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ABSTRACT:

Global algorithms currently represent the state-of-the-art in dense stereo matching. These methods first set up an energy function.
The energy function is then subject to optimization, which is typically achieved via graph-cuts or belief propagation. In this paper,
we concentrate on the energy modelling aspect. An experimental study that focuses on the role of colour in stereo energy functions
is presented. We evaluate the performance of various forms for using colour and compare it against grey-scale matching. Colour is
thereby represented in nine different colour systems. TheL1 andL2 distances are evaluated for computing the colour differences in the
selected systems. We embed the resulting energy functions into two stereo algorithms and test them on 30 ground truth test image pairs.
The results of our benchmark show that colour information, in general, leads to a significant performance gain over using intensity only.
According to our evaluation results, the selection of the applied colour space is of specific importance in global stereo matching.

1 INTRODUCTION

During the last couple of years, global stereo approaches have
gained increased attention in the stereo vision community for
their excellent performance in stereo algorithm evaluation stud-
ies such as the Middlebury Benchmark (Scharstein and Szeliski,
2002). These methods formulate the stereo problem in terms of
an energy function, which is typically in the form of

E = Edata + Esmooth. (1)

Here, the data termEdata assesses the agreement of the disparity
solution with the input images by computing a match measure-
ment, while the smoothness termEsmooth imposes a penalty on
spatially neighbouring pixels carrying different disparity labels.

There has been a significant amount of work on minimizing the
energy of (1), which is nowadays typically accomplished using
graph-cuts (Boykov et al., 2001) or belief propagation (Sun et
al., 2003). However, it has often been overlooked that the energy
functions under consideration might represent suboptimal models
for the stereo problem. For example, (Meltzer et al., 2005) have
shown that, despite the NP-hardness of their optimization prob-
lem, an exact optimum can be obtained for some standard bench-
mark stereo pairs using reweighted message passing. Neverthe-
less, even the global energy minimum has led to disparity maps
that show relatively large errors in comparison to the ground truth
image. This clearly indicates that real progress in global stereo
matching can rather be achieved by improving the energy func-
tions than by concentrating on the optimization component.

The contribution of this paper lies in a systematic evaluation study
on stereo energy functions. We thereby focus on the role of colour
in the energy functions’ data terms. The intuition why colour in-
formation should lead to an improved energy model over using
intensity information only is relatively clear. Colour is expected
to reduce one of the major problems in stereo matching, namely
matching ambiguity. For example, suppose that we are solely
using the intensity information in the matching process. Then a
red pixel of the left image matches a green point and the correct
red pixel of the second view equally well, if the red and green
colours both project to the same intensity value. This ambiguity

is obviously resolved by using the colour information.

Our work is motivated by the observation that a lot of stereo re-
searchers still simply convert the stereo pairs to grey-scale im-
ages, although colour is typically available (Mayer, 2003). Since
it is unclear if colour shows positive effects when using global
methods, the colour information is thereby often discarded delib-
erately. Therefore, this work concentrates on two questions. First,
does colour help to improve the performance of global stereo
matching approaches? Second, in which form should colour be
used to maximize the algorithms’ quantitative performance?

In the context of prior work, colour evaluation studies have al-
ready been conducted in (Okutomi and Tomita, 1992, Koschan,
1993, Chambon and Crouzil, 2005). All of these studies are re-
stricted to local methods (window-based correlation), and a corre-
sponding study for global algorithms is still missing. Some exper-
iments focusing on different match measurements have been re-
ported in (Scharstein and Szeliski, 2002). The role of colour has,
however, not been investigated. Two stereo evaluation studies
have also appeared very recently. As opposed to our work, they
address radiometric invariant dissimilarity measurements
(Hirschmüller and Scharstein, 2007) and different aggregation
methods in local stereo (Wang et al., 2006).

The remainder of this paper is organized as follows. We start by
formulating the energy functions evaluated in this paper in section
2. Section 3 then presents two stereo algorithms that incorporate
these energy functions and are used in this benchmark. Section 4
presents the test data and provides details on the disparity com-
putation. Finally, we report our results in section 5.

