
DYNAMIC FIELD PROCESS SIMULATION WITHIN GIS: THE VORONOI APPROCHE 
 
 

L. Hashemi Beni*, M. A. Mostafavi, J. Pouliot  
 

Dept. of Geomatics, Laval University, Quebec, Canada  
 Leila.hashemi.1@ulaval.ca, (Mir-Abolfazl.Mostafavi, Jacynthe.Pouliot) @scg.ulaval.ca 

 
Commission II, ICWG II/IV 

 
 
KEY WORDS:  Data Structure, Voronoi Diagram, 3D GIS, Simulation, Dynamic 
 
 
ABSTRACT: 
 
Simulation of a dynamic and continuous phenomenon (field) is a difficult task for GISs as their data structures are 2D and static and 
are not well-adapted to manage neither the dynamic behavior of the phenomenon nor its geometrical and topological information. In 
this paper we present the Voronoi diagram as an alternative data structure that, through its useful geometrical and topological 
properties, provides an adequate discretization of a field and can represent its temporal changes by providing numerical integration 
methods on either dynamic or kinetic mesh. 
 
 

1. INTRODUCTION 

Simulation of dynamic fields is usually needed for a wide 
variety of applications to better understand, analyze, and predict 
their behaviors. Simulations of fluid flows, meteorological and 
environmental application are examples of these applications. 
For example, questions such as: "where does ground water 
come from?", “how does it travel through a complex geological 
system?" and “how is water pollution behavior in an aquifer?” 
can be partially answered using simulation tools such as 
HYDROGEOSPHERE (Therrien, 2006) and MODFLOW. 
However, many spatial analysis capabilities are absent within 
such tools which limit their utilities in modelling and 
representation of those phenomena.  
When dealing with simulation of a dynamic phenomenon, 
several factors must be taken into account such as the dynamic 
behavior of the phenomenon and its geometrical and 
topological representation (spatial modeling). This is where a 
Geographic Information System (GIS) is a valuable tool. 
Geographic Information System (GIS), through its powerful 
capabilities to process spatial data, provides modelers with 
strong computing platforms for data management, integration, 
visualization, querying, and analysis and thus greatly facilitate 
the implementation of various process models. However, the 
simulation of the real-world phenomena which are usually 3D 
and dynamic (they change with respect to space and time) is 
difficult within the current GISs as their data structures are 2D 
and static. Indeed, the current GIS data structures are not well-
adapted to represent and manage neither geometry nor topology 
of 3D spatial data and are incapable of properly handing the 
dynamic behavior of a phenomenon (Ellul and Haklay, 2006; 
Mostafavi, 2002). This paper analyses the potentials and 
limitations of Voronoi diagram as an adaptive spatial data 
structure for simulating a dynamic and continuous phenomenon 
in a 2D and 3D space. In the remainder of this paper, we briefly 
explain how a dynamic and continuous phenomenon (field) can 
be represented followed by a review of the limitations of the 
current data structures for this purpose. Then, an alternative 
data structure, Voronoi diagram, is introduced. Next, we study 
the potential of the Voronoi data structure for different 
simulation methods in 2D and 3D. Finally, we present some 

results of the application of the kinetic Voronoi diagram for two 
case studies and discuss the results. 
 
 

2. FIELD SIMULATION 

Space can be represented either as a set of objects with spatial 
properties or as a set of locations with properties which is 
referred to as a field (Worboys and Duckham, 2004). 
Topographic elevation, air temperature and water pollution are 
examples of spatial fields. Mark (1999) defines a 2D field  
as any single-valued function of location in 2D 
space:

(F)

),(F yxf= . This definition can be generalized to 3D 
as: ),,( zyxfF = . This value also becomes a function of time 
when dealing with a dynamic filed. Depending on how time is 
taken into account in the function, two different approaches can 
be introduced: We can investigate the changes of a field at a 
fixed location over time: ),,,()F( tzyxft = or we can describe 
the changes of the field at a time-dependent 
location: ))(), tzt(),( yt()F( xft = . These visions correspond to 
static and dynamic views of a process presented by Peuquet 
(1999) and Eulerian and Lagrangian view points in 
computational methods (Price, 2005) which are discussed later 
in this paper.  
 
