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ABSTRACT: 
 
There are a great deal of obvious issues about effects of scale and scaling conversion that need to be solved for agricultural condition 
monitoring using remote sensing. In this paper, a serial of researches about them were performed so as to service practical 
requirements of agricultural condition remote sensing monitoring, especially in the dynamic monitoring of crops growth using 
remote sensing technology, such as suitability of satellite images on different spatial resolution (i.e. spatial scales); associated 
relationships of some same kind of remote sensing information on different spatial scales in terms of time changes; a set of 
corresponding spatial-and-temporal associating models developed; and their effectiveness relatively assessed. As for validating the 
above, a case study was provided in Hengshui region of North China Plain, using multi-temporal satellite imageries of MODIS 
(Moderate-resolution Imaging Spectroradiometer, spatial resolutions of 500m & 250m) aboard EOS and AVHRR (Advanced Very 
High Resolution Radiometer, a spatial resolution of 1km) aboard NOAA, wherein the spectral characteristic values such as NDVI 
(Normalized difference vegetation index) were retrieved and applied in the corresponding spatial resolutions (spatial scales) of the 
satellite images. Practically, the last results showed that the model and approach of remote sensing scale and scaling conversion 
were effective and available in the actual crop growing remote sensing monitoring, while preserving informational integrity of 
satellite imageries, and hence they are able to be more widely applied and further integrated into agricultural condition remote 
sensing monitoring systems. 
 
 

                                                                 
*  Corresponding author; e-mail: fengjzh4680@sina.com.cn. 

1. INTRODUCTION 

Scale problems in the field of satellite remote sensing and GIS 
aroused very early researchers’ great concern and attention 
(Markham et al, 1981; Woodcock et al, 1987; Atkinson et al, 
1995; Liu et al, 2004). It is characterised that satellite remote 
sensing data in different temporal and spatial resolutions (i.e., at 
temporal and spatial scales) recorded the Earth surface (ES) 
characteristics, so the environmental monitoring needs remote 
sensing data in multi-resolution and their relevant applications 
at associated appropriate scales (i.e. a problem as to adaptive 
choice of scale), and transfer of the remote sensing information 
across different scales (Bo et al, 2003). Moreover, scale effect 
of remote sensing informational model is greatly significant, 
and there are thus many researches carried on it in order to 
explore the effective and adaptable scale range of some model 
application and the synergic relationship between different 
models at different scales (Liu et al, 2004). 
 
Here, Scale problem is very evident in agricultural condition 
monitoring using remote sensing, especially being an important 
limiting factor of effectively monitoring staple crop growth (e.g. 
in wide areas). For examples, in a sampling solution of remote 
sensing monitoring, it often results in a greater error that a 
sampling design (e.g. a size of sample box) does not match the 
resolution of remote sensing data; the available information is 
extracted from satellite remote sensing data in different spatial 
resolutions (at different spatial scales) and during crucial 

periods of crops growth, whereas each of their precisions is 
very different because, too small or too large spatial scale, will 
affect effect of monitoring crops growth and accuracy of crops 
yield forecasting and area estimation, which is obviously 
featured with effect phenomenon of temporal and spatial multi-
scale, adaptability of scale of remote sensing monitoring indices 
and its uncertainty (Wu et al, 2004; Mo et al, 2007). 
 
Given that the operation and running is usually based on large-
scale areas (e.g., in national or a few provincial areas), high 
timeliness and batch data processing in agricultural condition 
remote sensing monitoring, those tasks thus have to be 
completed during some limited time period (e.g. in three 
months term), and then the integrated monitoring is mainly 
characteristic using multi-source remote sensing data (Qian et al, 
2004). 
 
