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ABSTRACT: 
 
Active and passive microwave remote sensing systems have been widely used for determination of soil moisture and salinity due to 
the high penetration depth and sensitivity of microwaves. We used optical remote sensing data and investigated the effects of soil 
moisture and salinity on the penetration depth of light into the soil using real-time ground spectral measurements around Salt Lake, 
Turkey. Reflectance spectra were simultaneously measured using field spectroradiometer at different depths starting from the soil 
surface during the overpass of Landsat-5 over the study area. The correlation between the reflectance spectra of each layer and 
spectral radiance obtained from TM data was examined. The results indicate a good correlation between observed and predicted 
reflectance spectra for each layer and are consistent with results obtained from the same instrument in previous experiments. One of 
the most important result of the study is that soil moisture formed under salt crust into the crusted saline soil (CSS) negatively 
affects the light penetration depth in the shortwave infrared region of the electromagnetic spectrum. Experimental results obtained in 
the study show that light penetration depth into the CSS is just 0-0,5cm, while it is between 0 and 2,5cm into the bare saline soil 
(BSS). The results also show that spectral bands having relatively long wavelength such as TM5, TM7 are more correlated with the 
lower layers. 
 
 

1. INTRODUCTION 

Characterization of soil properties is one of the earliest 
applications of remotely sensed data in agriculture. Bushnell 
(1932) described efforts in the 1920s to use aerial photos to map 
boundaries of different soil series. Aerial photographs have 
been used as a mapping aid in most of the soil surveys in the 
United States since the late 1950s. A majority of the studies 
examining quantitative relationships between remotely sensed 
data and soil properties have focused on the reflective region of 
the spectrum (0.3 to 2.8 µm), with some relationships 
established from data in the thermal and microwave regions. 
Most of the spectral responses in the reflective spectrum can be 
related to differences in organic matter content, iron content, 
and texture (Stoner and Baumgardner, 1981). The soil property 
that is most directly correlated to reflectance-based data is soil 
albedo (Post et al., 2000). Additional soil properties have been 
inferred from reflectance measurements under laboratory 
conditions such as moisture, organic carbon, total nitrogen, and 
other chemical properties (Barnes et al., 2003; Baumgardner et 
al., 1985; Dalal and Henry, 1986; Shonk et al., 1991; Ben-Dor 
and Banin, 1994). Some of the relationships have also been 
established for data acquired over tilled or fallow fields, as 
described in the following paragraphs. 
 
Most salt-affected soils can be identified by a white salt crust 
that will form on the soil surface; thus, these soils tend to have 
higher visible and NIR reflectance (Rao et al., 1995). This 
spectral response cannot always be used to identify saline soils, 
because soils with high sand contents will have visible and NIR 
spectral properties similar to salt crusted soils (Verma et al., 
1994). Microwave data (both passive and active) have been 
related to surface soil moisture (Jackson, 1993; Moran et al., 

1998). The approach is limited when vegetation is present and 
is often only sensitive to conditions at the surface (~5 to 20 cm 
depth); however, use of different bands and integrating the data 
with soil-water balance models have shown that microwave 
data can be useful in mapping soil moisture conditions. Soil 
moisture has been correlated to visible and NIR reflectance of 
bare-soil fields if the data are taken a few days after rainfall 
(Milfred and Kiefer, 1976). Similarly, thermal imagery has also 
been related to differences in surface soil moisture content 
(Davidoff and Selim, 1988; Barnes et al., 2003). 
 
Most types of remotely sensed spectral observations still require 
site-specific calibration using ground-sampling techniques. 
When remotely sensed data are used to infer soil properties 
which are correlated with soil electrical conductivity data (such 
as salinity, texture, or water holding capacity), accuracy of 
ground calibration data could be improved by using ground-
based soil electrical conductivity surveying techniques. For 
example, detailed ground based soil electrical conductivity 
surveys (used in conjunction with appropriate soil calibration 
sampling designs) could be undertaken within selected sub-
areas of a much larger remotely sensed survey region.  
 