Dynamic fields have generally a very strong spatial dimension 
and researchers in geospatial domain have been increasingly 
interested in modeling and representing them within a GIS 
(Maggio, 1999). Traditionally, simulation tools have generally 
been developed outside of GIS. MODFLOW and 
HYDROSPHERE are two examples of simulation tools. 
However, these tools suffer from insufficient spatial analytical 
component, low performance of the spatial data visualization 
capability, and non-conveniences in spatial data integration 
such as digital maps, satellite image, aerial photos (Bivand and 
Lucas 1997; Densham 1993; Nyerges 1993). Therefore, the 
integration of simulation tools and GIS was considered by many 
researchers and the mutual benefits of this integration were 
confirmed by several papers published on this area (Chapman 
and Thornes 2003, Sui and Maggio 1999, Valavanis 
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2002). Depending on the level of interaction between a 
simulation tool and GIS, three integration approaches can be 
developed. A Loose coupling approach is defined as merely 
passing input and output between a GIS and a simulation tool. 
In this level of integration, the input into a simulation tool is 
from GIS and the output of the simulation tool is exported back 
to GIS for analysis and visualization. A Tight coupling 
approach involves processing data in same database for a GIS 
and simulation tool. 
 
In this approach, although the process model is developed 
outside of GIS, the model is configured with the interactive 
tools of the GIS and the data is exchanged automatically. A Full 
coupling approach is defined as embedding a process model in 
a GIS. This approach involves implementing a process model 
within the GIS and taking full advantage of the built-in GIS 
functionalities. In addition, this allows a GIS to go beyond 
being a simple data management tool to offer more 
sophisticated analyses and simulations of natural phenomena 
(Maggio, 1999). Full coupling approaches that are referred to as 
GIS-based simulation approaches require a data structure to 
manage multidimensional and dynamic phenomena. Current 
GIS miss such data structure and then can not support such 
applications. 
 
Dynamic fields are continuous and it is practically impossible 
to measure them anywhere and anytime. Hence, our knowledge 
of spatio-temporal fields is usually limited to a set of 
observations in given locations and time. Therefore, the 
continuous field must be represented using these data samples 
which are usually a set of unconnected points. Each point is 
defined by its position in 2D or 3D space and its field value at a 
given time. To represent a continuous phenomenon from a set 
of discrete samples, it is necessary to create a tessellation which 
rebuilds the continuity and connectivity between the discrete 
observations. Tessellation, referred to as meshing or grid 
generation, is a partition of the space by a set of elements such 
that the union of all elements completely fills the space 
(Worboys and Duckham, 2004). Meshes can be of two types, 
regular and irregular. The elements of a regular mesh have 
uniform shapes and sizes such as 2D rectangles and pixels or 
3D cubes and voxels. In a regular spatial tessellation, the 
topology between these elements exists implicitly, which means 
that all neighbors of a given element can be accessed by a 
simple index, either in 2D or in 3D. However, a 
major limitation of regular meshes is related to the handling of 
field data (unconnected points) with an irregular distribution. 
Indeed, in this case, a large number of elements required for a 
fine resolution, which, especially in 3D, can be huge. To 
overcome the limitations of regular meshes, hierarchical meshes 
can be used, where a tree is created. Quadtree and Octree are 
two examples of this data structure in 2D and 3D spaces 
respectively. In fact, these methods subdivide the space into 
four squares (Quadtree, in 2D) or four cubes (Octree, in 3D) of 
equal size until either each element contains one homogeneous 
region or reaches a desired resolution. Although these methods 
reduce the required memory for a fine resolution mesh, the tree 
data structure can be unbalanced when the data distribution is 
irregular (de Berg et al., 2000). In addition, a small change in 
field data may result in a quiet different tree. Irregular meshes 
can also be used to model a continuous phenomenon. The 
elements of irregular meshes can be of any size and shape (for 
example triangles and polygons in 2D or tetrahedrons and 
polyhedrons in 3D) and follow the outline of the data points. 
Thus, they can be adapted to the point distribution and provide 
conformity to complex phenomena. However, in irregular 

