcell α 0-tcell = true | TFrom = Ti ∧ ∂ (∂(2-tcell) ) ∩ 0-tcell = 
0-tcell } 
 
For example, to check whether TTC contains a TTC or not, 
consider Figure 5, where at time T2, TTC(3) α TTC (2). 
 
{∂(3) ∩ ∂(2) } = {∂(2)} 
{(a1, a2) ∩ (a2) }= {(a2)} 
{a2} = {a2} 
 
4.4 Inside (χ) 

At time Ti, a ZTC, OTC, or TTC can be inside a TTC. The 
same logic is employed to discern the χ relations between two 
n-tcells. For example:  
 
At time Ti, 2-tcellj is inside 2-tcellk; 
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Inside(P:TTC, P:TTC): Boolean 
 
{2-tcellj χ 2-tcellk = true | TFrom = Ti ∧ ∂(2-tcellj) ∩ ∂(2-tcellk) = 
∂(2-tcellj) } 
At time Ti, 1-tcell is inside 2-tcell; 
 
Inside(P:OTC, P:TTC): Boolean 
 
{ 1-tcell χ 2-tcell = true | TFrom = Ti ∧ ∂ (∂(2-tcell) ) ∩ ∂(1-tcell) 
= ∂(1-tcell) 
 
At time Ti, 0-tcell is inside 2-tcell; 
Inside(P:ZTC, P:TTC): Boolean 
 
{ 0-tcell χ 2-tcell = true | TFrom = Ti ∧ ∂ (∂(2-tcell) ) ∩ 0-tcell = 
0-tcell } 
 
4.5 Equal (=) 

Checking Equal relations between two points or ZTCs is 
straightforward. TTC at time T1 is in equal relation to TTC at 
time T2 if the boundaries of both are the same. 
 
 
{2-tcellT1 = 2-tcellT2 | ∂(2-tcell)T1 =  ∂(2-tcell)T2 } 
 
Although it is a topological relation, the Equal relation between 
two OTCs may not be checked correctly in the TCT structure 
(based on boundary/coboundary relations) because these OTCs 
can be defined by different intermediate points, regardless of 
the same boundary. A geometric calculation is needed to check 
this relation. 
 
4.6 Meet (δ) 

 
A TTC at time T1 can meet with TTC, OTC, or ZTC at time T2. 
Similarly, an OTC at time T1 can meet with OTC or ZTC at 
time T2. 
 
Meet(P:TTC, P:TTC): Boolean 
{2-tcellT1 δ 2-tcellT2 | ∂(∂(2-tcell)T1) ∩ ∂ (∂(2-tcell)T2) ≠ ∅ } 
 
Meet(P:TTC, P:OTC): Boolean 
{2-tcellT1 δ 1-tcellT2 | ∂(∂(2-tcell)T1) ∩ ∂(1-tcell)T2 ≠ ∅ } 
 
Meet(P:TTC, P:ZTC): Boolean 
{2-tcellT1 δ 0-tcellT2 | ∂(∂(2-tcell)T1) ∩ (0-tcell)T2 ≠ ∅ } 
 
Meet(P:OTC, P:OTC): Boolean 
{1-tcellT1 δ 1-tcellT2 | ∂(1-tcell)T1 ∩ ∂(1-tcell)T2 ≠ ∅ } 
 
Meet(P:OTC, P:ZTC): Boolean 
{1-tcellT1 δ 0-tcellT2 | ∂(1-tcell)T1 ∩ (0-tcell)T2 ≠ ∅ } 
 
For example, consider Figure 4[b]. At time T2, TTC (2) and 
TTC (3) have Meet relations. 
 
 {∂(∂(2)T2) ∩ ∂(∂(3)T2) }  ≠ ∅ 
 {∂(a2, a3) ∩ ∂(a3, a4) } ≠ ∅ 
 {(n1, n2) ∩ (n2, n1) } ≠ ∅ 
 {(n2, n1)} ≠ ∅ 
 
Similarly, consider Figure 7. At time T2, TTC (A1) and OTC 
(a3) have Meet relations. 
 

 {∂(∂(A1)T2) ∩ ∂(a3)T2 }  ≠ ∅ 
 {∂(a4, a5) ∩ (n2, n3) } ≠ ∅ 
 {(n3, n4) ∩ (n2, n3) } ≠ ∅ 
 {(n3)} ≠ ∅ 

c1 (1, 1, 0, T1, *)
c2 (2, 1, 0, T1, *)

n1 n2a1

c1 c2
A1

T2T1

c1 (1, 1, 0, T1, T2)
c2 (2, 1, 0, T1, T2)
c3 (1, 2, 0, T2, *)
c4 (3, 2, 0, T2, *)
c5 (3, 3, 0, T2, *)
c6 (2, 3, 0, T2, *)

c7 (4, 4, 0, T2, *)
c8 (4, 4, 1, T2, *)
c9 (3, 4, 0, T2, *)
c10 (3, 4, 1, T2, *)
c11 (3, 5, 0, T2, *)
c12 (3, 5, 1, T2, *)
c13 (4, 5, 0, T2, *)
c14 (4, 5, 1, T2, *)

n3

n1

n2

c3
c4

c9

c11

c5
c6

n4
a4

c7
c8
c14 c13

A1
a5a2

a3

c10
c12

 
Figure 7. Boundary of TTC intersects with interior of OTC. 

