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ABSTRACT:

Global algorithms currently represent the state-of-the-art in dense stereo matching. These methods first set up an energy function.
The energy function is then subject to optimization, which is typically achieved via graph-cuts or belief propagation. In this paper,
we concentrate on the energy modelling aspect. An experimental study that focuses on the role of colour in stereo energy functions
is presented. We evaluate the performance of various forms for using colour and compare it against grey-scale matching. Colour is
thereby represented in nine different colour systems. [Tihend L. distances are evaluated for computing the colour differences in the
selected systems. We embed the resulting energy functions into two stereo algorithms and test them on 30 ground truth test image pairs.
The results of our benchmark show that colour information, in general, leads to a significant performance gain over using intensity only.
According to our evaluation results, the selection of the applied colour space is of specific importance in global stereo matching.

1 INTRODUCTION is obviously resolved by using the colour information.

During the last couple of years, global stereo approaches hav(lgur work is mot!vated by the observation th‘."‘t a lot of stereo re-
Pearchers still simply convert the stereo pairs to grey-scale im-

gained increased attention in the stereo vision community fo ) . . i
their excellent performance in stereo algorithm evaluation stu ages, although colour is typically available (Mayer, 2003). Since

ies such as the Middlebury Benchmark (Scharstein and Szelislﬁt is unclear if colour shows positive effects when using global

2002). These methods formulate the stereo problem in terms anethods, the colour information is thereby often discarded delib-
an enérgy function, which is typically in the fofm of erately. Therefore, this work concentrates on two questions. First,

does colour help to improve the performance of global stereo
E = Eyura + Eamooth. (1)  Matching approaches? Second, in which form should colour be

used to maximize the algorithms’ quantitative performance?
Here, the data termv,.+, assesses the agreement of the disparity

solution with the input images by computing a match measurel-n the context of prior work, colour evaluation studies have al-

ment, while the sSmoothness ter, ..., imposes a penalty on ready been conducted in (Okutomi and Tomita, 1992, Koschan,

. : . . : . : : 1993, Chambon and Crouzil, 2005). All of these studies are re-
spatially neighbouring pixels carrying different disparity labels. stricted to local methods (window-based correlation), and a corre-

There has been a significant amount of work on minimizing the>Ponding study for global algorithms is still missing. Some exper-
energy of (1), which is nowadays typically accomplished using'me”ts _focusmg on_dlfferent m_atc_h measurements have been re-
graph-cuts (Boykov et al., 2001) or belief propagation (Sun eported in (Scharstelr_l and Szellskl, 2002). The role of golour ha}s,
al., 2003). However, it has often been overlooked that the energgowever, not been investigated. Two stereo evaluation studies
functions under consideration might represent suboptimal modeld2ve also appeared very recently. As opposed to our work, they
for the stereo problem. For example, (Meltzer et al., 2005) hav@ddress radiometric invariant dissimilarity measurements
shown that, despite the NP-hardness of their optimization proptHirschmller and Scharstein, 2007) and different aggregation
lem, an exact optimum can be obtained for some standard bencft€thods in local stereo (Wang et al., 2006).

mark stereo pairs using reweighted message passing. Neverthgre remainder of this paper is organized as follows. We start by
less, even the global energy minimum has led to disparity mapg,rmylating the energy functions evaluated in this paper in section
that show relatively large errors in comparison to the ground truthy * gection 3 then presents two stereo algorithms that incorporate
image. This clearly indicates that real progress in global stereg,qse energy functions and are used in this benchmark. Section 4

matching can rather be achieved by improving the energy funcyeqents the test data and provides details on the disparity com-
tions than by concentrating on the optimization component. putation. Finally, we report our results in section 5.

The contribution of this paper lies in a systematic evaluation study
on stereo energy functions. We thereby focus on the role of colour 2 ENERGY FUNCTIONS

in the energy functions’ data terms. The intuition why colour in- ) ] )

formation should lead to an improved energy model over usind-et Z denote the set of all pixels in the left image a@hde the
intensity information only is relatively clear. Colour is expected Set of allowed disparity labels. A disparity solutiéhmaps each
to reduce one of the major problems in stereo matching, namelpixel p € 7 to a disparityd, € D. The goodness of a disparity
matching ambiguity. For example, suppose that we are solelj"apD is evaluated by an energy function, which we define by
using the intensity information in the matching process. Then a