meshes, the connectivity between the mesh elements or 
topology does not implicitly exist. Hence, topology needs to be 
computed and stored explicitly and updated after any change 
which can be a difficult task for current GISs data structures. 
Since, the data structures are static and following any change in 
the spatial information, all spatial relationships (topology) must 
be rebuilt. This problem becomes more complicated for 3D 
mesh. In addition to this problem, the GISs data structures are 
not able to represent both objects and fields at same time which 
is required when dealing with a continuous phenomenon 
observed with discrete points. 

),( ji ),,( kji

 
Gold and Condal (1995) suggested that a Voronoi and Delaunay 
spatial data structure can be a good candidate for the simulation 
of dynamic fields within GIS as they can properly model 
multidimensional spatial data over time and space. Some 
attempts have been made to apply these data structures for 
simulating a continuous phenomenon such as a fluid flow in 
two- and three-dimensional space (Mostafavi and Gold, 2004, 
Hashemi and Mostafavi, 2008; Blessent et al. 2008) which are 
discussed in the following sections and the advantages and 
limitations of the approach are discussed.  
 
 

3. VORONOI DIAGRAM AS UNDERLYING MESH 
FOR A PROCESS SIMULATION 

A Voronoi diagram (VD) for a set of points inS nR is 
constructed by partitioning the space into regions with one 
region for each point, so that the positions in the region for 
point Sp∈  are closer to p than any other point in S  (fig.1a); 

so a Voronoi diagram in 3R  is (Edelsbrunner, 2001): 
 
 

{ }SqqxpxRxVp ∈∀−≤−∈= ,|3  
 
 

And DT ( ) in 3D is Delaunay Triangulation of S such that 
there are no points of S  inside the circumsphere of any 
tetrahedron (fig.1b). This resulting mesh is unique for the point 
set , except when five or more points are co-spherical in 3D 
(Edelsbrunner, 2001). 

S

S

 
 

 
(a)                            (b) 

 
Figure 1. a) 3D Voronoi diagram, b) 3D Delaunay triangulation 
 
To simulate a dynamic field such as a fluid flow, the first step 
consists on the discretization of the continuous phenomenon to 
mesh elements. The dynamic behavior of the flow, which is 
typically defined by partial differential equations (PDE), is 
approximated by the dynamic behavior of the mesh elements at 
a set of time snap-shots. This can be done using two different 
Eulerian and Lagrangian approaches (Price, 2005; Mostafavi, 
2002).  
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(a)                                                      (b) 

 
Figure 2. Two different simulation methods 

 
 a) Eulerian methods describe changes of field at a fixed 
location at a series of snap-shots; b) Lagrangian methods 
describe changes which occur as you follow a fluid element 
along its trajectory (blue line) at a series of snap-shots, the 
shape and size of the element may change. 
 
In Eulerian methods, the equations are solved using a static 
mesh (fig. 2a).  In Lagrangian methods, the mesh moves with 
the fluid flow hence, the positions of the mesh elements change 
constantly over time (fig. 2b). Voronoi diagram (VD) and its 
dual, Delaunay triangulation (DT), thorough their useful 
properties provide an adequate discretization of the space for 
both Eulerian and Lagrangian fluid flow simulation approaches, 
ensuring that physically realistic results are obtained form the 
numerical integration of the PDE.  
 

