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ABSTRACT: 
 
The remote sensing community has long been active in developing, evaluating, and comparing different classification algorithms 
using a variety of remotely sensed imagery. As an integral component of image classification, accuracy assessment is usually 
conducted to evaluate the agreement between the classified map and the corresponding reference data. However, current accuracy 
assessment practices are limited by the difficulties in obtaining high quality reference data and the lack of spatial representation of 
classification uncertainties. To overcome these limitations, we developed a simulation approach to obtaining the desired reference 
data for better evaluation of classification algorithms. The simulation approach involves three components: 1) a real image scene, 2) 
a reference map, and 3) a simulated image scene. The real image scene is assumed as a random realization of a spectral probability 
model governed by an unknown underlying process, which is defined as the ground truth of the classification of the image scene. 
The reference map represents a reasonable estimate of the unknown process that generates the real image scene. The simulated 
image scene is generated as a random realization of the spectral probability model governed by the estimated process represented in 
the reference map. Specifically, an initial simulated image is firstly generated by independently sampling based on probability 
distributions estimated from the real image scene and reference map. Then, the initial simulated image is iteratively perturbed using 
simulated annealing to create a final simulated image which has similar spectral, spatial, and textual properties to the real image 
scene. The simulation approach was applied to a Landsat TM image scene and promising results were achieved. 
 
 

1. INTRODUCTION 

Image classification is one of the most fundamental applications 
of remotely sensed data (Jensen 2004). Thematic maps 
generated from the classification of remotely sensed imagery 
are widely used in many environmental, ecological, and social-
economic studies. Driven by the need for better classification 
results, the remote sensing community has long been active in 
developing, evaluating, and comparing different classification 
algorithms (Erbek et al, 2004; Flygare, 1997; Liu et al, 2006; 
Lu et al, 2004). The past decades have witnessed the 
developments of a large number of computer-based 
classification algorithms using a variety of remotely sensed 
imagery across different fields (Landgrebe, 2003; Lu and Weng, 
2007; Tso and Mather, 2001). With the increased availability 
and enhanced capability of remotely sensed data, the efforts in 
advancing classification algorithms are expected to continue.  
 
As an integral component of image classification, accuracy 
assessment (Congalton and Green, 1999; Foody, 2002) is 
usually conducted to evaluate the agreement between the 
classified map and the corresponding reference data (or ground 
truth). For map users, the accuracy assessment serves as an 
indicator on the accuracy of the classified map. For 
classification algorithm developers, the accuracy assessment is 
an essential procedure to evaluate the performances of 
classification algorithms. Current practices on accuracy 
assessment are primarily based on various global accuracy 
indices (e.g. overall accuracy, user’s accuracy, producer’s 
accuracy, and kappa coefficient) derived from a confusion or 
error matrix, which is built upon the reference data for a small 
subset of the classified imagery. The reference data are usually 
obtained from field survey, visual interpretation of high spatial 
resolution imagery, or other existing maps. 

However, there are two major limitations for the current 
accuracy assessment methods. The first limitation is related to 
the quality of reference data. One important requirement for the 
accuracy indices to be valid estimators of the true map accuracy 
is that the reference data are representative to the whole 
imagery and accurately reflect the ground truth (Congalton and 
Green, 1999; Foody, 2002). Representative reference data 
demand a careful design of probability sampling. In field survey, 
rigorous probability sampling design is often hard to implement 
due to physical constraints or high costs. The interpretation of 
high spatial resolution imagery can be biased by the tendency 
for selecting homogeneous regions and avoiding boundaries and 
complex regions. Existing maps often contain classification 
errors and are outdated compared to the classified image. 
Moreover, all the above three means of obtaining reference data 
are subject to registration errors of the reference data to the 
classified imagery. Consequently, accuracy assessment based 
on non-representative, inaccurate, and mis-registered reference 
data is not reliable for both map users and classification 
algorithm developers (Congalton and Green, 1999; Foody, 
2002). The second limitation lies in the lack of spatial 
representation of classification uncertainties in the current 
accuracy assessment methods. It is well-known that 
classification errors are not randomly distributed across the 
imagery but have strong spatial patterns. Knowledge on the 
spatial patterns of classification errors can inform map users on 
the classification uncertainty and possible error propagation. 
For classification algorithm developers, a good understanding 
on the error patterns across the imagery helps to better evaluate 
the spatial aspects of classification algorithms and provide 
insights for further improvements. This is particularly true when 
contextual and object-based classification algorithms are 
assessed. Unfortunately, the accuracy indices derived from 
confusion matrix only give a global view of classification 
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results but provide no information on the spatial distribution of 
classification errors. 
 