red pixel of the left image matches a green point and the correct ~ E(D) =Y _m(p,p—dp)+ > s(dp,dy).  (2)
red pixel of the second view equally well, if the red and green peL (p.p")eN

colours both project to the same intensity value. This ambiguity
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Here,m(p,p — d,) is a function that computes the colour dis- | Name | Definition |
similarity between a pixep and its matching poinp — d,, in X 0607 a7 0900 R
the second view. The smoothness functign,, d,,) penalizes vz v | = ’ - ’ a
. . . . . . " = 0.299 0.587 0.114
neighbouring pixels that are assigned to different disparities. The - i
neighbourhood structur¥ thereby contains all pixel paitg, p’) z 0-0000.066 1116 B
of the left view withp andp’ being spatial neighbours in four- 1 .
connectivity. The functions:(-) ands(-) of data and smoothness = {116 (Y/Yw)¥ —16 i Y/Yw > 0.01
terms are defined in the following. 903.3 Y/Ya otherwise
Lov U =13L(u —u,) With v’ = +585=57
2.1 Data Term V = 13L(v — v{_u) with o = % Xo,
The data term is the subject of our study. This term computes Yu, Z.: white reference components
the colour dissimilarities between corresponding pixels in a pre A =500(f(X/Xw) — f(Y/Yw))
defined colour space. The choice of the colour system thereb B =200(f(Y/Yw) — f(Z)Zw))
has direct influence on the estimation of the data term. Thisig LAB 21/3 if z > 0.008856
why, apart from using intensity information only, we evaluate the f(x) = {7 787 + 18 otherwise
performance of nine different colour systems. The investigated O Ti6
colour spaces are categorized into A % % % R
e Primary systemsRGB and XY Z; AC1Cy G = £ =5 o G
e Luminance-chrominance system&UV, LAB, AC1Cq Ce = 1 B
andY C1C5; 1 1 1
Y 3 3 3 R
e Perceptual systemsi ST, YC,Cs o =1 F F Iel
e Statistical independent component system:-/; and & 0 =B B B
Hi1H>Hs.
Table 1 plots corresponding conversion formulas. For the refer 1= W, S=1- 3%
ences associated to each colour system, the reader is referred|to arccos Hy ftB<Q
(Chambon and Crouzil, 2005). HSI H= 9 — arccos H other;vise
We evaluate two difference measurements in order to compute the H, = (R—G)+(R—B)
pixel dissimilarity in a given colour space. The first one isthe 2y/(R-G)2+(R—B)(G-B)
distance, which represents the summed-up absolute differences - - n
of colour channels. The corresponding dissimilarity function is I 3 3 3 R
defined by ey s Is — % 0 —71 G
)= Y Ipi—ail 3 Is =L =1 B
1<i<3
with p and ¢ being pixels of the left and right images, respec- HiHoH gl _ i jl 8 g
. . . . 1412113 2 —
tively. The subscript denotes théth colour channel in the se- I, -1 g =t B
lected colour system. As a second difference measurement, we 2 2

compute thel.» distance. This represents the Euclidean distancerable 1: Conversions from RGB to the investigated colour spaces.
between two points in the colour space. In this case, the dissimi-

larity function is given by ative effects of image sampling on the disparity reconstruction
performance. We modify this measurement to make it applicable
on colour pixels. We therefore compute the colour values of a
pixel p~ that lies in betweep and its spatially left neighbout’ .

) ) This is accomplished by linear interpolation so that
There are two exceptions where the difference measurements of

equations (3) and (4) are not suitable. First, for grey-scale match-
ing, we define the dissimilarity function as

4)

> (pi—a)?

1<i<3

2 (p,q) =

- pi +pé
CT2

(5)  with the subscript being theith channel in the chosen colour

system. Analogously," is determined as the colour point that is
with the subscript’ denoting the intensity channel. Second, for located betweep and its right neighboup”. For symmetry, we
the H ST space, we adopt the measurement proposed by (Koschaflso compute;~ andg™ for the matching poing in the second

1<i<3 @)

£ (p,q) = lpr — ai

1993). This measurement is computed by

1751 (p,q) = /(b1 — a1)? + % + @3 + 2psas cos O
g— | Ipa—anl it |prr —qu| <7 ©
27 — |py — qu| otherwise

Here, the subscriptd, S and denote the corresponding colour
channels of thé? ST system.