 
4. EULERIAN METHODS AND VORONOI DIAGRAM 

Eulerian methods take advantage of a fixed mesh that is simple 
to generate and maintain. These methods have been widely used 
for fluid flow simulations. In these methods, the size and shape 
of mesh elements as well as the value of time-interval have to 
be carefully selected to ensure a realistic representation of a 
fluid flow. A uniformly fine mesh is computationally costly and 
is generally not well suited to handle the dynamics of a fluid 
flow and tracking problems in a complex system (such as a 
hydrogeological system). A mesh based on a dynamic Voronoi 
diagram is an interesting alternative for these requirements. 
Voronoi cells can be defined by points with an arbitrary 
distribution, creating mesh elements of different sizes and 
shapes which can adapt to complex geometries. For instant, for 
regions with either high rates of flow or discontinuities, the 
Voronoi diagram can provide a fine resolution mesh. Each cell 
can have an arbitrary number of neighbors which their 
connectivity with the given cell is clearly defined and can be 
explicitly retrieved if needed. In addition, dynamic Voronoi 
diagram offers the local editing and manipulating possibility of 
the mesh which is usually necessary for the refining of the mesh 
without having to rebuild the whole mesh. Regarding these 
properties, several research works used VD and DT as 
underlying mesh in fluid flow simulation. Hale (2002) applied 
DT and VD to reservoir simulations using 3D seismic images 
and demonstrated the potential of both DT and VD for flow 
simulation during all steps of seismic interpretation, fault 
framework building, and reservoir modeling. Lardin (1999) and 
Blessent et al. (2008) applied this data structure to groundwater 
simulation in 3D space and showed that VDs are well-adapted 
to the Control Volume Finite Element (CVFE) method. The 
CVFE methods are based on the principle of mass conservation. 
Thus, a volume of influence is assigned to each point or 
element and equations are defined to describe the interaction of 
the element with its neighbors. This interaction is expressed by 

mass balance, which states that the difference between inflow 
and outflow in each element must be equal to the variation in 
fluid stored in the same volume (Therrien et al. 2006). Fig.3 
shows the examples of Voronoi elements in 2D and 3D. 
 
 

 
                  (a)                     (b)                            (c) 

 
Figure 3.  Examples of Voronoi elements in 2D(a) and 3D 

(b),(c). 
 
 

5. LAGRANGIAN METHODS AND VORONOI 
DIYAGRAM 

A Lagrangian method are often the most efficient way to 
simulate a fluid flow, as the mesh moves and conforms to the 
complexity of geometries (Price, 2005). However, when the 
points move with fluid velocities, the connectivity between 
mesh elements remains unchanged. This can result in a tangled 
(deformed) mesh. For this reason, these methods are very 
limited for highly turbulent fluid flow simulations. An 
alternative approach consists of using the Arbitrary Lagrangian-
Eulerian methods where an Eulerian approach can be used to 
solve the equation at a given time and the mesh can then be 
moved to solve for the next time value. These methods reduce 
the mesh distortion by continuous ‘remapping’ or 
‘reconnecting’ of the mesh. A mesh remapping approach can be 
considered as an Eulerian process, because fluid is transported 
across mesh cell boundary. Free-Lagrangian methods use this 
reconnecting concept with this difference that the fluid is not 
transported across mesh cell boundary. This reconnection 
process allows the representation of very complex fluid flows. 
However, a main problem of these methods is related to 
determining the optimal time interval. For example, a large 
time-step causes problems such as overshoots and undetected 
collisions and, as a result, we may observe some abnormal 
behavior in the simulation results. For a small time-step, an 
extensive computation effort will be required to check for 
changes at time when none occurred. Another problem with 
Free-Lagrangian methods lies on maintaining and processing of 
the connectivity relations between mesh elements at each time. 
To solve these problems, a kinetic data structure can be helpful 
which is based on the fact that “variation in space with time 
may be modeled not by snap-shots of the whole map at regular 
time intervals, but by local updates of spatial model at the time 
when they happen (event)” (Gold 1993). In a fluid flow 
simulation, these events can be the changes either on the field 
value or on the spatial relationship of the points which refer to 
as trajectory event and topological event respectively (Roos, 
1997; Gavrilova and Rokne, 2003). Trajectory events are 
related to the physical problem description and defined by the 
governing equations, while topological events can properly be 
detected and updated by a kinetic Voronoi and Delaunay data 
structures as explained in follows.  
 