The two limitations discussed above call for more 
comprehensive and accurate reference data with which a more 
reliable and complete accuracy assessment can be performed. 
For map users, this remains an open question as it depends on 
the real situation of the specific mapping area. For classification 
algorithm developers, however, the reference data are not 
necessarily limited to the real situation given that the main 
objective is to evaluate classification algorithms. Therefore, we 
propose to use image simulation as a new approach to obtaining 
the desired reference data for better evaluation of classification 
algorithms. The purpose of this paper is to develop a new 
approach to simulating remotely sensed imagery for fully 
evaluating classification algorithms. The rest of the paper is 
organized as follows. We first introduce our conceptual model 
for simulating remotely sensed imagery followed by detailing 
the procedures for image simulation. Then we present the 
results using Landsat TM image. Finally, we discuss issues 
related to image simulation and conclude with a summary.    
 
 

2. METHODS 

2.1 The Conceptual Model 

As illustrated in Figure 1, the conceptual model used for image 
simulation consists of three components: 1) a real image scene, 
2) a reference map, and 3) a simulated image scene. The real 
image scene can be any remotely sensed imagery of interest. It 
provides basic information on the spectral, spatial, and textual 
aspects of a real remotely sensed image scene. The real image 
scene is assumed to be a random realization of spectral 
reflectance governed by an unknown underlying process, which 
is defined as the ground truth for the classification of the image 
scene. The reference map represents a reasonable estimate of 
the unknown process that generates the real image scene. As an 
estimate, the reference map may not accurately represent the 
ground truth for the classification of the real image scene. 
Hence, accuracy assessment based on the reference map may 
not be reliable. However, the reference map serves as a 
connection between the real image scene and the simulated 
image scene. The simulated image scene is generated as a 
random realization of the spectral reflectance, which has similar 
spectral, spatial, and textual properties to the real image scene, 
governed by the estimated process represented in the reference 
map. Therefore, the reference map is the true representation of 
the classification of the simulated image scene.  
 
 
 

 

 
 
 
 
 
 
 

Figure 1.  The conceptual model of image simulation 
 
Based on the conceptual model, the classification algorithm 
developers can apply any classification algorithm to the 
simulated image scene and evaluate its performance by 
accuracy assessment based on the reference map. This 
simulation approach to accuracy assessment has three 

advantages over the traditional approaches using limited 
reference data of the real image scene. Firstly, the reference 
map is free from classification and registration errors to the 
simulated image scene. Secondly, the reference map consists of 
the entire sample space, so it allows classification developers to 
experiment with different sampling designs. Finally, the 
reference map allows the spatial representation of classification 
errors by evaluating every classified pixel. 
 
2.2 Reference Map Generation 

One approach to generating a reference map is through 
supervised classification of the real image scene based on the 
real reference data collected in a traditional way. The classified 
image can be further post-processed (e.g. removing “salt-and-
pepper” effects) to entail certain cartographic generalization 
and achieve a map-like quality. Nevertheless, the final reference 
map may still have certain level of classification errors due to 
the imperfection of the reference data and the classifier, but it 
should approximately reflect the general pattern of the 
underlying process that generates the real image scene. Since 
the main goal at this stage is not to test the classification 
algorithms but to have a baseline reference map for simulating 
images, the final reference map will be used as a starting point 
for the following image simulation.  
 
2.3 Image Simulation 

The main goal of the image simulation is to generate a 
simulated image scene so that 1) its underlying process is 
governed by the reference map, and 2) its spectral, spatial, and 
textual property is similar to that of the real image scene. In 
doing so, we utilize an optimization algorithm called simulated 
annealing for the simulation. The basic idea of simulated 
annealing is to perturb an initial (or seed) image according to a 
suitable annealing schedule in order to create a desired (optimal) 
image which minimizes a set of user-defined objective 
functions (Geman and Geman, 1984; Goovaerts, 1997; Burnicki 
et al, 2007). In what follows, we describe the generation of 
initial image, define objective functions, and specify 
perturbation mechanism. 
 
2.3.1  Initial Image Generation:  Based on the real image 
scene and the reference map, the probability distribution of 
spectral reflectance is estimated for each class on the reference 
map. Gaussian models can be used for simple distributions 
while Gaussian mixture models may be needed for more 
complex distributions. Denote the initial image scene by 
{ }(0) (0)

1( ),..., ( )NX u X u

( 1,..., )i i N

 , where  is the spatial location of 

pixel 
iu

= . The initial image scene is then generated as 
a random realization of the estimated probability distribution 
models. Specifically, for each pixel, a random sample is drawn 
from the probability distribution conditional on its class type on 
the reference map. In this way, the spectral properties of the 
real image scene were captured in the simulated image. 
However, the initial image scene is purely a collection of 
independently, identically distributed (I.I.D.) samples of each 
class. The following perturbation will make it a more realistic 
image scene for classification analysis.  

