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ABSTRACT:

This paper discusses issues for matching point features in structure from motion, i.e., pose estimation and 3D reconstruction. As our
building block are image triplets for which matches can be checked also geometrically, we discuss the issues for triplets based on partial
or final results of a complete system for structure from motion. Particularly, we analyze and try to give answers to the following three
questions: Shall all good matches be used or only the best matches? Does covariance information help? and finally – Is least-squares
matching useful? We discuss the issues also from a theoretical point of view, but we mostly address them empirically by means of three
suitable, i.e., difficult examples, as we found that answers to the above questions are strongly tied to the characteristics of real data.

1 INTRODUCTION

Structure from motion or pose estimation and 3D reconstruction
or also short orientation relies on the correspondence of features
in the images. In most cases point features are matched, because
points fix two degrees of freedom.

This paper discusses several issues for matching points for struc-
ture from motion, especially important for wide-baseline setups.
They are particularly concerned with answering the following
three questions:

• Shall all good, i.e., also ambiguous, matches be used or only
the best matches?

• Does covariance information help?

• Is (relative) least-squares matching useful or are (sub-pixel)
point coordinates sufficient?

Our structure from motion procedure (cf. also (Mayer, 2005))
starts by generating image pyramids, extracting Förstner
(Förstner and Gülch, 1987) points at a resolution of about 100
× 100 pixels and matching them by means of cross correlation.
To deal with rotations in the image plane, we use the eigenvec-
tor of the structure tensor employed in the Förstner operator to
normalize the orientation of the patches before cross correlation.

All matches with a cross correlation coefficient (CCC) above an
empirically found loose threshold of 0.5 are then checked a sec-
ond time based on affine least-squares matching. For the resulting
matches a much more conservative threshold of 0.8 is used for
CCC and additionally only matches with an estimated accuracy
below 0.1 pixel are retained. Though we are able to deal with
uncalibrated data based on fundamental matrix and trifocal ten-
sor and a successive direct self-calibration, i.e., no approximate
values are needed, following (Pollefeys et al., 2004), we have re-
sorted to (at least approximately) calibrated cameras lately. All
examples of this paper rely on calibrated cameras and for them
we employ the 5-point algorithm (Nistér, 2004). To deal with
wrong matches, we use Random Sample Consensus – RANSAC
(Fischler and Bolles, 1981), the Geometric Robust Information
Criterion – GRIC (Torr, 1997), and after computing 3D structure
robust bundle adjustment (McGlone et al., 2004).

Once epipolar lines are known for image pairs, they are used to
restrict the search space when orienting triplets on the next high-
est level of the image pyramid. As there is no good and accepted
solution for the direct orientation of calibrated triplets yet, we
employ two times the five point algorithm, once from image one
to two and once from image one to three, both times fixing the
coordinate system and the rotations for the first camera. I.e., the
only information still unknown is the relative scale of the two 3D
models, which we determine as median of the distance ratios to
3D points generated from homologous image points. For images
beyond one Megapixel the triplets are oriented a second time on
the third highest level of the pyramid, this time taking into ac-
count the information about the orientation of the triplet in the
form of the trifocal tensor for matching.

For the triplets of a sequence orientation can be computed inde-
pendently from each other. This fact can be used to speed up pro-
cessing by distributing the different pairs and triplets to the avail-
able processor cores. First experiments with a quad-core have
shown a speed up of more than three compared to using only a
single core.

Once all triplets have been oriented, they are linked based on the
overlap between them and new points in appended triplets are
added to the set of points. To speed up the linking, it is done
hierarchically, leading from triplets to quadruples, sextuples, ten-
tuples, eighteen-tuples, etc. (double number minus an overlap
of two). The points of the oriented sequence are finally tracked
to the original image resolution. Examples show that this works
also for tens of images.