Point movement may change the adjacency relationships of the 
point and its neighbors (fig4). Then, this displacement changes 
the configuration of the triangle/tetrahedra having the moving 
point as one of their vertexes. In a DT, a topological event 
occurs when a point (p) moves in or out of the 
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circumcircle/circumsphere of a triangle/tetrahedron in 2D/3D 
mesh. Therefore, to find the topological event of a moving point, 
only the spatial information of the triangles/tetrahedra having 
the moving point as one of their vertexes and their neighbors 
are used and the remaining triangles/tetrahedra in the mesh do 
not need to be tested. This can be computed using well-known 
predicted test (Guibas and Stolfi, 1985) to preserve the 
Delaunay empty circumcircle/circumsphere criterion. Since in a 
kinetic data structure, the position of points are time dependent, 
then, the value of the determinant will be time dependent as 
well. However, the cost of generating, computing and updating 
the predicate function is very expensive, especially when 
dealing with simultaneous moving of the points on complex 
trajectories as seen in a physical system. For example, a 
quadratic trajectory of a point in a 3D space results in a degree 
eight predicate function. As described in Guibas and Russel 
(2004), the computational cost can be reduced by minimizing 
the degree of the predicate function. To minimize the degree of 
the function, we assume that only one point is allowed to move 
at a time on a linear trajectory. Therefore, one row of the 
predicate determinant must be allowed to vary linearly. 
Equation 1 shows the predicted function for a moving point in 
3D Delaunay triangulation. According to this equation, a 
topological event for point p  occurs when p  moves in or 
moves out of the circumsphere of the tetrahedron , i.e. the 
value of the predicate function is 0. 
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Mostafavi and Gold (2003) have implemented a similar 
algorithm on the plane that minimizes the number of triangles 
which must be tested to detect the closest topological event of a 
moving point. To do so, the algorithm computes the intersection 
between the trajectory of (a line segment) and the 
neighboring circumcircles that cut the trajectory between the 
origin and the destination of the moving point. In fact, the 
triangles that the orthogonal projection of their circumcenter on 
the trajectory of p are behind the point , with respect to the 
moving direction, are not considered. Ledoux (2006) has 
extended this algorithm to deal with the moving of a single 
point in a 3D Delaunay triangulation. Although the algorithm is 
functional for the general cases, it needs to be improved for the 
degeneracies and complicated cases as well as the complexities 
of several moving points in 3D. For this purpose, we need to 
develop a strategy that should not only maintain the validity of 
the mesh but also give realistic results for the simulation 
process. Here, our strategy is based on the management of the 
topological events of the moving points based on a defined 
priority criterion. This priority is defined based on the value of 
the simulation time (tsimulation) for each moving point. The 
simulation time is the total time that takes for each point to 
reach from its origin to its new location on the trajectory. 
Therefore, first, we compute all the topological events of the 
moving points in the mesh. Next, the time taken for each point 
to reach its closest topological event t  is computed. This 
time depends on the velocity ( ) of the moving point and the 
distance ( ) between its current position and the location of its 

next closest topological event on its trajectory. We define the 
local time (  ) as the time that it takes for each point to 
move from its origin to its current position. The relation 
between these times is:  

p

v

p

event

d

localt

 
 

eventlocalsimulation ttt +=  
 
 

To facilitate the management of the topological events, we have 
used a priority queues data structure by organizing the moving 
points based on the increasing value of . Therefore, 
the first member of the queue which has the smallest simulation 
time is processed first i.e. the moving point is moved to its new 
location and a local update in the mesh is carried out in the 
mesh for the moving point and its neighbors.  

simulationt

 
 

 
                     (a)                                                  (b)     
 

Figure 4.  Flips are dynamic operations and make appropriate 
local updates in mesh data structure, a) flip22 in 2D, b) flip23 

and flip32 in 3D. 
 

In 2D, the flip22 is used that converts two neighboring triangles 
to two different neighboring triangles by changing the diagonal 
of the quadrilateral formed by them (fig. 4a). In 3D, several 
types of flips including the flip23 or flip32 are used (fig.4b). 
The flip23 or the face-to-edge flip operator converts two 
neighbor tetrahedra to three tetrahedra. The flip32 or the edge-
to-face flip operator converts three neighbor tetrahedra to two 
in order to guarantee the Delaunay empty circumsphere 
criterion (Joe, 1991; Shewchuk, 2005).  
 