The ground-based electrical conductivity data provide a better 
estimate of the soil attribute of interest (within the sub-areas) 
and produce more calibration data for an analysis of the 
remotely sensed data (Barnes et al., 2003; Ekercin, 2007; 
Ekercin and Ormeci, 2008). 
 
The objective of this paper is to investigate the effects of soil 
moisture and salinity on the penetration depth of light into the 
soil using real-time ground spectral measurements and optical 
remote sensing data around Salt Lake, Turkey. 
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Figure 1. Location of the study area and field sampling points (CSS-crusted saline soil, BSS-bare saline soil).  
 

2. STUDY REGION 

The study area is located at the northeast of Konya (between 
latitudes 38° 20' and 39° 10' N and longitudes 33° 03' and 33° 
45' E) and covers Salt Lake which is the second largest lake in 
Turkey. Further information is given in Figure 1. 
 
The Salt Lake occupying a depression in the dry central plateau 
of Turkey lies at an elevation of 905 m. It is a huge (1,500 km2) 
and very shallow (with a maximum depth of 1.5 m. in spring) 
lake and extremely saline with a salt ratio of 32%. The lake 
bottom is covered with a 1 to 30 cm. thick salt layer, which has 
given rise to a local salt industry providing 55% of all Turkish 

salt (average 750,000 tons annually). The climate is semiarid 
with the lowest annual precipitation in Turkey, less than 400 
mm yr-1 and a mean annual temperature of 11.4 °C. The lake is 
fed by two major streams, groundwater and surface water. 
Brackish marshes have formed where channels and streams 
enter the lake, and the lake is surrounded by (only partially 
irrigated) cereal fields in the north, east and west 
(www.britannica.com, www.bcs.gov.tr). Spectral ground 
measurements were performed at a pilot region located in the 
west coasts of the lake. A significant amount of bare saline soil 
and crusted saline soil is present in all areas around the lake. 
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3. DATA AND METHODS 

3.1 Landsat-5 TM Image Analysis 

LANDSAT-5 TM sub-image (Path/Row = 177/33) acquired on 
June 20, 2006 (10:31 local time) was used as real-time satellite 
remote sensing data The Landsat TM instrument has four 
spectral bands in the visible near infrared-VNIR (0.45-0.52µm, 
0.52-0.60µm, 0.63-0.69µm and 0.76-0.90µm-30m), two bands 
in the short wave infrared-SWIR (1.55-1.75µm and 2.08-
2.35µm-30m) and one band in the thermal infrared-TIR regions 
(10.4-12.5µm-120m). However, only visible near infrared and 
short wave infrared bands were used in the study to enable 
comparison of satellite data with spectral (in-situ) 
measurements. Image processing procedure and the evaluation 
of spectral measurements were carried out using Erdas 
Imagine© and ASD ViewSpecPro© software packages. 
 
In the image processing step, firstly, satellite remote sensing 
data were geometrically transformed to real world coordinates 
using UTM projection and WGS 84 datum. The Landsat-5 TM 
data having 30m spatial resolution (acquired on June 20, 2006) 
and base maps (1:25 000) were used for the ground control, 
resulting in a RMS accuracy of less than a half pixel utilizing 
approximately 50 ground control points. Nearest neighbour 
resampling method (Dymond and Shepherd, 2004; Marcus et al., 
2003; Yamaguchi and Naitov, 2003) and a first-order 
polynomial transformation method (Lee et al., 2002; Lillesand 
et al. 2004; Rembold and Maselli, 2004; Yang and Lo, 2000) 
were carried out to create the output images with 30m ground 
resolution for Landsat-5 sensor data. Image processing 
procedure and the evaluation of the remote sensing data were 
performed using Erdas Imagine©, Arc GIS© and ASD 
ViewSpecPro© software packages. 
 