According to the basic theories and methods of remote sensing 
scaling conversion, this study explored the following contents 
so as to service practical requirements of agricultural condition 
remote sensing monitoring, especially in the dynamic 
monitoring of crops growth, as was shown later: (1) suitability 
of satellite images in different spatial resolutions (i.e. at spatial 
scales) is expounded; (2) based on a pyramid architecture of 
spatial scales, associated relationships of some same kind of 
remote sensing information at spatial scales were investigated 
in terms of time changes (i.e. at some selected temporal scales), 
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and then a set of corresponding spatial-and-temporal associating 
models were developed; (3) hence, the results of crop growing 
monitoring using remote sensing technology were emended at 
certain spatial scales and time periods relying on what was 
mentioned before, and meanwhile their effectiveness was 
relatively assessed. Accordingly, a case study was provided in 
Hengshui region of North China Plain, using multi-source 
temporal satellite imageries in multiple resolutions. The last 
results practically showed that the model and approach of 
remote sensing scale and scaling conversion were effective and 
available in the actual crop growth remote sensing monitoring, 
while preserving informational integrity of satellite imageries, 
and thus they are able to be more widely applied and further 
integrated into agricultural condition remote sensing monitoring 
systems. 
 
 

2. MODELS AND METHODS 

Though the term “scale” is widespreadly used in different 
disciplines, it is inconsistently defined. Meentemeyer (1989) 
defined scale in relation to the absolute and relative 
representations of space in geo-sciences. Lam and Cao (1992, 
1997) otherwise described four meanings of scale, namely, the 
cartographic, the geographical, the operational and the 
measurement scale. (1) The cartographic or map scale refers to 
the ratio of a distance on a map against the corresponding 
distance on the ground. A large-scale map covers a small area 
with a high detail, where a small-scale map covers a larger area 
with less detailed information. (2) The geographical or 

observational scale, which refers to the size or spatial extent of 
the study, takes the opposite perspective. A geographic large-
scale study covers a large area of interest as opposite to a 
geographic small-scale study covering a small area (Cohen et 
al., 2003). (3) The operational scale, called also scale of action, 
represents a level at which a certain process phenomenon is best 
observed. (4)The measurement scale or resolution means the 
resolution of the measurement scale, for instance a pixel size of 
the raster map (Dungan, 2001). In the context of remote sensing, 
scale is greatly concerned about the ability of a sensor system to 
record and display fine spatial detail as separated by its 
surroundings, and the instantaneous field of view (IFOV) of the 
sensor system which represents the ground area viewed by the 
sensor at a given instant in time (i.e., the former corresponding 
to spatial resolution and the latter to temporal resolution) and 
additionally, if a sensor onboard a satellite, the revisit cycle of 
the satellite (Su et al, 2001). Remote sensing imagery thus 
encapsulates two important aspects of scale, that is, grain and 
extent. Grain refers to the smallest distinguishable part of an 
object in an observation set (i.e. spatial resolution), while extent 
corresponds to the span of all detected entities (Allen and 
Hoeskstra, 1991) (i.e. the total area covered within an image 
swath). Therefore, a hierachical scale model can be 
integratively developed in view of various remote sensing data 
in resolutions and presented into a multi-dimensional scale 
space, which is comprehensively associated with corresponding 
objects and features (e.g., attributes) in one’s own scale level 
(as is characterized with scale dependence, respectively) (See 
Figure 1). 
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Figure 1.  A multi-dimensional scaling space 

 
Definition:  Scale space transfer of remote sensing data: =iF  
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2.1 Informational Associating Model, Based on Spatial 
Scaling of Satellite Images 

According to different investigated aims, different associated 
information patterns are used to effectively and efficiently 
integrate and fuse varieties of multi-resolution remote sensing 
data. Multivariate (stepwise) regression analysis is an easy and 
available approach of associating information, such that we 
defined a general association model of remote sensing 
information in multi-resolution following below: 
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2.2 Calculation of Similarity 

Owing to the above formula (1), it is known whether varieties 
of remote sensing image information 1 2, ,..., rω ω ω  of some 
object area in multiple resolutions during corresponding time 
periods are able to be appropriately integrated and fused or not 
is very closely interrelated with their similarity. There are lots 
of methods of calculating similarity of remote sensing 
information, and then we select the common K-Nearest 
Neighbour (k-NN) method (Xu, 2002). A similarity of any 
matching pixels of remote sensing image data in some spatial 
resolution based in time series can thus be calculated by the 
following formula: 
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2.3 Detection of Consistency 