Concerning former work (Mikolajczyk et al., 2005) and (Miko-
lajczyk and Schmid, 2005) are of special interest. In (Mikola-
jczyk et al., 2005) different affine region detectors are compared
concerning their performance when changing viewpoint, scale,
illumination, defocus and image compression. (Mikolajczyk and
Schmid, 2005) compares the next step, namely local descriptors,
such as SIFT (Lowe, 2004) or PCA-SIFT (Ke and Sukthankar,
2004) concerning affine transformation, scale change, image ro-
tation, image blur, JPEG, and illumination changes. While all
these issues are important, they do only partially address the is-
sues posed in this paper. Particularly, (Mikolajczyk et al., 2005)
and (Mikolajczyk and Schmid, 2005) are both not interested into
the possibility to select a correct solution based on the achieved
accuracy, which we found to be a very efficient means for solving
challenging structure from motion problems. This is particularly
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addressed by our second and third question where we present the
effects of using highly accurately matched points and even co-
variance information. While (Mikolajczyk and Schmid, 2005)
shows, that in general SIFT-based descriptors work best, they
found that the CCC works nearly as well for a large overlap of
the patches, which we enforce by least-squares matching.

The remainder of the paper is organized according to the given
three issues. Thus in Section 2 we discuss if all good or only the
best matches shall be used. Section 3 addresses the importance
of covariance information and Section 4 the advantage of using
sub-pixel point coordinates versus relative coordinates generated
via least-squares matching. The paper ends up with conclusions.
Statistics given for the examples below pertains to ten trials each
if not stated otherwise.

2 ALL GOOD VERSUS BEST MATCHES

When matching point features between images the problem
arises, that there can be more than one valid match in terms of
a matching criterion such as thresholds on the CCC or the esti-
mated accuracy of the match of a given point in one image to
a point in another image. A typical example where this prob-
lem arises are images of facades with one type of window where,
e.g., all upper left corners, can be matched very well to another
in the other image. As one is moving when capturing the images,
particularly for windows behind the facade plane for which parts
are occluded depending on the perspective, the best match might
even be exactly the wrong window after moving.

In (Lowe, 2004) and (Mikolajczyk and Schmid, 2005) dealing
more with object recognition it is recommended to use a match if
it “unambiguous”, i.e., if there is no similarly good match mea-
sured by a ratio. We have found in numerous tests that for our
typical data with many facades of buildings this strategy is infe-
rior to a strategy where one uses only one, namely the best, match
for each point, which additionally has to be evaluated beyond a
given threshold, as there are often too few unambiguous matches
even for very high thresholds for the ratio.

In this paper we analyze a specific variety of this problem: Often
best matches are only checked in one direction using one image as
‘master” and the others as “slave” images, with multiple matches
in the slave images not being detected. We show the scale of this
problem for image triplets and also its possibly severe effect on
3D reconstruction.

Tab. 1 gives statistics for multiple matches for the three example
triplets used throughout this paper. The results are after least-
squares matching with thresholds for the CCC of 0.8 and for the
estimated accuracy of 0.1 pixel, with the best matches taken for
images 1 to images 2 and 3. While for the triplets Desk (cf. Fig. 5)
and House (cf. Fig. 6) the number of multiple matches from the
second or third image into the first image is relatively low, for
triplet Real (cf. Fig. 1) showing the Plaza Real in Barcelona
Spain, 187 out of 761 or nearly 25% of the points in images 2
and 3 map to two points in image 1. Additionally, there is a
lower, but still not neglectable number of points which map to
three and even up to five points in image one. Additionally, 52 of
the matches are multiple matches in image 2 as well as 3.

Fig. 1 shows the correct result for triplet Real if only the best
matches for all images, i.e., no multiple matches at all, are em-
ployed. The analysis of the effect of using only the best or all
good matches is done for the triplet Real for the calibrated triplets
on the second highest level of the pyramid as they are central
for solving the structure from motion problem: Once matches

Triplet Real Desk House
# matched points 761±7 331±6 238±10
double matches 187±8 377±3 39±2
triple matches 36±3 4±1 6±1

quadruple matches 5±1 0 1±1
quintuple matches 2±1 0 0

Double multi-matches 52±3 5±1 4±1

Table 1: Statistics for many-fold matches for three image triplets

have been checked by intersecting three rays for each point, in
most cases the orientation is either correct and the refinement is
straightforward, or the orientation is plainly wrong and there is
nothing to be done about it.