Secondly, Landsat-5 TM, 2006 image was radiometrically 
corrected to be able to compare with in-situ measurements and 
each other. The aim of radiometric correction is to minimize the 
atmospheric effects and to convert remotely sensed digital 
numbers (DN) to ground surface reflectance in order to make 

the data spectrally comparable (Chavez, 1996; Green et al. 
2000; Lu et al. 2002; Yang and Lo, 2000). We adopted two 
main equations proposed by Chander and Markham (2003) to 
convert DNs to at-satellite reflectance. The first equation 
described as follows is used to perform conversion from DNs to 
radiance: 
 
 L Gain DN Biasλ λ λ λ= +*                    (1) 
 
where  Gain = units of W/(m2.sr.μm)/DN 
 Bias  = units of W/(m2.sr.μm) 
  
The next step is used to make the satellite data comparable with 
the spectral (in-situ) measurements. We used, in this step, the 
following equation for conversion from radiance to at-satellite 
reflectance: 
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ESUN Cos s
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)
                    (2) 

 
where  R = unitless planetary reflectance 
 Π = a constant (3.141592654) 
 Lλ = spectral radiance at the sensor’s aperture 
 d  = earth–sun distance in astronomical units 
 ESUNλ = mean solar exoatmospheric irradiances 
 θs = solar zenith angle in degrees (90°- Sun Elevation) 
 
3.2 Field Work on Ground Sampling 

Field work stage of this study including spectral measurements 
was performed in a site along the north coasts of the lake. 
During the simultaneously performed field work on June 20, 
2006 (between 0930- 1230 local time) with the overpass of 
Landsat-5 TM, an ASD FieldSpec®Pro field portable 
spectroradiometer and a hand held Magellan GPS receiver were 
used. 
 
 

 

Figure 2. Field work on collecting soil samples and reflectance spectra. 
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The measurements were done using an ASD FieldSpec®Pro 
field portable spectroradiometer which consists of a data 
analyser attached to a laptop computer at different depths 
starting from soil surface up to 15cm depth (Figure 2). The 
spectral range of this device is 350–2500 nm with a resolution 
of 3 nm for the region 350–1000 nm, 10 nm for the region 
1000–2500 nm. However, the working range was limited to 
specific region of the electromagnetic spectrum corresponding 
spectral ranges of the TM bands except thermal (450nm-
2350nm). The sensor, with a field of view of 8°, was positioned 
1,6 m above the ground at nadir position. Five target 
measurements were made after measuring the reference panel. 
 
 

4. RESULTS AND DISCUSSION 

At the end of the study, the obtained results can basically be 
summarized as follows: 
 
Evaporation from the soil surface is a major reason of 
salinization. Upward flow of water into the soil, accompanied 
by evaporation, leaves high concentrations of salt on or near the 
soil surface. The lower soil layers starting from just below the 
salt crust on the surface contains moisture and this causes the 
decreasing brightness values in satellite image data sensed in 
the SWIR region as the long wavelength radiation is absorbed 
into the moist soil. As a result, it can be stated that the 

concentration of salt on the soil surface is inversely 
proportional to the brightness values in satellite image data 
sensed in the SWIR region (i.e., TM5 and TM7) and longer 
wavelengths (Ekercin, 2007; Ekercin and Ormeci, 2008). 
 
Figure 3 clearly explains the first results of the application of 
measuring reflectance spectra at different depth into soil. Two 
main results come out with these measurements: 

 
• For BSS, spectral reflectance curve of soil surface has low 

reflectance values due to the low concentrations of salt on 
the soil surface (Figure3a). 

• In addition, the lower layers for BSS have higher 
reflectance values compared to CSS due to lower water 
contents. 

• For CSS, spectral reflectance curve of soil surface has 
very high reflectance values due to the high 
concentrations of salt on or near the soil surface 
(Figure3b). 

• Lower reflectance values of lower soil layers also attract 
attention. This results from moisture starting from just 
below the salt crust on the surface. 

 
These results show that the concentration of salt on the soil 
surface is inversely proportional to the brightness values in 
satellite image data sensed in the SWIR region of the 
electromagnetic spectrum. 