The consistency of local and overall spatial features of remote 
sensing images is usually represented by the relevance or 
similarity of image statistic, which can be measured in terms of 
matched conditions between objects or pixels of and associated 
attributes of the images (Wang et al, 2007; Li et al, 2005). 
Geary's C is a common measure of spatial autocorrelation, 
which is very available to assess the complex global or local 
correlation, spatial distribution pattern and significance level, 
etc., of adjacent observations in reference to spatial location 
(namely, bi-directional spatial variables in two-dimensional 
scale space) (Cliff and Ord,1981; Ma et al, 2007). In the study, 
we helpful amended the kernel models of the Geary's C 
analysis method so as to meet the needs of application, as is 
shown below on the global and local statistic, i.e. C and Ci, 
respectively: 
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iω  is the measurement of the m-th variety of remote 

sensing information in the i-th spatial unit (location); ( )mω  is 
mean value of all variable ( )m
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Geary's c statistic C/Ci generally lies within the range of 0 to 2, 
with 1 being the expected value when there is no spatial 
autocorrelation that represents spatial random distribution 
pattern of investigated objects (or samples). That it is a value 
between 0 and 1 means positive spatial autocorrelation (i.e., 
being strongly positive at 0), which represents spatial aggregate 
distribution of the objects (or samples). Larger than 1 means 
negative spatial autocorrelation through to 2 that is strongly 
negative, which represents spatial dispersion distribution of the 
objects (or samples) (i.e., trending towards spatial aggregate 
distribution of the inverse objects). Hence, we statistically infer 
the global or local spatial consistency of varieties of 
corresponding remote sensing image data in accordance with 
the previous contents. 
 
 

3. SITE DESCRIPTION AND DATA PREPARATION 

3.1 Study Area 

Huanghuaihai Plain, an alluvial-flood plain, lies in north China, 
and ranges from 113°E to 120°E and 32°N to 42°N, including 
Hebei, Henan, and Shandong provinces, and part of Beijing 
and Tianjin regions. The site covers 3.2×105 km2  in the 
temperate zone with sub-humid continental monsoon climate, 
as well as characterised with the annual accumulated 
temperature (≥0 ℃) of 4800 ℃•d, annual average rainfall of 
600mm per year, cumulative radiation doses of more than 
5200MJ/m2, and non-frost period of more than 200 days. It is 
one of China's important grain production bases, with the 
farming system of main food crops (i.e., winter wheat and 
summer maize for two-season crop in one year) (Ren et al, 
2006). The study site, called Hengshui area, is located in centre 
of Huanghuaihai Plain and southeast of Hebei province, and 
cover 8815km2 with the total population of about 4.07 million 
and jurisdiction over two county-level cities and four counties. 
It is a typical winter wheat cropping area under available 
natural conditions and higher than average national level of 
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China in per capita area of arable land. Hence, an in-depth 
study of the area is very significant for effective agricultural 
condition remote sensing monitoring in the HuangHuaiHai 
Plain, especially for winter wheat growth monitoring and 
regional yield estimation using remote sensing technology in 
the regions. 
 
3.2 Data preparation 

Due to the specific phonological characteristics in the site, we 
selected critical growth stages of winter wheat from March to 
May in 2005. The stages are featured with very active 
photosynthesis of, and significant to biological efficiency of 
PAR (photosynthetically active radiation) conversion to dry 
matter and final yield of winter wheat, and etc, such as the 
turning green, erecting, shooting stage, heading stage, filling, 
and milk stages (Ren et al, 2006). 
 
The study, therefore, was performed using data derived from 
the senores MODIS (Moderate-resolution Imaging 
Spectroradiometer, spatial resolutions of 250m & 500m) 
aboard EOS Aqua and Terra satellites, and AVHRR (Advanced 
Very High Resolution Radiometer, a spatial resolution of 1km) 
aboard NOAA-17  meteorological satellite, respectively. Such 
monthly time-series data, namely being from March to May in 
2005, are available free of charge at the Web site of NASA 
(http://ladsweb.nascom.nasa.gov/data/).  