2 ENERGY FUNCTIONS

Let I denote the set of all pixels in the left image andD be the
set of allowed disparity labels. A disparity solutionD maps each
pixel p ∈ I to a disparitydp ∈ D. The goodness of a disparity
mapD is evaluated by an energy function, which we define by

E(D) =
X

p∈I
m(p, p − dp)

| {z }

Edata

+
X

(p,p′)∈N
s(dp, dp′)

| {z }

Esmooth

. (2)
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Here,m(p, p − dp) is a function that computes the colour dis-
similarity between a pixelp and its matching pointp − dp in
the second view. The smoothness functions(dp, dp′) penalizes
neighbouring pixels that are assigned to different disparities. The
neighbourhood structureN thereby contains all pixel pairs(p, p′)
of the left view withp andp′ being spatial neighbours in four-
connectivity. The functionsm(·) ands(·) of data and smoothness
terms are defined in the following.

2.1 Data Term

The data term is the subject of our study. This term computes
the colour dissimilarities between corresponding pixels in a pre-
defined colour space. The choice of the colour system thereby
has direct influence on the estimation of the data term. This is
why, apart from using intensity information only, we evaluate the
performance of nine different colour systems. The investigated
colour spaces are categorized into

• Primary systems:RGB andXY Z;

• Luminance-chrominance systems:LUV , LAB, AC1C2

andY C1C2;

• Perceptual systems:HSI ;

• Statistical independent component systems:I1I2I3 and
H1H2H3.

Table 1 plots corresponding conversion formulas. For the refer-
ences associated to each colour system, the reader is referred to
(Chambon and Crouzil, 2005).

We evaluate two difference measurements in order to compute the
pixel dissimilarity in a given colour space. The first one is theL1

distance, which represents the summed-up absolute differences
of colour channels. The corresponding dissimilarity function is
defined by

fL1 (p, q) =
X

1≤i≤3

|pi − qi| (3)

with p and q being pixels of the left and right images, respec-
tively. The subscripti denotes theith colour channel in the se-
lected colour system. As a second difference measurement, we
compute theL2 distance. This represents the Euclidean distance
between two points in the colour space. In this case, the dissimi-
larity function is given by

fL2(p, q) =

s
X

1≤i≤3

(pi − qi)2. (4)

There are two exceptions where the difference measurements of
equations (3) and (4) are not suitable. First, for grey-scale match-
ing, we define the dissimilarity function as

fGrey(p, q) = |pI − qI | (5)

with the subscriptI denoting the intensity channel. Second, for
theHSI space, we adopt the measurement proposed by (Koschan,
1993). This measurement is computed by

fHSI(p, q) =
q

(pI − qI)2 + p2
S + q2

S + 2pSqS cos θ

θ =


|pH − qH | if |pH − qH | < π
2π − |pH − qH | otherwise.

(6)

Here, the subscriptsH , S andI denote the corresponding colour
channels of theHSI system.

As a final step in the calculation of the data term, we apply the
measurement of (Birchfield and Tomasi, 1998) to reduce the neg-
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Table 1: Conversions from RGB to the investigated colour spaces.

ative effects of image sampling on the disparity reconstruction
performance. We modify this measurement to make it applicable
on colour pixels. We therefore compute the colour values of a
pixel p− that lies in betweenp and its spatially left neighbourpl.
This is accomplished by linear interpolation so that

p−
i =

pi + pl
i

2
1 ≤ i ≤ 3 (7)

with the subscripti being theith channel in the chosen colour
system. Analogously,p+ is determined as the colour point that is
located betweenp and its right neighbourpr. For symmetry, we
also computeq− andq+ for the matching pointq in the second
view. The final functionm(p, q) of equation (2) is then given by

m(p, q) = min(f(p, q),f(p−, q), f(p+, q),

f(p, q−), f(p, q+))
(8)

with f(·) being one of the difference functions in equations (3-6)
that is suitable for the selected colour space. Our energy func-
tions differ in the wayf(·) is computed. Using two difference
measurements for eight different colour systems and a single dis-
tance measurement forGrey andHSI , this sums up to 18 energy
functions investigated in this study.
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2.2 Smoothness Term