view. The final functionn(p, ¢) of equation (2) is then given by

m(p,q) = min(f(p,q).f(p~,q), f(p",q),

fp,a7), flp,a™))

with f(-) being one of the difference functions in equations (3-6)
that is suitable for the selected colour space. Our energy func-
tions differ in the wayf(-) is computed. Using two difference
measurements for eight different colour systems and a single dis-

(8)

As a final step in the calculation of the data term, we apply thetance measurement f6frey andH ST, this sums up to 18 energy
measurement of (Birchfield and Tomasi, 1998) to reduce the nedunctions investigated in this study.
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2.2 Smoothness Term

Thesmoothness term of our energy function is implemented as a
modified version of the Potts model. It is better suited for han-
dling slanted surfaces than the standard Potts model. We define
the smoothness functior{d,, d,/) of equation (2) by

O |f dp == dpl
s(dp,dp) =q P if|dp —dp| =1 (9)  Figure 1: Trees applied by the DP method for a single pixel
Py otherwise p. Nodes represent image pixels, while edges indicate that the

. . ) . smoothness functios(-) operates between adjacent pixels.
with P; and P, being user-defined penalties. A small pendhy

serves to penalize small jumps in disparity that do not exceed a 4 TEST DATA AND DISPARITY COMPUTATION

value of one pixel.P; is motivated by the fact that the standard

Potts model tends to overpenalize such small jumps and consgigure 2 shows the test image pairs along with the corresponding
guently performs poorly in the reconstruction of slanted surfacesground truth images that are used in our study. All images are
The second penalty% with P, > P accounts for penalizing taken from the Middlebury Ground Truth Database (Scharstein
large jumps in disparity. Such jumps occur at the disparity bor-and Szeliski, 2002, Hirschmiiller and Scharstein, 2007). Our test
ders. In order to align disparity discontinuities with the edgesdata includes the four stereo pairs that are currently used in the
of the reference view, we vary the value Bf depending on the Middlebury Benchmark (Tsukuba, Venus, Teddy and Cones). We

colour gradient. This is accomplished by refer to these image pairs as the 2003 sets. In addition, we in-
, . , clude six stereo pairs of the 2005 data sets and 20 pairs of the

Py = { Paj Py if Z1§_i§3 Ipi —pi| <T (10) 2006 sets. This sums up to 30 test pairs, which provides a rea-

Py otherwise sonable amount of test data. The images of the 2005 and 2006

N . sets have been generated to be more challenging than those of the
The colour gradientis thereb_y cemputed in RGBspaqe. Throug 2003 sets that can virtually be regarded as solved. This is why
ggt Ic;ur test truns, ;’t\(e us]%? flxtcagg\//aluedqf Z}QragqlT 1S ?.Gt ti algorithms produce high error percentages on the new test sets.
- Farameter setlings 164 and.™; are diSCussed In SEClon 2. tpage data sets should therefore be well suited to discriminate
the performance of different colour methods.

3 STEREO ALGORITHMS A crucial point when using global stereo methods is parameter

) ) ) . tuning. For our energy functions, we have to find appropriate
We embed the energy functions of section 2 into two dlﬁerent\,a|ues for the parametefd and P;. These parameters balance

stereo algorithms. Optimization of the energy in equation (2) iShe gata term against the smoothness term. This balance is obvi-
known to be NP-complete. Both algorithms therefore only pro-,,q)y changed by applying different data terms. For this reason,
vide an approximation of the energy minimum. We have chosery o estimate an individual setting @ and P, for each of the

to apply two different stereo methods in order to also investigatq g i estigated energy functions. Moreover, we use two different
the influenqe of different optimization schemes on the results %arameter settings depending on which stereo method is applied.
our evaluation. Regarding our test data, we have chosen to use a single setting for
OlIhe 2003 sets. A second setting is estimated for the 2005 data and

The first stereo algorithm is referred to as graph-cut (GC) metho Ly third one for the 2006 data. This results ifto- 2 - 3 settings

The algorithm uses the graph-cut-baseéxpansion algorithm . .
(Boykog\;/ et al., 2001) in %rd?er to optimizepenergy (2?' We in- of P, and P;. To determine the parameters, we compute the dis-

. . i arity maps for the corresponding test sets using varying values
clude this method into our benchmark, since graph-cuts repree, P{ an(?PQ/. (We have tepsted agproximately 1(?0 dif?lergnt pa-
fsfr?éti%nvg'%?li'hid?ptgd ?_t(?r(‘jde?ir\?e rgﬁt?nadltfecr)wrle?tgtriglr?g? tEgerg)fameter combinations.) We then select this parameter setting that