 
The data were commonly processed by series of operations, 
mainly including calibrations (e.g., the sensor related 
corrections, earth-sun distance correction, solar zenith angle 
correction, and TOA (top-of-atmosphere) reflectance 
correction), cloud detection, radiometric correction, geometric 
correction, BRDF (bi-directional reflectance distribution 
function) correction, and NDVI (normalized difference 

vegetation index) and LAI (leaf area index) compositing 
processes, etc. Then, the corresponding data products were 
obtained, and the time-series datasets of monthly NDVI and 
LAI fields, in instance, were further retrieved and gained from 
them, respectively.  
 
In order to decrease effects of non-winter wheat growth areas, 
the ratios of winter wheat growth area versus total of sample 
frequencies in the associated counties (i.e., the values of winter 
wheat growth area divided through the total of remotely sensed 
image pixels of corresponding counties) were used to represent 
the differences of winter wheat growth areas in the study site, 
and the relative samples were discarded,  the winter wheat 
growth areas of which were little to certain extent (namely, less 
than 10% in a pixel). The NDVI and LAI composite values 
were sequentially calculated with weighted average method in 
accordance with the foregoing ratios, respectively, and useful 
for winter wheat growth monitoring and yield estimation.  
 
Additionally, the study used the winter wheat output data, 
based on the official statistic in 2005, to test corresponding 
accuracy of winter wheat output estimation and other involved 
data. 
 
 

4. RESULTS AND DISCUSSION 

4.1 Scale Effects of Spatial Consistency for NDVI and LAI 
data in the Study site 

Using the related techniques and methods of spatial 
autocorrelation measure (Wang et al, 2007), spatial 
consistencies of  NDVI and LAI data during different growing 
periods of winter wheat were obtained at multiple scales 
(resolutions) in the study site. 

 

 
(a)                                                                       (b)                                                                        (c) 

 
Figure 2. Spatial consistencies of vegetation indices of winter wheat growths during March period: 

(a)~(c) for NDVI in the resolutions of 250, 500m and 1km 
 

 
(a)                                                                       (b)                                                                        (c) 

Figure 3. Spatial consistencies of vegetation indices of winter wheat growths during April period: 
(a)~(c) for NDVI in the resolutions of 250, 500m and 1km 
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(a)                                                                       (b)                                                                        (c) 

 
Figure 4. Spatial consistencies of vegetation indices of winter wheat growths during May period:  

(a)~(c) for NDVI in the resolutions of 250, 500m and 1km 
 

Figure 2, 3 and 4 show that there were high consistencies of 
local spatial autocorrelation for retrieved NDVI and LAI data 
from MODIS and AVHRR image data in the resolutions of 
250m, 500m and 1km, while being during winter wheat 
growing periods of March, April and May, respectively.  
 
Meanwhile, consistencies of global spatial autocorrelation for 
retrieved NDVI and LAI data in multi-resolution were quite 
desirable during the time-series periods, as were shown in 
APPENDIX A: the Geary’s C statistic of the NDVI and LAI 
data were 0.05651, 0.01835 and 0.04751 in 250m resolution; 
0.08244, 0.02684 and 0.04751 in 500m resolution; and 0.02547, 
0.02969 and 0.05605 in 1km resolution, respectively. The 
spatial distributions of winter wheat are thus greatly consistent, 
though there are largely different agronomic characters during 
different growing periods of the crop, so it is obvious that the 
law become a underlying statistical basis with respect to crops 
growth monitoring, especially in yield estimation of winter 
wheat, employing remote sensing technology. 
 
4.2 Effectively Synthetic Pattern of Retrieved NDVI and 
LAI in Multi-resolution 

According to the models and algorithms in Section 2.2 and of 
NDVI-LAI relationship (Huang et al, 1996; Meng, 2006), 
similarities of monthly retrieved NDVI and LAI data in the 
main growth periods (i.e., March to May) of winter wheat in 
the year (2005) were obtained based at different resolutions in 
the study site. As is followed below in Figure 5, the similarities 
in time series were very significant and further illustrated the 
spatial consistencies of winter wheat characters in different 
growth periods (see Section 4.1). 
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Figure 5. Relationship of time-series NDVI and LAI of winter 

wheat during mainly growing periods, respectively 
 

To date, the multivariate (stepwise) regression analysis was 
performed to simulate the growth conditions of and yield 