Thesmoothness term of our energy function is implemented as a
modified version of the Potts model. It is better suited for han-
dling slanted surfaces than the standard Potts model. We define
the smoothness functions(dp, dp′) of equation (2) by

s(dp, dp′) =

8

<

:

0 if dp = dp′

P1 if |dp − dp′ | = 1
P2 otherwise

(9)

with P1 andP2 being user-defined penalties. A small penaltyP1

serves to penalize small jumps in disparity that do not exceed a
value of one pixel.P1 is motivated by the fact that the standard
Potts model tends to overpenalize such small jumps and conse-
quently performs poorly in the reconstruction of slanted surfaces.
The second penaltyP2 with P2 > P1 accounts for penalizing
large jumps in disparity. Such jumps occur at the disparity bor-
ders. In order to align disparity discontinuities with the edges
of the reference view, we vary the value ofP2 depending on the
colour gradient. This is accomplished by

P2 =


P3 · P ′

2 if
P

1≤i≤3 |pi − p′
i| < T

P ′
2 otherwise.

(10)

The colour gradient is thereby computed in RGB space. Through-
out our test runs, we use a fixed value of 2 forP3 andT is set to
30. Parameter settings forP1 andP ′

2 are discussed in section 4.

3 STEREO ALGORITHMS

We embed the energy functions of section 2 into two different
stereo algorithms. Optimization of the energy in equation (2) is
known to be NP-complete. Both algorithms therefore only pro-
vide an approximation of the energy minimum. We have chosen
to apply two different stereo methods in order to also investigate
the influence of different optimization schemes on the results of
our evaluation.

The first stereo algorithm is referred to as graph-cut (GC) method.
The algorithm uses the graph-cut-basedα-expansion algorithm
(Boykov et al., 2001) in order to optimize energy (2). We in-
clude this method into our benchmark, since graph-cuts repre-
sent a widely adopted standard method for minimizing energy
functions of this type. To derive an implementation of theα-
expansion algorithm, we incorporate our energy functions into
the MRF framework provided by (Szeliski et al., 2006). Note
that our energy functions do not account for the occlusion prob-
lem. We will therefore only evaluate the matching error in non-
occluded image regions in order not to corrupt our benchmark
results by large error percentages in occluded areas.

The second stereo method (Bleyer and Gelautz, 2008) is referred
to as dynamic programming (DP) method. It relies on a spe-
cial form of tree-based dynamic programming to approximate
the energy minimum of equation (2). The method builds two
separate tree graphs for each individual pixelp of the reference
view as shown in Figure 1. The global energy minima for both
trees rooted onp are then efficiently computed using dynamic
programming. Finally, the results of these trees are combined
to derivep’s disparity. Although we do not evaluate the error
in occluded regions, it is pointed out that, as opposed to the GC
method, the DP algorithm incorporates a method for occlusion
handling. We have chosen this method, since it is less affected by
the scanline streaking problem than other dynamic programming
approaches. In comparison to the GC method, the DP algorithm
has the advantage of being significantly faster.

p p

Figure 1: Trees applied by the DP method for a single pixel
p. Nodes represent image pixels, while edges indicate that the
smoothness functions(·) operates between adjacent pixels.

4 TEST DATA AND DISPARITY COMPUTATION

Figure 2 shows the test image pairs along with the corresponding
ground truth images that are used in our study. All images are
taken from the Middlebury Ground Truth Database (Scharstein
and Szeliski, 2002, Hirschmüller and Scharstein, 2007). Our test
data includes the four stereo pairs that are currently used in the
Middlebury Benchmark (Tsukuba, Venus, Teddy and Cones). We
refer to these image pairs as the 2003 sets. In addition, we in-
clude six stereo pairs of the 2005 data sets and 20 pairs of the
2006 sets. This sums up to 30 test pairs, which provides a rea-
sonable amount of test data. The images of the 2005 and 2006
sets have been generated to be more challenging than those of the
2003 sets that can virtually be regarded as solved. This is why
algorithms produce high error percentages on the new test sets.
These data sets should therefore be well suited to discriminate
the performance of different colour methods.