 
4.7 Covers (γ) 

A TTC at time T2 can cover a TTC or OTC at time T2. 
Similarly, an OTC at time T1 can cover OTC at time T2. 
However, this relation could not be captured in the TCT 
structure because it does not maintain the interior of OTC.  
 
Covers(P:TTC, P:TTC): Boolean 
{2-tcellT1 γ 2-tcellT2 | (∂(∂(2-tcell)T1) ∩ ∂(∂(2-tcell)T2) 
   ≠ ∅ )  ∧ (Φ(∂(2-tcell)T1) ∩ (2-tcell)T2 ≠ ∅ ) } 
 
Covers(P:TTC, P:OTC): Boolean 
{2-tcellT1 γ 1-tcellT2 |  (∂(∂(2-tcell)T1) ∩ ∂(1-tcell)T2 ≠ ∅ )  ∧  
   ( ∂(2-tcell)T1 ∩ (1-tcell)T2 ≠ ∅ )} 
 
Consider Figure 8. At time T2, TTC (2) covers TTC (3). 
 
 { (∂(∂(2)T1) ∩ ∂(∂(3)T2) ≠ ∅ )  ∧ (Φ(∂(2)T1) ∩ (3) ≠ ∅ ) } 
 { (∂(a4, a5) ∩ ∂(a2, a3, a4) ≠ ∅ )  ∧ (Φ(a4, a5) ∩ (3) ≠ ∅ ) } 
 { ((n2, n3) ∩ (n1, n2, n3) ≠ ∅ )  ∧ ((2,3) ∩ (3) ≠ ∅ ) } 
 { ((n2, n3) ≠ ∅ )  ∧ ((3) ≠ ∅ ) } 
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c11 (3, 5, 0, T2, *)
c12 (3, 5, 2, T2, *)
c13 (2, 5, 0, T2, *)
c14 (2, 5, 2, T2, *)
c15 (2, 4, 3, T2, *)
c16 (2, 4, 2, T2, *)
c17 (3, 4, 3, T2, *)
c18 (3, 4, 2, T2, *)

c1 (1, 1, 1, T1, *)
c2 (1, 1, 0, T1, *)

2

n1

c1

a5

n2

c1 (1, 1, 1, T1, T2)
c2 (1, 1, 0, T1, T2)
c3 (2, 2, 0, T2, *)
c4 (2, 2, 3, T2, *)
c5 (1, 2, 0, T2, *)
c6 (1, 2, 3, T2, *)
c7 (1, 3, 0, T2, *)
c8 (1, 3, 3, T2, *)
c9   (3, 3, 0, T2, *)
c10 (3, 3, 3, T2, *)

3

n3

c5
c6

c3
c4 c7

c8
c9

c10

c12 c11

c13
c14

a2

a3
a4

c16 c15

c17
c18

a1

T2T1
n1

c1

c1

1

c2

1

 

5. CONCLUSION 

In this paper, operators pertaining to a simple temporal cell-
tuple structure are presented. These operators are formulized by 
employing relational algebra. Examples are provided to derive 
these relations (spatiotemporal topology) from temporal cell-
tuple structure. It has been proved that almost all spatiotemporal 
relations between OTC-OTC and TTC-TTC in the spatial 
domain and some other relations can be derived from temporal 
cell-tuple structure, which is based on the boundary and 
coboundary of cells. However, depending on time, some 
relations cannot be derived because of the inherent nature of 
temporal cell-tuple structure. For example, Overlap and 
CoveredBy relations for the same time cannot be derived 
because temporal cell complex is a partition of spaces. 
Similarly, for the Equal relation, geometric calculation is still 
needed. More research is needed to evaluate the performance of 
operators derived from the TCT structure. The composite B-tree 
index on the elements of this structure may perform better.  
 
 Figure 8. Interior of TTC intersects with boundary-interior of 
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c10(2, 5, 4, T2, *)
c11(3, 4, 2, T2, *)
c12(3, 4, 3, T2, *)
c13 (2, 4, 2, T2, *)
c14 (2, 4, 3, T2, *)
c15 (2, 3, 2, T2, *)
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c18 (1, 3, 0, T2, *)
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c20 (3, 7, 0, T2, *)
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Figure 9. Boundary of TTC intersects with boundary-interior of 
TTC', and interior of TTC intersects with boundary of TTC'. 
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