estimation of winter wheat in terms of the foregoing content 
mentioned in Section 2.1. In APPENDIX B and C, the solution 
of Mode_4 showed both its related coefficient (R2) and 
Significance F were bigger, and it should thus be the most 
optimal and selected in practice. Therefore, it is greatly 
important how to select and utilize the models and methods for 
agricultural condition monitoring (esp. in crops yield 
estimation) based on multi-source remotely sensed data (in 
different spatial and temporal resolutions), for example, 
accuracy and validity of agricultural condition remote sensing 
monitoring are seriously affected, so it is a kernel bottleneck of 
agricultural condition remote sensing monitoring technology 
and needs to more deeply be explored and investigated in 
practical application. 
 
 

5. CONCLUSION 

Remotely sensed data at multiple scales are widely used to 
monitor agricultural conditions, and the synthetically applied 
approaches, based on varieties of data (including remotely 
sensed data), are thus available and successful to some extent 
in crop yield estimation. In the other hand, crop yield remote 
sensing estimation is very greatly complex and difficult 
because its feasibility and practicability, for example, are not 
only taken into account, but also do reliability and accuracy in 
practical application. Hence, it is necessary and significant to 
synthetically analyse characteristic parameters of crops growth 
and phonological law and discover scale effects of remotely 
sensing data, and then present scale and scaling models, that is, 
an effective and essential means to improve accuracy of crops 
yield estimation using remote sensing techniques. 
 
In this study, the scale problem and scale effect of multi-source 
remotely sensed image data were present and investigated. The 
authors, thus, theoretically illuminated multi-scale space of 
remotely sensed data, and proposed the mapping models of 
scaling and assessed accuracies of the models. In practice, the 
synthetic model, based on remote sensed image and multiple 
vegetation-indices data at multi-scale, is more adoptable and 
more accurate in crops yield estimation than is a variety of 
remote sensed image and vegetation index. 
  
At last, it should be pointed out that: so far, approaches of 
synthetically applying multi-source remotely sensed data at 
multi-scale are still developed at a primer level, for example, 
only primarily taking into account small difference effect of the 
vegetation indices parameters (i.e., NDVI and LAI) retrieved 
from multi-source remotely sensing data that were resulted in 
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by the spectral band placement  of the satellite sensors, and 
then need to yet be improved; and methods and workflows of 
remotely sensed data preprocess are much trivially complicated, 
so they need to further be modified usefully; moreover, it is 
required, too, to develop new patterns, methods and models of 
accuracy check and assessment of crops yield estimation in 
order to enhance their validity. In addition, to fully understand 
potential mechanisms of corresponding specific remote sensing 
information is able to make it easy to utilize them in 
information scaling conversion across scales and to enhance 
accuracy of agricultural condition monitoring; and maybe, how 
to soundly integrate remotely sensed data with non-remotely-
sensed data further proceeds further to be solved and developed 
in this direction. 
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APPENDIX A. SPATIAL CONSISTENCIES OF NDVI OF WINTER WHEAT TIME-SERIES GROWTHS  
AT MULTIPLE SCALES IN STUDY AREAS* 

Time 

Series 

Resolution 

(Scale) 

St_Dev. 
(Nor.)

St_Dev. 
(Rand.) 

Z 
(Norm.) 

Z 
(Rand.) 

C 

250m 0.00192 0.00192 492.14642 492.56123 0.05651 

500m 0.00385 0.00389 254.89363 252.44596 0.01835 March 

1k 0.00827 0.00819 115.21961 116.29202 0.04751 

250m 0.00192 0.00191 478.62323 479.41602 0.08244 

500m 0.00385 0.00393 252.68765 247.6844 0.02684 April 

1k 0.00827 0.00819 115.21961 116.29202 0.04751 

250m 0.00192 0.00191 508.34068 509.09622 0.02547 

500m 0.00385 0.00389 251.94761 249.47571 0.02969 May 

1k 0.00827 0.00823 114.18656 114.71944 0.05605 

*To note: St_Dev. and Z are Standard Deviation and Significance at the Normalized or Randomized, respectively; C is geary’s C. 

