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ABSTRACT:

In recent years real time active 3D range cameras based on time-of-flight technology using the Photonic-Mixer-Device (PMD) have
been developed. Those cameras produce sequences of low-resolution depth images at frame rates comparable to regular video cameras.
Hence, spatial resolution is traded against temporal resolution compared to standard laser scanning techniques.
In this work an algorithm is proposed, which allows to reconstruct the camera path of a moving PMD depth camera. A constraint
describing the relative orientation between two calibrated PMD depth images will be derived. It will be shown, how this constraint can
be used to efficiently estimate a camera trajectory from a sequence of depth images in real-time.
The estimation of the trajectory of the PMD depth camera allows to integrate the depth measurements over a long sequence taken from
a moving platform. This increases the spatial resolution and enables interactive scanning objects with a PMD camera in order to obtain
a dense 3D point cloud.

1 INTRODUCTION

Real time active 3D range cameras based on time-of flight tech-
nology using the Photonic-Mixer-Device (PMD) like the Zess
MultiCam (cf. (Kraft et al., 2004)) depicted in figure 1 have
been developed in recent years. Those cameras produce low-
resolution depth images at high frame rates comparable to regular
video cameras. Hence, spatial resolution is traded against tempo-
ral resolution in this systems compared to standard laser scanning
techniques. The high frame rates make it also possible to move
those PMD depth cameras around in space and acquire 3D data
interactively. However, in order to make use of the measured 3D
range data the trajectory of the camera has to be estimated. In this
work an algorithm will be presented, that allows to estimate such
a trajectory in real-time based solely on the depth measurements
from a calibrated PMD depth camera.

Most previous work on estimating the trajectory of a moving
PMD camera is based on external sensors other than the depth im-
ages themselves. Because the frame rates are comparable to reg-
ular video cameras, many people (cf. (Beder et al., 2007b), (Kuh-
nert and Stommel, 2006), (Streckel et al., 2007) and also (Prusak
et al., 2007)) have combined the PMD camera with classical op-
tical cameras and use classical photogrammetric techniques for
the task of estimating the trajectory of the system. In (Huhle et
al., 2007) a combined energy function using 3D point registration
as well as intensity information from an attached optical camera
is proposed for the task of estimating the trajectory. In contrast
to this we use only the depth information from the PMD camera
here.

Registration of point clouds is classically performed using the It-
erative Closest Points (ICP) algorithm (cf. (Zhang, 1994)). This
has been used for estimating the relative pose of PMD cameras
in (Fuchs and May, 2007). However, while being very closely
related to our approach, the ICP algorithm minimizes distances
in 3D space. In contrast to our approach, this does not capture

Figure 1: The Zess MultiCam PMD camera. Modulated infrared
light is emitted from the front ring and the depth is measured
using the Photonic Mixer Device behind it. The resolution is 64×
48 pixels and the opening angle is approximately 18◦ × 14◦.

the uncertainty structure of PMD depth images being a fixed 2D
grid and measuring only depths. Assuming those depth measure-
ments to be disturbed by Gaussian white noise our approach is
the maximum-likelihood-estimate of the relative transformation.
Furthermore, our approach directly makes use of the fixed 2D
topology of the range image allowing efficient real-time process-
ing of the data.

A crucial point for our algorithm to work is the accurate calibra-
tion of the PMD camera. Such calibration methods have been
presented for instance in (Kahlmann et al., 2006) and (Lindner
and Kolb, 2006). The calibration method we used has been pre-
sented in (Beder and Koch, 2007). The achievable accuracies of
a current PMD camera have been studied in (Beder et al., 2007a).

This work is structured as follows. In the next section a geo-
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metric model for a pair of calibrated PMD depth cameras will be
proposed and a constraint between two such depth image views
will be derived. Next it will be shown, how the Taylor expansion
of the presented constraint can be efficiently computed from the
range images and an efficient estimation scheme for computing
the relative rotation and translation between two depth images
will be presented. Finally we will show some results on real and
synthetic image sequences using the proposed approach.