(a) Image 1

(b) Image 2 (c) Image 3

Figure 1: Triplet Real taken with 5 Megapixel Sony P100 camera
– Correct solution for “best matches only”. Accepted matches are
given as big blue points while all other points are shown as red
smaller points.

To gain more insight into the problem, we have devised three
experiments additionally to our standard strategy of using the best
matches, i.e., no multiple matches at all, for all images, namely
using all good matches, i.e., all matches with CCC > 0.8 and
estimated accuracy < 0.1 pixel after least-squares adjustment:

• for triplets, i.e., calibrated trifocal tensors, on the second
highest pyramid level only,

• for point pairs, i.e., essential matrices, on the highest pyra-
mid level only, and finally

• for pairs as well as triplets.

In all cases we match on the second highest level of the pyramid
1896 points in image 1, where we employ a local maximum sup-
pression scheme, against 4972 points in image 2 and 5604 points
in image 3. Tab. 2 shows the results. Basically, for our stan-
dard strategy of best matches nearly every time the correct result
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as checked by visual inspection of the resulting 3D model is ob-
tained. On the other hand, when using all, i.e., multiple, matches
in images 2 and 3 for pairs 1 and 2 and 1 and 3 as well as for the
triplet, we never obtained any correct result at all. The accepted
matches in Tab. 2 are the best matches produced by RANSAC
for the triplet with the best RANSAC solutions for the test run in
terms of their GRIC value polished by robust bundle adjustment.

given accepted σ0 failure
matches matches matches rate

best 471±4 128±16 0.12±0.02 <1%
all triplets 755±9 136±25 0.14±0.03 5%
all pairs 439±5 88±13 0.11±0.02 10%

all 777±8 151±13 0.16±0.01 100%

Table 2: Statistics for triplet Real on the second highest level of
the pyramid. Our standard strategy of using only the best matches
is compared to employing all possible matches for the triplet on
the second highest pyramid level, for the pairs on the highest
pyramid level, as well as for both. σ0 is the average standard
deviation after robust bundle adjustment.

Things are more complex if one just uses the best matches only
for pairs or only for triplets. The statistics are a little bit worse for
pairs than for triplets. Here, the image triplet Real is of particu-
lar interest because it shows the rare case of a repetitive structure
conspiring with the orientations of the cameras in a way, that two
very similar solutions can be obtained, only one of which is cor-
rect. More precisely, the clearly wrong solution in Fig. 2, where
points at the windows on a large part of the left facade in images
1 and 2 are mapped to points on a small part of the same facade in
image 3 has a very similar evaluation in terms of the GRIC value
as the correct solution. While the correct solution consists of 70
matches with an average standard deviation after robust bundle
adjustment σ0 of 0.141 pixel, the incorrect solution is made up of
67 matches with a σ0 of 0.144 pixel.

When using the best matches in the triplets only, the situation is
a little bit better. Yet, solutions as shown in Fig. 3 are neither
optimal nor stable as the 3D structure is mostly determined by
the fountain in the foreground.

Note: Very often random simulations help to find errors in the
modeling or in the program. Yet, sometimes errors occur due
to regularities in the data which are unlikely to be reproduced
by simulation. In the above case these are the regularities and
self-similarities of windows on facades which do not only lead
to wrong matches, as all windows look very similar, but also to
wrong configurations matching close-by windows in two images
to more distant windows in the third image.

3 VARIANCES VERSUS FULL COVARIANCE
MATRICES

The second question we address pertains to the usefulness of full
covariance matrices

[
σx σxy
σyx σy

]

describing error ellipses (cf. Fig. 4) versus reduced covariance
matrices

[
(σx + σy) · 0.5 0

0 (σx + σy) · 0.5

]
.

(a) Image 1

(b) Image 2

(c) Image 3

Figure 2: Incorrect solution for “all good matches for pairs” with
a GRIC value very close to a correct solution – points cf. Fig. 1.

