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ABSTRACT: 
 
In contrast to conventional airborne multi-echo laser scanner systems, full-waveform (FW) lidar systems are able to record the entire 
emitted and backscattered signal of each laser pulse. Instead of clouds of individual 3D points, FW devices provide connected 1D 
profiles of the 3D scene, which contain more detailed and additional information about the structure of the illuminated surfaces. 
This paper is focused on the analysis of FW data in urban areas. The problem of modelling FW lidar signals is first tackled. The 
standard method assumes the waveform to be the superposition of signal contributions of each scattering object in such a laser beam, 
which are approximated by Gaussian distributions. This model is suitable in many cases, especially in vegetated terrain. However, 
since it is not tailored to urban waveforms, the Generalized Gaussian model is selected instead here. Then, a pattern recognition 
method for urban area classification is proposed. A supervised method using Support Vector Machines is performed on the FW point 
cloud based on the parameters extracted from the post-processing step. Results show that it is possible to partition urban areas in 
building, vegetation, natural ground and artificial ground regions with high accuracy using only lidar waveforms. 
 
 

1. INTRODUCTION 

In the last decade, airborne lidar systems have become an 
alternative source for acquisition of altimetrer data. Such 
devices deliver a reliable, fast and accurate representation of 
terrestrial landscapes through georeferenced and unstructured 
3D point clouds (RMSE < 0.1m in altimetry). Range is 
determined directly according to the signal runtime 
measurement whereas photogrammetric techniques derive the 
3D information indirectly based on the camera orientations and 
the disparity of correspondences in stereo photos identified by 
image matching methods. A large body of literature addresses 
the potential of laser scanning data for urban and suburban area 
analysis. For instance, many algorithms for classifying lidar 
point clouds have been developed so far aiming at building 
detection and subsequent reconstruction (Matikainen et al., 
2003; Sithole and Vosselman, 2004). They often depend on the 
availability of a cadastral map, even if, without this information, 
building outlines can at least roughly be extracted. In the latter 
case the discrimination of buildings from adjacent trees is 
difficult. All these approaches rely only upon geometric and 
topologic criteria and have in common to be sensitive to large 
off-terrain objects and surface discontinuities. Therefore, many 
authors proposed other inputs like echo intensity (Tóvári and 
Vögtle, 2004) or multi-spectral images (Rottensteiner et al., 
2005) to achieve better results. 
 
Since few years, a new generation of lidar devices designed to 
digitize and to record the entire backscattered signal of each 
emitted laser pulse became operational. They are called full-
waveform (FW) lidar systems. Full-waveform data offer the 
opportunity to overcome many drawbacks of classical multi-
echo lidar data (Wagner et al., 2004). In addition to single range 
measurements, further physical properties of the objects 

included in the diffraction cone may be revealed by analysis of 
the shape of the sampled backscatter sequence. 
 
Many studies have already been carried out to perform FW data 
processing, mainly in vegetated areas. The higher point density 
inside the penetrated canopy offers insight in the vegetation 
types and state (Harding et al., 2001). In urban areas, the 
potential of such data has been barely investigated. For instance, 
Jutzi and Stilla (2005) extract linear features on roof tops by 
establishing neighbourhood relationships between waveforms. 
They also aim at localizing more accurate building outlines. On 
the other hand, by exploiting other features in addition to the 
geometry (e.g., pulse amplitude or width), segmentation of 
vegetated areas is now possible (Gross et al., 2007). To achieve 
more advanced point classification in urban areas, a theoretical 
knowledge of the influence of the geometric and radiometric 
properties of the hit targets (i.e., the differential laser cross-
section) on the shape of the lidar waveforms is required. 
 
The aim of the article is to show that a fine analysis of full-
waveform lidar data can lead to an accurate classification of 
urban areas. The general outline of this work is described in 
Section 2. Then, a new modelling function is proposed to 
process raw signals in Section 3. The results of the integration 
of the previous extracted features into a supervised 
classification algorithm are presented in Section 4. The aim is 
to discriminate four classes: buildings, vegetation, artificial and 
natural ground regions. The test data sets are outlined in Section 
5. Finally, the results of waveform processing and classification 
are presented and the conclusions are finally drawn. 
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2. OVERALL METHODOLOGY 

Common laser data formats are clouds of 3D points, often 
provided without link to the original laser shot. In contrast to 
this, FW profiles comprise information of the 1D object 
structure along the line of sight. Nevertheless, such data are 
more difficult to handle and specific studies have to be carried 
out. In this article an approach is proposed to process FW lidar 
data to extract 3D point clouds featuring more useful 
parameters in addition to the traditional (x, y, z) coordinates and 
to perform subsequently a point classification based on these 
parameters. 
 
Waveform processing consists in decomposing the waveform 
into a sum of components or echoes, in order to characterise the 
different individual targets along the path of the laser beam. A 
parametric approach is chosen, i.e., parameters of a 
mathematical model are estimated. The aim of waveform 
processing is to maximize the detection rate of relevant peaks in 
order to foster information extraction from the raw signal. Non-
parametric methods like splines, neural networks or Parzen 
windows are known to work very well to fit 1D signals. 
Nevertheless, they eventually approximate curves to the data 
(Bishop, 2006) and do not provide the signal maxima location, 
which is required to produce 3D point clouds through a 
georeferencing process. 
 