2 CAMERA MODEL

In the following the underlying geometric camera model for a
pair of calibrated PMD depth camera will be presented. There-
fore we will assume that the PMD depth image is rectified such
that all non-linear distortions are compensated, i.e. lines in the
scene are projected into lines in the image. Furthermore we will
assume, that the remaining five linear calibration parameters are
known and collected in the upper triangular matrix K1. Assuming
without loss of generality the coordinate system to be centered
at the first reference camera, scene points project to an image
position in this camera according to the following homogeneous
equation (cf. (Hartley and Zisserman, 2003, p.157) and (Mugnier
et al., 2004, p.225))

x1 ∝ K 1X (1)

In contrast to classical optical cameras, each pixel in a calibrated
PMD image corresponds to a metric depth λ1, so that the above
equation may be inverted. Hence, the corresponding 3d point X
is obtained for each depth pixel as

X = λ1
K−1

1 x1√
xT

1K−T
1 K−1

1 x1

(2)

Now we consider a second PMD depth image taken from a dif-
ferent viewpoint. A scene point is projected to an image position
according to the homogeneous equation (cf. (Hartley and Zisser-
man, 2003, p.157) and (Mugnier et al., 2004, p.225))

x2 ∝ K 2RT(X −C) (3)

where the calibration parameters for this view are collected in the
matrix K2 and the position of the camera is given by a translation
vector C and a rotation matrix R. This translation and rotation is
about to be estimated in the following.

Again this equation is invertible, so that a 3d point is obtained
from each depth pixel λ2 according to

X = λ2
RK−1

2 x2√
xT

2K−T
2 K−1

2 x2

+ C (4)

Setting equation (2) equal to equation (4) yields

λ1
K−1

1 x1√
xT

1K−T
1 K−1

1 x1

= λ2
RK−1

2 x2√
xT

2K−T
2 K−1

2 x2

+ C (5)

Furthermore we substitute equation (2) into equation (3) yielding

x2 ∝ K 2RT

(
λ1

K−1
1 x1√

xT
1K−T

1 K−1
1 x1

−C

)
(6)

Finally substituting equation (6) into equation (5) yields the con-
dition

λ1
K−1

1 x1√
xT

1K−T
1 K−1

1 x1

(7)

= λ2

λ1
K−1

1 x1√
xT
1K−T

1 K−1
1 x1

−C√
λ2

1 − 2λ1
CTK−1

1 x1√
xT
1K−T

1 K−1
1 x1

+ CTC

+ C

Note, that λ2 is dependent on x2 and hence on R and K 2 via
equation (6). Next we will simplify this equation.

Denoting the normalized direction of the optical ray with

m1 =
K−1

1 x1√
xT

1K−T
1 K−1

1 x1

(8)

the condition simplifies to

(λ1m1−C) =
λ2√

λ2
1 − 2λ1C

Tm1 + CTC
(λ1m1−C) (9)

from which we finally deduce the following constraint

λ2 =

√
λ2

1 − 2λ1C
Tm1 + CTC (10)

This equation encapsulates the constraints a consistent pair of
PMD depth images taken from a rigid scene must fulfill. In the
following we will devise an algorithm, which uses this constraints
for the estimation of the relative pose between two such PMD
depth images. In the next section it will be shown, how this con-
straint may be linearized followed by a section describing how to
estimate the relative translation and rotation using the constraint.

3 LINEARIZATION

We will now show, how the constraint (10) can be linearized in
order to enable an efficient estimation scheme. Therefore we
rewrite it as implicit equation

g = λ2[x2]− f = 0 (11)

with

f =

√
λ2

1 − 2λ1C
Tm1 + CTC (12)

We start by looking at the first part of the equation being the 2d
depth image λ2[x2]. Because equation (6) gives x2 as a homo-
geneous 3d vector, we introduce the 2d normalization function

h

[(
u
v
w

)]
=

1

w

(
u
v

)
(13)

which returns the corresponding Euclidean 2d vector, so that we
can re-write λ2[x2] = λ2[h[x2]] in terms of the homogeneous
3d vector x2.

The Jacobian of the 2d normalization function h is given by (cf.
(Beder, 2007, p.56))

Jh[x] =
∂h[x]

∂x
=

1

w

(
I2 − 1

w

(
u
v

) )
(14)

so that the any derivative of the depth image λ2 may be com-
puted using the gradient depth image ∇λ2 and the correspond-
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ing derivative of the homogeneous vector x2 by simply applying
chain rule

∂λ2

∂· = ∇λ2[x2]Jh[x2]
∂x2

∂· (15)

Now using the Taylor expansion of the rotation (cf. (Förstner and
Wrobel, 2004, p.53))

R ≈ R0 + S[r] (16)

with the skew symmetric matrix

S

[(
ω
φ
κ

)]
=

(
0 −κ φ
κ 0 −ω
−φ ω 0

)
(17)

the partial derivatives of equation (6) after the parameters r and
C as well as after the observations λ1 are straightforward

∂x2

∂C
= −K 2RT (18)

∂x2

∂r
= K 2S[λ1m1 −C] (19)

∂x2

∂λ1
= K 2RTm1 (20)

and can be inserted into equation (15).