We employ the covariance information in two ways: First, we use
them in the bundle adjustments for pairs and triplets. Addition-
ally, we improve with them the selectivity of the test in RANSAC
whether a point is an inlier. We basically use Phil Torr’s Geo-
metric Robust Information Criterion – GRIC (Torr, 1997) in the
form of the ratio of the squared residual e between measured and
reprojected point and the average squared error of the point σ,
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Figure 3: Correct, but sparse and unstable solution, as most
matches are on the fountain in the foreground, for “all good
matches for triplet” – points cf. Fig. 1

σ

σ
u

v

Figure 4: Error ellipse modeled by full covariance matrix with
large and small semi-axes σu =

√
λ1 and σv =

√
λ2, λ1 and λ2

being the eigenvalues of the covariance matrix. For a given dif-
ference vector the part of the error in its direction as determined
by the intersection of its normal tangential to the ellipse is shown
in bold.

i.e., e2

σ2 . But instead of the average error, we compute from the
particular error ellipse the part of the error in the direction of the
difference vector (cf. Fig. 4).

Obviously, full covariance information for the 2D points is only
useful if the error ellipse is not circular. Also, if the ellipse is
aligned with the coordinate axes and the direction of movement,
which is the case for forward or sideward moving triplets or se-
quences, its influence on the result is still low. This is especially
true as we only extract points with a not too elliptical error ellipse,
i.e., points which are not too line-like.

In Tab. 3 statistics are given for the ratio of the semi-axes of the
error ellipses σu and σv (cf. Fig. 4) for all three example triplets
of this paper. The minima show, that there is basically no ab-
solutely circular ellipse. Yet, the rest of the values leads to the
conclusion that most ellipses are not extremely elliptical with av-
erages below or even well below 2 for partly very large maxima
(we note that the maxima are for hundreds of points).

σu/σv µ σ min max
House 1.69 0.77 1.05 41.2
Desk 1.56 0.65 1.05 66.1
Real 1.97 0.93 1.03 97.9

Table 3: Statistics for the ratio of the semi-axes σu and σv of the
error ellipse (cf. Fig. 4)

To show the possible impact of the covariance information, we
use a scene taken with a low-quality digital camera in a mobile
phone (Sony Ericson K550) with a 2 Megapixel Sensor and a
lense diameter of about 2 mm. We rotated the camera two times

with about 45◦. Fig. 5 shows the triplet as well as a visualiza-
tion of the 3D result. Even though the quality of the images is
relatively low due to the weak contrast of the camera with its tiny
objective, the result is still very reliable.

(a) Image 1

(b) Image 2 (c) Image 3

(d) 3D model

Figure 5: Triplet Desk taken with rotated 2 Megapixel Sony Er-
icson K550 mobile phone camera – points cf. Fig. 1; green pyra-
mids in the 3D model symbolize the camera positions.

Tab. 4 shows a comparison in the form of several characteristic
values for the case of reduced and full covariance matrices, this
time for the triplets on the third highest level of the pyramid, i.e.,
points before tracking, and after tracking the points down to the
original 2 Megapixel resolution. One can see that when using the
full covariance matrices not only significantly more points are
accepted and tracked down to the original resolution, but also the
average standard deviation σ0 of the final bundle adjustment is
slightly better.

4 POINT COORDINATES VERSUS LEAST-SQUARES
MATCHING

The final question we address concerns the usefulness of the addi-
tional information from least-squares matching compared to sub-
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reduced full covariance

# points before tracking 192±10 227±3
# points after tracking 178±8 206±3

σ0 [pixel] 0.45±0.01 0.43±0.01

Table 4: Statistics for triplet Desk employing full and reduced
covariance information

pixel coordinates from point extraction according to (Förstner
and Gülch, 1987).