 
APPENDIX B. COMPARISON OF SYNTHETIC REGRESSION MODELS OF NDVI AND LAI DATA  

IN DIFFERENT RESOLUTIONS BY CROSS-TEST 

ID 
Scale Space 

(Resolutions)

Regression Models 

（T） 
R
2
 

Significance 

F 

Mode_1 250m 

( ) ( ) ( )(1) -114343.95 + 236.5128*  - 4.5865*  - 82.0939*
Mar Mar Apr

ss sW NDVI LAI= NDVI  
( ) ( ) ( )

- 9.4960* + 34.2301* + 4.2612*
Apr May May

s ssLAI NDVI LAI  
0.73696 0.28390 

Mode_2 500m 

( ) ( ) ( )(1) 70434.6871 - 20.0951*  + 7.5249*  + 213.5692*
Mar Mar Apr

ssW NDVI LAI NDVI= s  
( ) ( ) ( )

 7.4142 *  - 243.8725*  - 2.5281*
Apr May May

s ssLAI NDVI LAI＋  
0.80134 0.17875 

Mode_3 1km 

( ) ( ) ( )(1) 21353.6328 + 1223.9888*  + 153.2817*  + 260.1135*
Mar Mar Apr

ssW NDVI LAI NDVI= s  
( ) ( ) ( )

-36.7849*  - 524.7642* + 50.8384*
Apr May May

s ssLAI NDVI LAI  
0.70485 0.33976 

Mode_4 

Synthetic 

Scale Space 

(in 250m,500 

and 1km) 

( ,250 ) ( ,250 ) ( ,500 )(1) -358217.1178 + 163.5827*  - 11.5456*  + 25.6784*
Mar m Mar m Apr m

ss sW NDVI LAI NDVI=  
( 500 ) ( ,1 ) ( ,1 )

-3.7322*  + 1727.6933* - 142.1289*
Apr m May km May km

s ssLAI NDVI LAI
，

 
0.70651 0.33684 

To Note 
The above models as to yield estimation of winter wheat; sNDVI  and sLAI  are the mean values  

of retrieved NDVI and LAI (by winter wheat area ratios) in corresponding counties, respectively. 

 
 

APPENDIX C. COMPARISON OF SYNTHETIC REGRESSION MODELS OF NDVI AND LAI DATA IN DIFFERENT 
RESOLUTIONS IN THE STUDY AREAS BY CROSS-TEST (IN 2005)  

Model_1 Model_2 Model_3 Model_4 County 
name WWYE 

(T) 
SV 
(T) 

RE 
(%) 

WWYE 
(T) 

SV 
(T) 

RE 
(%) 

WWYE
(T) 

SV 
(T) 

RE 
(%) 

WWYE 
(T) 

SV 
(T) 

RE 
(%) 

Anping 111692 100470 11.17 96692.1 100470 -3.76 58970.4 100470 -41.31 96072 100470 -4.38

Fucheng 148821 127974 16.29 133474 127974 4.3 137466 127974 7.42 149592 127974 16.89

Gucheng 170244 173579 -1.92 203893 173579 17.46 178167 173579 2.64 173239 173579 -0.2 
Jing 

Counnty 214467 247622 -13.39 226880 247622 -8.38 211252 247622 -14.69 240818 247622 -2.75

Jizhou 78161.2 99837 -21.71 78026.3 99837 -21.85 133929 99837 34.15 91231.5 99837 -8.62

Raoyang 69110 79175 -12.71 70911.3 79175 -10.44 59431.4 79175 -24.94 86987 79175 9.87 

Shenzhou 202183 237075 -14.72 220660 237075 -6.92 214651 237075 -9.46 187611 237075 -
20.86

Wuqiang 44076.3 76176 -42.14 97604.7 76176 28.13 66662.7 76176 -12.49 70128.9 76176 -7.94

Zaoqiang 172545 134650 28.14 82387.1 134650 -38.81 125395 134650 -6.87 124368 134650 -7.64

To Note WWYE-Winter Wheat Yield Estimation; SV-Statistic Value; RE-Relative Error; MRE-Mean RE. 
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