Finally we note that the derivatives of f are easily computed as

∂f

∂C
=

CT − λ1m
T
1

f
(21)

∂f

∂r
= 0T

3 (22)

∂f

∂λ1
=
λ1 −CTm1

f
(23)

so that putting everything together the Taylor expansion of equa-
tion (11) at C, r and λ1 is given by

g ≈ g0 + aT

(
Ĉ −C
r̂ − r

)
+ b(λ̂1 − λ1) (24)

using the following Jacobians

aT = ∇λ2[x2]Jh[x2]K 2

(
−RT S[λ1m1 −C]

)
−
(

CT−λ1mT
1

f
0T

3

)
(25)

and

b = ∇λ2[x2]Jh[x2]K 2RTm1 −
λ1 −CTm1

f
(26)

Finally we introduce the observed depth λ1 and augment equation
(24) as follows

g ≈ g0 + aT

(
Ĉ −C
r̂ − r

)
+ b(λ̂1 − λ1 + λ1 − λ1) (27)

Setting this augmented equation equal to zero yields the linearized
constraint equation required for the estimation using the Gauss-
Helmert-Model (cf. (Förstner and Wrobel, 2004, p.83))

aT∆̂p + bv̂ = cg (28)

with the parameter update being

∆̂p =

(
Ĉ −C
r̂ − r

)
(29)

the residual being
v̂ = λ̂1 − λ1 (30)

and the contradiction being

cg = −g0 − b(λ1 − λ1) (31)

In the following section we will show, how this linearized con-
straint equation can be used to efficiently estimate the translation
and rotation between the views.

4 ESTIMATION

In this section the linearized geometric model of the calibrated
PMD depth image pair will be used to devise an efficient iterative
estimation scheme for the unknown translation C and rotation R
between the two views from the depth observations λ1i given by
the pixel values of the first PMD depth image.

We will assume that the motion between successive frames is
small, so that we may begin with an initial linearization point

C = 03 (32)

and
r = 03 (33)

If external knowledge about the motion is available, e.g. from
external sensors, it could be used here as well. However, as the
frame rate of current PMD cameras is at about 15 Hz, the above
assumption is usually sufficient for initialization.

Furthermore we initialize the linearization point of the depth val-
ues with the observed values from the camera

λ1i = λ1i (34)

Given a standard deviation σi for each observed depth value λ1i,
the best linear unbiased estimate for the motion parameters may
be obtained by iterating the following equations until conver-
gence.

First the parameter update is computed as (cf. (Förstner and Wro-
bel, 2004, p.86))

∆̂p =

(
N∑
i=1

aia
T
i

σ2
i b

2
i

)−1 N∑
i=1

aicgi

σ2
i b

2
i

(35)

Observe, that for this normal equation matrix to be non-singular,
sufficient depth gradient has to be present in the images.

Using this parameter update we may also update the estimated
residuals as

v̂i =
cgi − aT

i ∆̂p

bi
(36)

From this the new linearization point is obtained as(
C(ν+1)

r(ν+1)

)
=

(
Ĉ

(ν)

r̂
(ν)

)
=

(
C(ν)

r(ν)

)
+ ∆̂p (37)
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Figure 2: First depth image of the test sequence showing the dis-
tances to an office chair at approximately 4m.

and
λ1

(ν+1)
i = λ̂1

(ν)

i = λ1i + v̂i (38)

This process is iterated using the updated Jacobians until con-

vergence yielding an estimate for the translation Ĉ
(ν)

and the
rotation r̂

(ν).

Finally the covariance matrix of those estimated parameters is
given by (cf. (Förstner and Wrobel, 2004, p.86))

Σ =

(
N∑
i=1

aia
T
i

σ2
i b

2
i

)−1

(39)

Given an image sequence, the translation and rotation can be es-
timated between successive frames as shown above. Those trans-
formation can now be accumulated over a whole sequence of
depth images yielding the trajectory of the depth camera.

5 RESULTS

In order to demonstrate the feasibility of the above approach we
took an image sequence with a ZESS MultiCam PMD camera
depicted in figure 1. This camera produces depth measurements
at a resolution of 64 × 48 pixels at 15 Hz. The opening angle of
the optics is approximately 18◦×14◦. The camera was calibrated
using the approach presented in (Beder and Koch, 2007).

The sequence comprises of 100 depth images of an office chair
approximately 4m in front of the camera. The first image of the
sequence is depicted in figure 2 the last picture of the sequence is
depicted in figure 3.