A crucial point when using global stereo methods is parameter
tuning. For our energy functions, we have to find appropriate
values for the parametersP1 andP ′

2. These parameters balance
the data term against the smoothness term. This balance is obvi-
ously changed by applying different data terms. For this reason,
we estimate an individual setting ofP1 andP ′

2 for each of the
18 investigated energy functions. Moreover, we use two different
parameter settings depending on which stereo method is applied.
Regarding our test data, we have chosen to use a single setting for
the 2003 sets. A second setting is estimated for the 2005 data and
a third one for the 2006 data. This results into18 · 2 · 3 settings
of P1 andP ′

2. To determine the parameters, we compute the dis-
parity maps for the corresponding test sets using varying values
for P1 andP ′

2. (We have tested approximately 100 different pa-
rameter combinations.) We then select this parameter setting that
shows the smallest average error percentage, which is computed
by comparison against the ground truth images. Although this
parameter tuning step is a tedious task, it is required to keep our
comparison of energy functions fair.

5 EXPERIMENTAL RESULTS

Figure 3 plots a comparison of grey-scale matching with colour
matching based on theRGB andLUV colour spaces. We show
results for both stereo methods used in combination with theL1

difference measurement. The applied error metric is the percent-
age of wrong pixels in unoccluded regions having an absolute
disparity error larger than one pixel. It is surprising that, accord-
ing to the plots of Figure 3, it is a good option not to use colour at
all for the four stereo pairs of the 2003 data sets that are currently
used in the Middlebury Benchmark. At least for the Venus and
Teddy sets, colour even seems to worsen the results regardless
of the applied stereo algorithm. In fact, similar experiences on
these images, which are extremely popular in the stereo commu-
nity, might have been a reason that has led researchers away from
using colour in global stereo. However, results of both stereo al-
gorithms on the 26 new test images of the 2005 and 2006 test sets
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2003 Sets 2005 Sets

Tsukuba Venus Teddy Cones Art Books Dolls Laundry Moebius Reindeer

2006 Sets

Aloe Baby1 Baby2 Baby3 Rocks1 Rocks2 Wood1 Bowling2 Lampshade1 Flowerpots

Bowling1 Lampshade2 Plastic Midd1 Monopoly Wood2 Cloth1 Cloth2 Cloth3 Cloth4

Figure 2: Test sets used in this study. Left views of the stereo pairs and corresponding ground truth images are shown.

clearly speak a different language. The results of intensity-based
matching is clearly inferior in comparison toRGB andLUV .
Especially, theLUV space performs well on these images.

We show disparity and error maps for three selected stereo pairs
computed by the DP (Figure 4) and the GC methods (Figure 5)
that are used in conjunction with theL1 difference measurement.
The error maps are derived by plotting pixels whose absolute dis-
parity error is larger than one pixel. Black pixels in the error
maps represent errors in non-occluded regions, while grey pixels
correspond to errors in occluded areas. It is seen from these er-
ror maps that grey-scale matching generates less wrong pixels on
the Teddy image pair thanRGB andLUV . For the Dolls and
Reindeer test images, the opposite observation is made.

Figure 6 summarizes the overall results of our colour evaluation
study. The tables plot four different combinations of stereo al-
gorithms and difference measurements. Two performance mea-
surements are computed. First, the error percentages of pixels
exceeding an error threshold of one in unoccluded image areas
are determined. Second, for each test pair, we rank the colour
spaces according to their error percentages, so that the colour
space with the lowest error percentage receives rank 1, while the
worst-performing one is given rank 10. We compute the average
errors given in% (Avg. Error) and average ranks (Avg. Rank)
over all 30 test sets (All Sets) and considering the three test sets
separately (2003, 2005 and2006 Sets). Similar to the Middlebury
Online Table, the tables are sorted to derive a performance rank-
ing of the investigated colour spaces. We sort the tables according
to the values ofAvg. Rank using the data setsAll Sets.