Real Image Scene Simulated Image Scene

Reference Map 

 
2.3.2  Objective Functions:  The initial image does not have 
any spatial and textual patterns that a real image scene should 
have. The purpose of the perturbation is to modify the initial 
image to achieve the desired spatial and textual properties. To 
do so, objective functions are needed to guide the perturbation. 
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Therefore, we define two objective functions to represent the 
spatial and textual components of the real image scene. Since a 
single image band is often used to model the spatial and textual 
properties of a real image scene, we construct the two objective 
functions based on grayscale imagery in the following. For 
multispectral imagery, a principle component analysis (PCA) 
can be applied firstly; and the following objective functions are 
then calculated using the major principle component. 

 

 
The first objective function, denoted by O1, characterizes the 
spatial autocorrelation of an image scene using a semivariogram 
model. O1 is calculated as the root mean squared difference 
between the semivariances of the real image scene and those of 
the simulated image scene over a set of lags: 
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where are the spatial lags; 1,...,l = ( )S lγ and ( )R lγ are the 
empirical semivariances at lag l for the simulated image scene 
and the real image scene respectively.  
 
The second objective function, denoted by O2, quantifies the 
textual pattern of an image scene using a texture measure. 
Specifically, the textual measure is defined by the local entropy 
of a 9 × 9 image window centred on each pixel. O2 is calculated 
as the root mean squared difference between the pixel-wise 
entropy measures of the real image scene and the simulated 
image scene: 
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where  is the spatial location of pixel iu  ( 1,..., )i i N= ; 

and (S iE u ) ( )R iE u are the entropy measures at pixel i for the 
simulated image scene and the real image scene respectively. 
The two objective functions are then combined as one overall 
objective function using a suitable weight ω:    
 
 
                                     O O1 O2ω= + .                                  (3) 
 
 
2.3.3 Iterative Perturbation:  The initial overall objective 
function (0)O  is firstly calculated based on the initial simulated 
image. A sequence of iterative stochastic perturbation 

,..., )M=  is then introduced to modify the initial image to 
minimize the overall objective function. Denote the simulated 
image scene after the m-th iteration as{

( 1m

}( )
1( ),...m m

NX u ( ), ( )X u . 

 
At the m-th iteration, one perturbation is initiated by swapping a 
pair of randomly chosen pixels at u  and i ju . That is, ( ) ( )m

iX u  

and ( ) ( )m
jX u  are updated as follows 
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The m-th overall objective function O  is then calculated 
based on 

( )m

{ }( ) ( )
1( ),..., ( )m m

NX u X u . Finally, a decision is made 

on whether to accept the m-th perturbation according the 
following rules: 
 

1. When ( ) ( 1)m mOO −≤ , accept the m-th perturbation;  
  
2. When ( ) ( 1)m mO O −> , accept the m-th perturbation 

with a probability xp( / )p me λ= − , where λ is a 
constant to control the rate of the decrease of the 
probability p with respect to the increase of m. 

 
If the decision is to reject the m-th perturbation, then the update 
in (4) is not taken. Equivalently, { }( ) ( )

1( ),..., ( )m m
NX u X u is the 

same as { }( 1) ( 1)
1( ),..., (m m

NX u X u− − ) .  

 
The above iteration process proceeds until a predefined 
objective function value is achieved or the maximum number of 
iterations is reached. 
 
 

3. RESULTS 

We tested our algorithms based on a scene of Landsat TM 
image. This image scene has a size of 256 by 256 pixels, which 
are of 28.5 meter resolution, with the exception of the thermal 
infrared band of 57 meter resolution. For the purpose of image 
simulation, three bands (band 3, band 5, and band 7) were 
selected for this study. A false colour representation of the real 
image scene is shown in Figure 2(a). Two classes (forest and 
bare) were considered for the reference map in the simulation. 
The reference map shown in Figure 2(b) was generated by 
unsupervised classification followed by some post-processing. 
As introduced before, the reference map is not perfect ground 
truth to the real image scene. However, it reasonably estimated 
the underlying process that generated the real image scene, 
which was used to generate the simulated image scene. 
 