In figure 4 the 3D points and camera position from the first image
are shown. The 3D point cloud comprises of only 64×48 = 3072
points. As the camera moves each new frame yields 3072 new
3D points. The point cloud remains registered, as the trajectory
is estimated along the sequence. In figure 5 the 3D point cloud
together with the camera trajectory after 20 frames is shown. The
final point cloud and camera trajectory is depicted in figure 6.
The 3D point cloud now comprises of 100 × 3072 = 307200
points after approximately 7 seconds at 15 Hz.

It can be seen, that by integrating measurements over time the
spatial resolution can be increased by reducing the temporal res-
olution. Because the PMD camera needs to be moved to achieve

Figure 3: Last image of the sequence comprising of 100 images.
The camera was moved to the left and kept focused on the office
chair.

Figure 4: Camera pose and 3D point cloud obtained only from
the first depth image. The image is showing a view of the office
chair from behind and toward the camera. The point cloud is still
very sparse comprising of only 3072 points.

Figure 5: Intermediate 3D point cloud and camera trajectory. The
point cloud has become more dense due to the movement of the
PMD camera.
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Figure 6: Final 3D point cloud after 100 images now comprising
of 307200 points. The camera trajectory is shown as well.

Figure 7: First and last depth image of the synthetic test sequence.
It shows a rectangular corner at a distance of 3m in front of the
camera, which is moved 4m to the right keeping the corner cen-
tered.

this goal, the trajectory has to estimated in order to keep the 3D
points registered consistently.

The trajectory estimation proposed here is based on subsequent
estimation and accumulation of the camera movement. In con-
trast to an overall adjustment this approach enables real-time on-
line processing of the sequence but also leads to the accumulation
of errors. To quantify this effect of error accumulation we gen-
erated a synthetic test sequence comprising of 200 images of a
single rectangular corner. The corner was set at a distance of 3m
in front of the camera and the camera was moved over 100 frames
4m to the left keeping the corner centered. Then the camera was
moved back on the same path for another 100 frames, so that the
final position was again at the starting point. The first and last
depth image of the half camera path are shown in figure 7 and the
3D setup of the first half of the sequence is depicted in figure 8.

Now we added Normal distributed white noise to the depth im-
ages of the sequence and compared the estimated starting posi-
tion and the end position of the cameras, which should coincide.
In figure 9 the distances between the first and last camera pose
are plotted against the variance of the image noise. As expected
the accumulated error after 200 frames increases with increasing
depth image noise. It can be seen, that for noise levels below
σ2 = (15cm)2 = 0.0225m2 the position error is below 10cm
and the rotation error is below 5◦ for an object at 3m distance
to the camera. This accuracy seems reasonable for our real-time
approach, but could be improved by an overall adjustment also
incorporating other sensors than the PMD depth camera.

6 CONCLUSION

We have presented an algorithm for the real-time estimation of
the trajectory of a freely moving calibrated PMD depth camera.

Figure 8: The 3D setup of the synthetic corner test sequence. The
corner is 3m in front of the camera. Then the camera was moved
to the right 4m keeping the corner centered and then back again,
so that the final pose of the camera should coincide with the first.
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Figure 9: Distances of the first and last frame of the synthetic test
sequence plotted against the variance of the image noise. Top:
Distance between the projection centers of the two cameras. Bot-
tom: Angular distance between the viewing directions of the two
cameras.
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A constraint between two such calibrated depth images has been
derived and it has been shown, how this constraint can be used
to efficiently compute the maximum-likelihood-estimate of the
relative translation and rotation between the views. Results on
real-time interactive acquisition of 3D data using a freely mov-
ing PMD camera have been presented. By estimating the trajec-
tory and thereby registering the acquired 3D data the high tempo-
ral resolution of the PMD camera allows to interactively acquire
dense 3D point clouds.

The major drawback of the presented approach relying solely on
the depth data is the fact, that sufficient depth gradient has to be
present in the images. As PMD cameras have to actively illumi-
nate the scene, their field of view is usually designed to be very
narrow so that it is quite likely, that no scene structure is visible
in the current view. In this case our approach fails. Furthermore,
the noise level of current PMD cameras is still very high. This
poses major difficulties for our approach, because we assume that
the gradient depth image can be computed, which might turn out
to be very difficult for low-resolution images with bad signal-to-
noise ratio.

Our future research will aim at circumventing those drawbacks.
For instance the presented approach is very well suited to be in-
tegrated into a Kalman filter. This would allow to smooth the
estimated trajectories using a prediction model and thereby also
overcome regions of low depth gradient. Furthermore, as our ap-
proach is based on the maximum-likelihood-estimation using the
Gauss-Helmert-Model, this allows to integrate other sensors such
as video cameras and inertial sensors in a straightforward and
mathematical rigorous manner.
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