 

spectral reflectance curve for 
Crusted Saline Soil (CSS) spectral reflectance curve for 

Bare Saline Soil (BSS) 

Figure 3. The results of the measurements of reflectance spectra. 
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Layer No  

1                
(Surface)  0,9789 0,9732 0,9966 0,8899 0,8684 0,4609

 
0,9903 0,3632 0,4326 0,3356 0,0520 0,1490 1                

(Surface) 

2                
(Depth: 0,2cm)  0,8798 0,8663 0,9319 0,9120 0,9683 0,8913

 
0,8461 0,9269 0,9566 0,9700 0,3623 0,4733 2                

(Depth: 0,2cm) 

3 
(Depth: 0,5cm)  0,7928 0,2501 0,4089 0,8302 0,8759 0,8451

 
0,6361 0,7872 0,7773 0,7923 0,4231 0,4547 3 

(Depth: 0,5cm) 

4 
(Depth: 1,5cm)  0,5145 0,2621 0,3575 0,3641 0,5457 0,7334

 
0,6152 0,5466 0,5761 0,5598 0,9712 0,8599 4 

(Depth: 1,5cm) 

5 
(Depth: 2,5cm)  0,3649 0,1883 0,2243 0,2255 0,4697 0,6294

 
0,5897 0,2947 0,4756 0,6671 0,9567 0,9798 5 

(Depth: 2,5cm) 

6 
(Depth: 5,0cm)  0,4125 0,1002 0,3487 0,0196 0,2105 0,4566

 
0,5601 0,3138 0,1578 0,6334 0,8437 0,8880 6 

(Depth: 5,0cm) 

7 
(Depth: 10,0cm)  0,3571 0,0885 0,2305 0,1312 0,2072 0,5329

 
0,4103 0,1125 0,1517 0,1944 0,4196 0,3705 7 

(Depth: 10,0cm)

8 
(Depth: 15,0cm)  0,2359 0,0492 0,0780 0,0328 0,1031 0,5097

 
0,2889 0,2785 0,1838 0,1873 8 0,1924 0,4308 (Depth: 15,0cm)

Table 1. Relationships (correlation coefficients-R2) between spectral ground measurements and Landsat-5 TM data obtained at different soil depths using field 
spectroradiometer on June 20, 2006 between 1020 and 1040 (Landsat-5 Overpass: 1031). 
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Table 1 explains the second set of results of the application of 
measuring reflectance spectra at different depths into soil and 
satellite image data. The main results can be summarized as 
follows: 
 

• Salinization negatively affects the penetration depth 
of light into the soil due to the moisture starting from 
just below the salt crust on the soil surface. Because 
of this, all TM spectral bands are mostly correlated 
with upper soil layer between 0-5mm. (see. Table 1 
for CSS). 

• In contrast to this, the penetration depth of light into 
the soil for BSS is higher than that of CSS due to the 
lower moisture contents (see. Table 1 for BSS). In 
BSS, Landsat TM SWIR bands are mostly correlated 
with the reflectance spectra obtained at deeper soil 
layer (0-25mm). 

 
The results show that the concentration of salt on the soil 
surface is inversely proportional to the brightness values in 
satellite image data sensed in the SWIR region of the 
electromagnetic spectrum due to moisture starting from just 
below the salt crust on the surface. 
 
 

5. CONCLUSION 

In this study, we have presented an application of optical 
remote sensing data and investigated the effects of soil moisture 
and salinity on the penetration depth of light into the soil using 
real-time ground spectral measurements. 
 
The results show and demonstrate that the concentration of salt 
on the soil surface is inversely proportional to the brightness 
values in satellite image data sensed in the SWIR region of the 
electromagnetic spectrum due to moisture starting from just 
below the salt crust formed on the surface. This is an essential 
point for the interpretation of satellite remote sensing data. For 
example, it can be easily stated that this result will play a key 
role for distinction of saline soil and sandy soil on the satellite 
images due to the absorption in long spectral bands for lower 
soil layers of CSS. 
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