More specifically, we analyze the influence of the improvement
of the relative coordinates by means of least-squares matching
of 9 × 9 patches in the reference image employing affine, i.e.,
six parameter, transformation for the geometry and bilinear in-
terpolation for resampling. To do so, we compare on the second
highest level of the pyramid the orientation of triplets for a re-
ally wide-baseline triplet (cf. Fig. 6(e) view from top). The basic
statistics can be found in Tab. 5. It shows, that the least-squares
matching results into more points with a much better accuracy.

matched points σ0

Förstner points only 28±3 0.27±0.03
+ least-squares matching 41±8 0.11±0.01

Table 5: Statistics for triplet House employing only the coor-
dinates of the Förstner points or additionally also least-squares
matching

The high accuracy of the matched points also translates into a
meaningful solution (cf. Fig. 6). On the other hand, Fig. 7 shows
a typical result if only the Förstner points are employed. It is de-
teriorated in a way that it is not useful any more. In not much
more than 10% of the trials an at least approximately correct re-
sult could be obtained, comprising still only 40 to 50 points com-
pared to on average about 125 points for the correct solution for
the triplet. The average standard deviation of the final bundle
adjustment is 0.5 to 0.7 pixel, compared to 0.16 pixel for the cor-
rect solution using relative coordinates produced by least-squares
matching.

Concerning the correct result please note, that one deficit of our
approach is, that it is not scale invariant. This means, the match-
ing only works for those regions in the images, where the scale is
similar, i.e., the scale difference is smaller than 20 or 30%. Yet,
this deficit stems only from the basic correlation step. The least-
squares matching could (naturally) also deal with larger varia-
tions, as long as it obtains an estimate of the scale difference.
At least we have shown that we can cope with in-plane rotations
(cf. example Desk above).

The 3D model for the whole sequence (cf. Fig. 6(d) and 6(e))
consisting of six images shows, that even for this complex wide-
baseline setup it is possible to obtain fully automatically a highly
accurate 3D representation. It consists of 2186 3-fold, 115 4-
fold, 134 5-fold, and 14 6-fold points and the average standard
deviation σ0 is 0.15 pixel.

5 CONCLUSIONS

We firstly have shown that it can be important to use only the best
matches and not all possible matches. This is mostly due to the
ambiguity of multiple matches.

While we have presented evidence, that the 2D covariance infor-
mation from least-squares matching can be helpful for matching,
we note, that this is valid only when the images are rotated rel-
ative to each other. When employing least-squares matching it

(a) Image 3

(b) Image 4 (c) Image 5

(d) 3D model for whole sequence of six images

(e) 3D model – view from top

Figure 6: Sequence House taken with 5 Megapixel Sony P100
camera – Correct result for images 3, 4, and 5 when employing
least-squares matching – for points and pyramids cf. Fig. 5

is not much effort to consistently use the covariance information
throughout the process for the acceptance of matches as well as
for bundle adjustment, but also the gain is often not very big.
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(a) Image 3 (b) Image 5

(c) Image 4

Figure 7: Incorrect result for images 3, 4, and 5 of Sequence
House without least-squares matching; the error is mainly in im-
age 5 – for points cf. Fig. 1

On the other hand, this does not pertain to 3D covariance infor-
mation, which can also be obtained reliably from reduced 2D co-
variance matrices. 3D covariance can be extremely useful par-
ticularly for smaller baselines where the accuracy in the depth
direction can be much worse than in the other two directions.
For decisions such as the determination of planes from 3D points
based on RANSAC, it can be very helpful to employ 3D covari-
ance information.

We have finally shown, that for more difficult examples it is not
enough to use the coordinates of points, even if they are sub-pixel
precise. Thus, we recommend to use least-squares matching as
the final step of the determination of homologous points.

Concerning future work we particularly think about dealing also
with scale differences. Here, the SIFT feature extractor (Lowe,
2004) is very attractive due to its speed. Once an estimate of
scale (difference) and orientation is available, we plan to use our
least-squares matching approach. Additionally, our success with
determining the rotation for the Förstner point operator has in-
spired us to think about using it also to determine the relative
scale. While scale-normalization can be done by means of scale-
space theory (Lindeberg, 1994), the issue is efficiency.
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