It is seen that the order in which the colour spaces appear in the
four tables of Figure 6 remains almost constant. The luminance-
chrominance colour spacesLUV , AC1C1 andY C1C1 show the
best performance according to our benchmark. This result is also
interesting from a psychological point of view, since luminance-
chrominance systems are very close to human perception. The

I1I2I3 system performs slightly better thanRGB. The fifth rank
for the RGB system is, however, surprisingly poor when con-
sidering thatRGB is typically chosen for integrating colour into
global approaches. Ranks 6 to 8 are taken byXY Z, H1H2H3

and LAB. The worst performance is obtained for grey-scale
matching, althoughHSI performs inferior in some cases.

The tables of Figure 6 also allow measuring the amount of im-
provement that is achieved by using colour information. Let us
therefore focus on theL1 difference that is most commonly ap-
plied in stereo algorithms. When looking at the average error
percentages (Avg. Error) for the GC method in Figure 6a, we
obtain a value of 18.5% onAll Sets for grey-scale matching in
comparison to 13.8% forLUV . In fact, this results into 25.4%
lower error rates, which represents a significant improvement.
For the DP method (Figure 6a), we even derive an improvement
of 29.0%. When determining the performance improvement of
LUV in comparison toRGB, we determine 14.8% lower error
rates for the GC method and 17.0% for the DP algorithm. The
tables also allow for a comparison of theL1 andL2 difference
measurements. This is accomplished by comparing the average
error percentages (Avg. Error) of the tables in Figures 6a and 6b
against those of Figures 6c and 6d. As opposed to the use of dif-
ferent colour systems, there are only relatively small differences
in the performance ofL1 andL2. It is, however, recognized that
L1 seems to perform slightly better. Surprisingly, as can be de-
picted from the tables, also the application of two different stereo
algorithms seems to have much less influence on the error per-
centages than the choice of the colour system. The important
decision in global stereo matching therefore seems to be the se-
lection of a well-suited colour space.

6 CONCLUSIONS AND FUTURE WORK

This paper has investigated the role of colour information in global
stereo matching approaches. We have provided a systematic ex-
perimental evaluation of various colour energy functions that are
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(b) DP method.

Figure 3: Error plots for the GC and DP methods using theL1 difference for the 2003 data set (left column), the 2005 data set (middle
column) and the 2006 data set (right column).

(a) Ground truth (b) Grey values (c) RGB colour space (d) LUV colour space

Figure 4: Disparity and error maps of the GC method using theL1 difference applied on the Teddy, Dolls and Reindeer test sets.

(a) Ground truth (b) Grey values (c) RGB colour space (d) LUV colour space

Figure 5: Disparity and error maps of the DP method used in combination with theL1 difference for Teddy, Dolls and Reindeer.
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Colour
Space

All Sets 2003 Sets 2005 Sets 2006 Sets
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Rank↓ Error Rank Error Rank Error Rank Error

LUV 3.31 13.81 9.510 5.610 1.51 13.21 2.71 15.61

AC1C2 3.31 14.62 7.09 5.28 2.83 14.43 2.71 16.62

YC1C2 3.53 15.03 6.87 5.29 2.22 13.92 3.33 17.44

I1I2I3 4.14 15.14 6.36 5.07 3.74 14.94 3.84 17.23

RGB 5.55 16.25 5.05 4.85 6.26 16.25 5.45 18.65

H1H2H3 5.76 16.87 2.81 4.61 6.05 16.26 6.36 19.57

XYZ 6.17 16.56 3.83 4.73 6.77 16.27 6.47 18.96

LAB 7.28 18.48 3.52 4.62 7.78 16.78 7.98 21.710

Grey 8.09 18.510 3.83 4.74 9.510 18.19 8.510 21.49

HSI 8.210 18.49 6.87 4.96 8.89 18.610 8.39 21.18

Colour
Space

All Sets 2003 Sets 2005 Sets 2006 Sets
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Rank↓ Error Rank Error Rank Error Rank Error

LUV 2.81 13.71 7.810 5.310 1.01 10.31 2.31 16.31

AC1C2 3.42 14.83 5.85 4.28 2.52 11.93 3.33 17.83

YC1C2 3.42 14.72 6.88 4.39 2.52 11.82 3.12 17.62

I1I2I3 4.74 15.34 6.56 4.06 4.04 12.64 4.64 18.44

RGB 4.85 16.55 4.03 3.62 5.75 14.35 4.75 19.76

XYZ 5.96 16.56 6.88 3.84 6.77 14.96 5.56 19.65

H1H2H3 6.17 17.77 3.82 3.73 6.36 15.17 6.57 21.37

LAB 7.48 18.89 3.31 3.41 8.08 16.08 8.08 22.79

HSI 8.09 18.28 6.56 4.07 8.79 16.59 8.19 21.68

Grey 8.610 19.310 4.03 3.95 9.710 17.010 9.210 23.110

(a) GC method withL1 distance. (b) DP method withL1 distance.