, ype. 1o P . .. shows the smallest average error percentage, which is computed
expansion algorithm, we incorporate our energy functions mtooy comparison against the ground truth images. Although this

the MRF framework _prowded by (Szeliski et al., 2006.)' Note parameter tuning step is a tedious task, it is required to keep our
that our energy functions do not account for the occlusion prob:

lem. We will therefore only evaluate the matching error in non_comparlson of energy functions fair.
occluded image regions in order not to corrupt our benchmark
results by large error percentages in occluded areas. 5 EXPERIMENTAL RESULTS

The second stereo method (Bleyer and Gelautz, 2008) is referrdeigure 3 plots a comparison of grey-scale matching with colour
to as dynamic programming (DP) method. It relies on a spematching based on thRGB and LUV colour spaces. We show
cial form of tree-based dynamic programming to approximateresults for both stereo methods used in combination with’.the

the energy minimum of equation (2). The method builds twodifference measurement. The applied error metric is the percent-
separate tree graphs for each individual pixalf the reference age of wrong pixels in unoccluded regions having an absolute
view as shown in Figure 1. The global energy minima for bothdisparity error larger than one pixel. It is surprising that, accord-
trees rooted omp are then efficiently computed using dynamic ing to the plots of Figure 3, itis a good option not to use colour at
programming. Finally, the results of these trees are combinedll for the four stereo pairs of the 2003 data sets that are currently
to derivep’s disparity. Although we do not evaluate the error used in the Middlebury Benchmark. At least for the Venus and
in occluded regions, it is pointed out that, as opposed to the GCeddy sets, colour even seems to worsen the results regardless
method, the DP algorithm incorporates a method for occlusiorof the applied stereo algorithm. In fact, similar experiences on
handling. We have chosen this method, since itis less affected bihese images, which are extremely popular in the stereo commu-
the scanline streaking problem than other dynamic programmingity, might have been a reason that has led researchers away from
approaches. In comparison to the GC method, the DP algorithrasing colour in global stereo. However, results of both stereo al-
has the advantage of being significantly faster. gorithms on the 26 new test images of the 2005 and 2006 test sets
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2003 Sets ‘ , 2005 Sets
= e « ; “ |
g
Tsukuba Venus Teddy Cones Art Books Dolls Laundry Moebius  Reindeer
2006 Sets
| =l ﬂ! i TR
i IxaNERy | [ z
Aloe Babyl Baby2 Baby3 Rocks1 Rocks2 Wood1 Bowling2 Lampshadel Flowerpots

5 .

A el She M

Bowlingl Lampshade2 Plastic Midd1 Monopoly ~ Wood2 Clothl Cloth2 Cloth3 Cloth4
Figure 2: Test sets used in this study. Left views of the stereo pairs and corresponding ground truth images are shown.