In a fluid flow simulation context, following any topological 
changes in the mesh, we need to update the physical parameters 
of the affected points. The governing equations that define the 
nature of the dynamic field, allow to compute the new physical 
parameters such as the velocity for each moving point and its 
neighbors. This means that  is updated after each 
topological event for the points involved in this operation. As a 
result, the priorities of some of the moving points may change. 
This occurs because, when a point moves, the related 
circumcircle/circumspheres and event times of the neighboring 
points change. The above process is reiterated until the end of 
the simulation process. Fig. 5 is an example of evolution of 
adjacency relationships for a single moving point in a 2D 
kinetic VD. 

simulationt

 
 

 
 

Figure 5.  Evolution of adjacency relationships for a single 
moving point in a 2D kinetic VD (Mostafavi 2002) 
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5.1 Application examples in 2D and 3D 

In this section, through two application examples, we show the 
potential of a kinetic Voronoi data structure for free-Lagrangian 
fluid flow simulation in two-and three-dimensional spaces. The 
first example which is described in details in Mostafavi and 
Gold (2004), presents the application of the 2D kinetic Voronoi 
data structure for a dame-braking problem. This example uses 
the discrete form of governing equations that describe the 
behavior of an incompressible fluid flow. As the first step, the 
fluid region is sampled by a discrete set of points and a 
Voronoi-based mesh is used to tessellate the space and define 
the elements and their topological relations. Next, to each 
element of the mesh, an initial velocity and height are assigned. 
According the law of the conservation of mass, mass and 
volume of each element must be constant during the simulation 
process. Hence, the height of each particle is computed 

by:
i

i
i A

m
H = ; where 

im  and Ai are the mass and area of the  

particle. In this example, we assume that the middle of the 
surface is five time higher than other parts (fig. 6a). To start the 
simulation, first topological event is computed for each element 
and stored in a priority queue. The first point of the queue is 
processed by moving it to its new position and making the 
appropriate topological updates (flip22). Next, using the 
governing equation, the velocity of the moving point as well as 
the area and height of the moving point and its neighbors are 
updated. The motion of each element is the result of its 
interactions with its neighboring elements. Following these 
changes, the first topological event of the moving point and its 
neighbors are recomputed and finally, the priority queue is 
updated using these new values. The results of this example 
(fig.6) show the higher elements in the middle of the surface 
begin to move outward so their area becomes larger. Using the 
assumption that the mass of each element is constant during the 
simulation process, the height of these elements becomes lower 
and lower until the equilibrium is created in the simulation 
region. This example reveals that, although the fluid flow in this 
particular case has a significant motion, there has been no mesh 
distortion or overshoots and undershoots that occurred during 
the simulation process. 

thi

 
 

 
               (a)                              (b)                            (c) 

 
Figure 6.  The result of dam breaking problem using a 2D 

kinetic VD (upper images) and the mesh perspective (below 
images). a) Initial mesh, b) mesh after 5000 topological events, 
c) mesh after 10000 topological events (Mostafavi and Gold, 

2004) 
 
The second example consists on a 3D hydrodynamics 
simulation example which uses a 3D kinetic Voronoi data 
structure. In this example, we investigate the potential of the 3D 
KVD for a gas dynamics simulation. The governing equations 
mainly describe the conservation of the mass, momentum and 
total energy for a compressible fluid flow (Campbell and 