 

 

(a) (b) 

 
Figure 2.  (a) The real image scene, (b) the reference map 

 
Preliminary exploratory analysis on the histograms of spectral 
data of two classes indicated that multivariate Gaussian models 
were sufficient for estimating the probability distributions. 
Therefore, the initial simulated image shown in Figure 3(a) was 
generated by randomly drawing independent samples from the 
two multivariate Gaussian models which were estimated from 
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the real image scene. Figure 3(a) showed that the initial 
simulated image was extremely noisy due to the lack of spatial 
and textural patterns. 

 
 

 

 

 
Figure 3.  (a) The initial simulated image scene, (b) the final 

simulated image scene 
 
The differences in spatial and textual patterns between the real 
image scene and the initial simulated image scene are further 
illustrated in their local entropy measures in Figure 4(a) and 
Figure 4(b) and semivariograms in Figure 5. From Figure 4(a) 
and (b), the local entropy measure of the initial simulated image 
scene was quite different from that of the real image scene. 
Figure 5 showed that the semivariance of the initial simulated 
image scene (dotted blue line) was larger than that of the real 
image scene (solid red line) at all lags, particularly at the small 
lags, indicating large nugget effects for the initial simulated 
image scene.  
 
 

 

 
Figure 4.  The local entropy measures of (a) the real image 

scene, (b) the initial simulated image scene, and (c) the final 
simulated image scene 

 

 

(b) (a) 

 
Figure 5.  The semivariograms of the real image scene (solid 

red line), initial simulated image scene (dotted green line), and 
the final simulated image (dotted black line) 

 
After about one million perturbations using simulated annealing, 
the final simulated image shown in Figure 3(b) was generated 
with a pre-defined small threshold value on the overall 
objective function achieved. Compared with the initial 
simulated image scene in Figure 3(a), the final simulated image 
scene showed strong spatial and textual patterns. More 
importantly, the spatial and textual patterns in the final 
simulated image scene appeared very similar to those observed 
in the real image scene. This was further confirmed when 
comparing their local entropy measures and semivariograms. In 
Figure 5, the red solid line nearly coincided with the black 
dotted line, indicating that the final simulated image scene 
achieved the targeted semivariance of the real image scene at all 
lags. The local entropy image illustrated in Figure 4(c) also 
matched perfectly with that in Figure 4(a). Visual comparison 
of the textures between Figure 2(a) and Figure 3(b) further 
confirmed this.  

(a) (b) 

 
 

4. DISCUSSION 

The simulation approach showed promising results for the 
Landsat TM image scene as evidenced by the desired spatial 
and textual properties on the final simulated image scene. 
However, the final simulated image scene differed from the real 
image scene in some local structural patterns. For example, the 
linear features in the real image scene were not captured in the 
final simulated image. This was due to the fact that the two 
objective functions defined in this paper could not uniquely 
determine the spatial and textual properties of an image scene. 
For the purposes of evaluating classification algorithms, this 
may have the advantage that more simulations can be 
implemented to explore different spatial and textual patterns. 

(c) 

 
This study was focused on a relatively small image scene 
because the use of simulated annealing in the simulation 
process is computationally expensive for large image scene. As 
each perturbation only involves two pixels, the changes of 
objective functions are only affected by the local 
neighbourhood of the two pixels. Hence, some implementation 
tips suggested by Goovaerts (1997) can be used to improve the 
computation efficiency.  
 
The proposed simulation framework is pretty general and 
should be applicable to any image scenes. This study only 
tested a relatively simple landscape, where Gaussian models 
were sufficient as probability distributions. Future research 
should explore a variety of image scenes with different 
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complexities in landscape and probability distributions. More 
sophistic probability models and objective functions may be 
needed for more complex image scenes. 
 
 

5. CONCLUSIONS 

Current accuracy assessment practices for classification 
evaluation are limited by the difficulties in obtaining high 
quality reference data and the lack of spatial representation of 
classification uncertainties. In this paper, we proposed a new 
simulation approach to generating remotely sensed imagery in 
an attempt to obtain ideal reference data for better evaluation of 
classification algorithms. The simulation approach involves 
three components: 1) a real image scene, 2) a reference map, 
and 3) a simulated image scene. Specifically, an initial 
simulated image is firstly generated by independently sampling 
probability distributions estimated from the real image scene 
and reference map. Then, the initial simulated image is 
perturbed using simulated annealing to create a final simulated 
image which has similar spectral, spatial, and textual properties 
of the real image scene. When the reference map is used for 
accuracy assessment of the classification of the simulated image 
scene, three advantages can be found: 1) the reference map is 
free from classification and registration errors to the simulated 
image scene, 2) the reference map consists of the entire sample 
space, so it allows classification developers to experiment with 
many different sampling schemes, and 3) it allows the spatial 
representation of classification uncertainties. 
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