Colour
Space

All Sets 2003 Sets 2005 Sets 2006 Sets
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Rank↓ Error Rank Error Rank Error Rank Error

LUV 3.21 14.51 9.310 5.810 1.81 13.41 2.51 16.61

YC1C2 3.82 15.63 8.39 5.29 2.32 14.52 3.42 18.03

AC1C2 4.03 15.52 6.88 5.18 3.73 14.83 3.63 17.82

I1I2I3 4.84 16.25 6.37 4.96 4.04 15.34 4.74 18.85

RGB 5.15 16.76 3.31 4.84 5.05 16.15 5.56 19.26

XYZ 5.46 16.04 5.56 5.07 6.37 16.47 5.15 18.14

H1H2H3 6.67 17.97 3.52 4.83 6.26 16.26 7.47 21.08

LAB 6.88 18.39 3.52 4.61 6.78 16.58 7.58 21.610

Grey 7.69 18.510 3.52 4.72 9.29 18.19 8.010 21.49

HSI 7.710 17.98 5.35 4.95 9.810 18.310 7.59 20.47

Colour
Space

All Sets 2003 Sets 2005 Sets 2006 Sets
Avg. Avg. Avg. Avg. Avg. Avg. Avg. Avg.
Rank↓ Error Rank Error Rank Error Rank Error

LUV 3.11 13.71 8.810 6.210 1.01 10.51 2.61 16.21

YC1C2 3.52 14.92 6.56 4.48 2.32 12.32 3.33 17.73

AC1C2 3.53 14.93 7.08 4.49 2.73 12.33 3.12 17.72

RGB 4.44 16.15 4.04 3.63 5.04 13.55 4.34 19.36

I1I2I3 5.15 16.04 7.39 4.17 5.04 13.34 4.75 19.24

XYZ 5.46 16.26 5.55 3.84 5.76 14.06 5.36 19.35

H1H2H3 6.47 17.77 2.81 3.52 6.57 14.97 7.27 21.47

LAB 7.28 18.69 2.81 3.41 7.88 15.48 8.09 22.59

HSI 7.89 18.28 6.87 4.06 9.29 16.59 7.78 21.68

Grey 8.510 19.310 3.83 3.95 9.810 17.010 9.110 23.110

(c) GC method withL2 distance. (d) DP method withL2 distance.

Figure 6: Quantitative performance of the investigated colour spaces. Average ranks and average error percentages are plotted. The
subscripts represent the rank of a value in the table. More explanation is given in the text.

generated by combining different distance measurements with
several colour systems in the energy functions’ data terms. These
energy functions are embedded into two stereo algorithms and
tested on 30 stereo image pairs for which ground truth data is
available.

Our results show that colour, in general, improves the results
of global stereo methods. In fact, the performance gain in our
benchmark is relatively high. We report approximately 25% less
disparity errors when using the best-performing colour system
instead of grey-scale matching. However, it has also been recog-
nized that colour does not necessarily improve the performance
on four frequently used image pairs, namely the current Middle-
bury Evaluation sets. The best-performing method for incorporat-
ing colour rather depends on the selected colour system than on
the applied difference measurement. The best-performing colour
spaces of our study are three luminance-chrominance systems
LUV , AC1C2 andY C1C2. This is specifically interesting, since
they are very close to human perception. An interesting result is
also thatRGB, which is the most popular colour representation
in stereo matching, only gives results of average quality.

Our current study concentrates on a single prior in the energy for-
mulation. We have investigated this prior, since it is frequently
used in the literature. Although we believe that this will not sub-
stantially change the outcome of our study, other priors need to
be investigated in future work.
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