Shashkov, 2003). For the sack of simplicity, we consider that 
the fluid domain is bounded by a 3D rectangular boundaries and 
the fluid can move horizontally. For numerical integration of 
the governing equations, first, the simulation domain is 
discretized using 3D Voronoi diagram where each Voronoi 
polyhedron represents a flow cell. Therefore, the relationship 
between mesh cells is explicitly stored and automatically 
maintained during the simulation process. To start the 
simulation, the initial velocity ( ), pressure , 
density

zyx vvv ,, P
ρ , internal energy , and mass values are assigned 

to each cell. In this example, we assume that the middle of fluid 
domain has a higher density and pressure and according to the 
law of the conservation of mass, the mass of each cell remains 
constant during the simulation process (fig.7a). Each polyhedral 
cell shares a face with each of its neighboring cells (fluid or 
boundary cell). The surface of those faces as well as the volume 
and the shape of the Voronoi polyhedron may change during 
the simulation process. Similar to 2D algorithm, in 3D space, 
for each cell, the first topological event for each moving point is 
computed and stored in a priority queue. Then, the first point on 
the priority queue is moved to its new position using a velocity 
vector. The velocity vector is the result of the total force acting 
on the cell by its neighbors. The neighboring cells forces are 
computed on the central polyhedron faces. Following the 
movement, the shape and the physical attributes (quantities) of 
the cell and its neighbors are updated. The shape and 
topological information are updated following a flip23 and 
flip32 and the physical attributes are computed using the 
governing equations. Consequently, for each polyhedron, the 
number of the faces and their respective area change in the new 
position. Following this step, next closest topological events for 
the points and its neighbors are computed and the priority queue 
is updated for these new values. This procedure is repeated until 
the equilibrium is created between the pressures of particles.  

e m

 
The results of this example show that the particles with higher 
pressure in the middle part of the simulation domain begin to 
move outward symmetrically and their volumes become larger 
(fig.7). According to the assumption that the mass of the cells is 
constant during the simulation process, when the volume of a 
cell increases, the density as well as the pressure of the cell 
decrease. This process continues as long as the equilibrium does 
not exist in the simulation domain. It can be noted from the 
results that the proposed algorithm manages properly the 
movement of the mesh in 3D space and the dynamic behavior 
of the gas flow corresponds to our expected i.e. The gas flow 
completely fills the simulation domain and equilibrium is 
achieved. The initial results obtained in this case study are very 
promising as the data structure is maintained during the 
simulation process representing correctly the geometrical and 
topological information of the underlying mesh and the results 
of the simulation are reasonably comparable to the one obtained 
from the analytical solution of the governing equations.  
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Figure 7. Simulation of gas dynamics using 3D kinetic VD a)  
initial mesh, b) mesh after 1000 topological events, c)  mesh 

after 2000 topological events and d) mesh after 4000 
topological events 

 
 

6. CONCLUSIONS 

In this paper we discussed simulation of a dynamic and 
continuous phenomenon (filed), a fluid flow in particular, that is 
a difficult task for GIS as its data structures are 2D and static. A 
3D Voronoi data structure, as an alternative, can generate a 
mesh that accurately represents the geometrical, topological 
information of a fluid flow as well as its dynamic behavior in 
both static and dynamic manner. In the static or Eulerian 
methods, the structure assigns a volume of influence to each 
point and flow is assumed to be a transfer of fluid between 
these elements. Therefore, the change of fluid flow for each 
element is difference between inflow and outflow in it at a 
series of snapshots. In the dynamic or Lagrangian methods, data 
structure assigns a fixed mass of the fluid to each point. 
Therefore, mesh moves as fluid flow progress. The kinetic 
Voronoi diagram is also very well-adapted to free-Lagrangian 
mesh as it can properly update the topology, connectivity, and 
physical parameters of the mesh elements when they change. 
 
This paper is a part of an ongoing research work that proposes a 
kinetic data structure for the simulation of 3D dynamic fields 
within GIS. In the research work, different issues regarding the 
development, implementation and application of such a data 
structure for the 3D simulation of fluid flow in hydrodynamics 
using Voronoi diagram have been studied. Although the 
preliminary results are very promising, there are several 
complexities related either to the data structure itself or to the 
nature of physical problem. Special attention is needed to 
address the problems of co-planarity of points and collision 
between moving points. These problems are more frequently 
present when the algorithm is implemented by floating-point 
arithmetic. Mesh resolution, boundary conditions and initial 
values are other important issues that have significant impact on 
the simulation results. All of these challenging problems are 
currently under investigation in the Geomatics research centre 
at Laval University.  
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