clearly speak a different language. The results of intensity-based; >3 system performs slightly better thd&G B. The fifth rank
matching is clearly inferior in comparison ®8GB and LUV . for the RGB system is, however, surprisingly poor when con-
Especially, theL UV space performs well on these images. sidering thatRG B is typically chosen for integrating colour into
global approaches. Ranks 6 to 8 are takenXdy 7, H1 H>Hs
We show disparity and error maps for three selected stereo paiend LAB. The worst performance is obtained for grey-scale
computed by the DP (Figure 4) and the GC methods (Figure 5natching, althougtii ST performs inferior in some cases.
that are used in conjunction with ttg difference measurement. . ) )
The error maps are derived by plotting pixels whose absolute disINe t@bles of Figure 6 also allow measuring the amount of im-
parity error is larger than one pixel. Black pixels in the error provement that is achleve_d by using co_lour information. Let us
maps represent errors in non-occluded regions, while grey pixeféierefore focus on thé, difference that is most commonly ap-
correspond to errors in occluded areas. It is seen from these grlied in stereo algorithms. When looking at the average error
ror maps that grey-scale matching generates less wrong pixels &grcentages (Avg. Error) for the GC method in Figure 6a, we
the Teddy image pair thaRG B and LUV. For the Dolls and obtain a_lvalue of 18.5% oAll Sets for grey-scale matchlng in
Reindeer test images, the opposite observation is made. comparison to 13.8%_foLUV. In fact, thl_s r_e_sults |_nto 25.4%
lower error rates, which represents a significant improvement.
Figure 6 summarizes the overall results of our colour evaluatiorf OF theé DP method (Figure 6a), we even derive an improvement
study. The tables plot four different combinations of stereo al-of 29.0%. When determining the performance improvement of
gorithms and difference measurements. Two performance med<«/V In comparison taG B, we determine 14.8% lower error
surements are computed. First, the error percentages of pixeigtes for the GC method and 17.0% for the DP algorithm. The
exceeding an error threshold of one in unoccluded image aredgPles also allow for a comparison of tiie and L. difference
are determined. Second, for each test pair, we rank the colodpeasurements. This is accomplished by comparing the average
spaces according to their error percentages, so that the colofFfOr Percentagesi(g. Error) of the tables in Figures 6a and 6b
space with the lowest error percentage receives rank 1, while trg@inst those of Figures 6¢ and 6d. As opposed to the use of dif-
worst-performing one is given rank 10. We compute the averag_éerem colour systems, there are only relatively small differences
errors given in% (Avg. Error) and average ranks (Avg. Rapk N the performance of, and L. Itis, however, recognized that
over all 30 test sets(l Sets) and considering the three test sets L1 Seems to perform slightly better. Surprisingly, as can be de-
separately (20032005 and2006 Sets). Similar to the Middlebury plcte(_j from the tables, also the appllcayon of two different stereo
Online Table, the tables are sorted to derive a performance ran@/90rithms seems to have much less influence on the error per-
ing of the investigated colour spaces. We sort the tables accordirg)en_ta_ges_ than the choice of the colour system. The important
to the values ofvg. Rank using the data sefsil Sets. ecision in global stereo matching therefore seems to be the se-
lection of a well-suited colour space.
It is seen that the order in which the colour spaces appear in the
four tables of Figure 6 remains almost constant. The luminance- 6 CONCLUSIONS AND FUTURE WORK
chrominance colour spacéd/V', AC1C, andY C,C1 show the
best performance according to our benchmark. This result is alsdhis paper has investigated the role of colour information in global
interesting from a psychological point of view, since luminance-stereo matching approaches. We have provided a systematic ex-
chrominance systems are very close to human perception. Theerimental evaluation of various colour energy functions that are
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(b) DP method. i

Figure 3: Error plots for the GC and DP methods using Ehelifference for the 2003 data set (left column), the 2005 data set (middle
column) and the 2006 data set (right column).

- |

(a) Ground truth (b) Grey values (c) RGB colour space (d) LUV colour space
Figure 4: Disparity and error maps of the GC method using’thdifference applied on the Teddy, Dolls and Reindeer test sets.
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(a) Ground truth (b) Grey values (c) RGB colour space (d) LUV colour space

Figure 5: Disparity and error maps of the DP method used in combination with;tdéference for Teddy, Dolls and Reindeer.
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Colour All Sets 2003 Sets | 2005 Sets | 2006 Sets Colour All Sets 2003 Sets | 2005 Sets | 2006 Sets
Space Avg. Avg. || Avg. Avg. | Avg. Avg. | Avg. Avg. Space Avg. Avg. || Avg. Avg. | Avg. Avg. | Avg. Avg.
P Rank| Error ||Rank Error |Rank Error |Rank Error P Rank| Error || Rank Error |Rank Error |Rank Error
LUV 3.31 13.81 ||9.510 5.610 | 1.5 13.21 | 2.71 15.6¢ LUV 2.8 13.71 ||7.810 5.310 | 1.0+ 10.37 | 2.31 16.31
AC.C, 3.31 14.62 || 700 523 | 283 1443 | 2.7; 16.62 AC:C, 3.4, 1483 || 5.85 4.25 |2.52 1193 |3.33 17.83
YC.Cy 3.53 15.03 || 6.87 5.29 | 2.2, 13.95 | 3.33 17.44 YC,Cy 3.4y 14.75 || 6.85 4.39 | 2.52 11.83 | 3.12 17.62
I1l2l3 4.14 15.14 || 6.36 5.07 | 3.74 14.94 | 3.84 17.23 11213 4.74 15.34 || 6.56 4.06 | 4.04 12.64 | 4.64 18.44
RGB 5.55 16.25 || 5.05 4.85 | 6.26 16.25 | 5.45 18.65 RGB 4.85 16.55 || 4.03 3.62 | 5.75 1435 | 4.75 19.7¢
HiHoH; |[5.76 16.87 |[2.81 4.61 | 6.05 1626 | 6.3 19.57 XYZ 596 16.56 |[6.8s 3.8 | 6.77 14.9; | 5.56 19.65
XYz 6.17 16.56 || 3.85 4.73 | 6.7r 16.27 | 6.47 18.9s HiHoHs || 6.17 1777 || 3.82 3.73 | 6.3¢ 15.17 | 6.57 21.3;
LAB 7.25 1845 || 3.52 4.60 | 7.7s 16.75 | 7.95 21.710 LAB 74s 18.89 || 3.31 3.4; | 8.0s 16.05 | 8.0s 22.79
Grey 8.09 18.510 || 3.85 4.74 |9.510 18.19 |8.510 21.49 HSI 8.09 18.25 || 6.56 4.07 | 879 16.59 |8.19 21.6s
HSI 8210 1849 || 6.87 4.9¢ | 8.8y 18.610 | 839 21.1g Grey 8.610 19.310 || 4.03 3.95 [9.710 17.010 [9.210 23.110
(a) GC method with; distance. (b) DP method with’; distance.
Colour All Sets 2003 Sets | 2005 Sets | 2006 Sets Colour All Sets 2003 Sets | 2005 Sets | 2006 Sets
Space Avg. Avg. || Avg. Avg. | Avg. Avg. | Avg. Avg. Space Avg. Avg. || Avg. Avg. | Avg. Avg. | Avg. Avg.
P Rank| Error [|Rank Error |Rank Error |Rank Error P Rank| Error ||Rank Error [Rank Error|Rank Error
LUV 3.27 14.51 [|9.310 5.810 | 1.81 13.4; | 2.5; 16.6, LUV 3.1, 13.7; ||8.810 6.219 | 1.0; 10.5; | 2.6; 16.2;
YC.C, 3.8 15.63 || 830 5.29 | 232 1452 | 3.42 18.03 YC.Co 3.52 14.92 || 6.5 4.4s | 2.32 1232 | 3.33 17.73
AC,C, 4.05 15.52 |[ 6.85 bH.1g | 3.73 14.83 | 3.63 17.82 AC;C, 3.53 14.93 || 7.0s 4.4 |2.73 1233 | 3.12 1772
lil2ls 4.8, 16.25 || 6.37 4.9¢ |4.04 1534 [4.74 18.85 RGB 4.4, 16.15 || 4.04 3.63 |5.04 13.55 |4.34 19.36
RGB 515 16.7¢ || 3.31 4.84 | 5.05 16.15 | 5.56 19.2¢ 1213 5.15 16.04 || 7.39 4.17 | 5.04 13.34 | 4.75 19.24
XYZ 54 16.0s |[5.56 5.07 | 6.37 1647 | 5.15; 18.14 XYZ 545 1626 |[5.55 3.82 | 576 14.05 | 5.36 19.35
HiHoHs || 6.6, 17.97 || 3.52 4.83 | 626 16.26 | 7.4; 21.08 HiHoH3 || 647 17.7; || 281 352 | 6.57 14.97 | 7.2, 214
LAB 6.85 18.3¢ || 3.52 4.61 |6.7s 16.5s | 7.55 21.610 LAB 725 1860 || 2.81 3.4, |7.85 15.4s | 8.09 22.59
Grey 7.69 18510 | 3.52 4.72 | 9.29 1819 |8.010 21.49 HSI 7.89 1823 || 6.87 4.06 | 9.29 16.59 | 7.73 21.65
HSI T.7T10 179s || 5.35 4.95 [9.810 18.310| 7.59 20.47 Grey 8.510 19.310 ] 3.85 3.95 [9.810 17.010 [9.110 23.119
(c) GC method withl., distance. (d) DP method withl» distance.

Figure 6: Quantitative performance of the investigated colour spaces. Average ranks and average error percentages are plotted.

subscripts represent the rank of a value in the table. More explanation is given in the text.

generated by combining different distance measurements witBleyer, M. and Gelautz, M., 2008. Simple but effective tree struc-
several colour systems in the energy functions’ data terms. Thegares for dynamic programming-based stereo matching. In: VIS-
energy functions are embedded into two stereo algorithms an8PP, Vol. 2, pp. 415-422.

tested on 30 stereo image pairs for which ground truth data i%oykov Y., Veksler, O. and Zabih, R., 2001. Fast approximate
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Our results show that colour, in general, improves the results1239
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LUV, AC,Cy andY C1C>. Thisis specifically interesting, since
they are very close to human perception. An interesting result i
also thatRG B, which is the most popular colour representation
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