The objective of waveform processing is twofold. A parametric 
decomposition increases the accuracy of the signal maxima 
along the lidar beam. Furthermore, from a class of functions the 
best fit to the waveform is chosen. This allows to introduce new 
parameters for each echo and to extract additional information 
about the target shape and its reflectance. 
 
Then, the extracted point cloud is classified. The aim is to 
assess whether or not each new feature introduced is relevant 
for classification and how significant it is for urban analysis 
(does it provide really useful information?). The features are fed 
into a supervised classification algorithm using Support Vector 
Machines (SVM). This method is well adapted to deal with 
high-dimensional feature space since the algorithm complexity 
does not depend on the data dimension. Furthermore, SVM 
belong to the non-parametric classification techniques, i.e., no 
parametric probability density functions are required. In recent 
years, SVM became relevant for solving remote sensing 
classification tasks. SVM allows to use jointly classical 
geometric features (number of extracted peaks, altitude 
difference between first and last echoes of a waveform, etc.), 
image-based information (Secord and Zakhor, 2007) as well as 
in our case new parameters extracted from the post-processing 
step. 
 
The methodology for classification in urban areas by FW lidar 
data analysis is designed to be flexible. Depending on the 
modelling function, the theoretical understanding of pulse 
propagation in such regions and the chosen options of the SVM 
classifier, it is possible to adjust the level of detail of the 
classification. 
 

3. WAVEFORM PROCESSING 

3.1 Methodology 

Our methodology is based on a paper written by Chauve et al. 
(2007). The authors describe an iterative waveform processing 
using a Non-Linear Least Squares fitting algorithm. After 

coarse initial peak detection, missing peaks are found in the 
residuals of the difference between the modelled and initial 
signals. If new peaks are detected, the fit is performed again. 
This process is repeated until no further improvement is 
possible. This enhanced peak detection method is useful to 
model complex waveforms with overlapping echoes and also to 
extract weak echoes not found by on-line detection techniques. 
In urban areas, the former case is observed when the laser beam 
graces building edges. The resulting waveform is therefore 
composed of distributed backscatters of the roof and the ground, 
which can often not be separated by hardware detection 
algorithm using thresholds. 
 
Moreover, the methodology has been improved to take the 
`ringing effect` into account: after the sampled emitted pulse, a 
small secondary maximum due to the effects of the hardware 
waveform processing chain can be seen. Consequently, in urban 
areas, when the laser beam hits plane objects of high reflectance 
and with a small angle of incidence (typically streets and roofs), 
such artifact is still present in the reflected waveform. It is 
typical of FW sensors and does not exist in multiple-pulse point 
clouds. In the iterative process, a weak pulse just behind a 
strong one is now removed when their amplitude ratio is closed 
to the ratio computed from the emitted pulse (given with the 
data). 
 
 

 
 

Figure 1: Histogram of α values over the four test classes. 
 
3.2 Modelling functions 

Waveforms collected with a small-footprint lidar system are 
used in this article (RIEGL LMS-Q560). Such data can be well 
modelled by superposition of Gaussian pulses (Hofton et al., 
2000). Wagner et al. (2006) have shown that more than 98% of 
the observed waveforms collected from the RIEGL system 
could be fitted with a sum of Gaussian functions. Each laser 
output pulse shape is assumed to be Gaussian, with a specific 
and calibrated width. The collected pulse is therefore a 
convolution between this distribution and a "surface" function, 
depending on the reflecting objects. Nevertheless, in fact the 
transmitted signal is not always Gaussian. Indeed, it is observed 
that the LMS-Q560 transmitted waveform is slightly 
asymmetric. 
 
In urban areas, most of the return waveforms are in reality 
subject to the mixed effects of geometric (e.g., roof slopes) and 
radiometric object properties (e.g., different kinds of streets and 
roof materials), histograms of the four considered classes are 
illustrated in figure 1. Hence, the characteristics of return peaks 
may differ significantly. It was already shown that standard 
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extensions of the Gaussians model, which are Lognormal and 
generalized Gaussian functions, are suitable to model raw lidar 
signals. Using the generalized Gaussian (GG) model improves 
the signal fitting for symmetric and distorted waveform shapes 
(more than 99.3% of satisfactory results) (Chauve et al., 2007). 
Here, the GG model was used also to process two FW data sets 
of different sites:  
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where A is the pulse amplitude, σ its width, μ the function mode 
and α the shape parameter which allows to simulate Gaussian (α 
= 2 ), flattened (α > 2 ) or peaked (α < 2 ) pulses. A, σ and 
α are the three new features which will be introduced in the 
classification step in Section 4.  
 
The Lognormal model fits asymmetric pulses with success but 
fails for symmetric ones. 
 
 

4. CLASSIFICATION OF URBAN AREAS 

4.1 Methodology 

Based on a clustering analysis of the parameters extracted from 
the modelling step, four classes have been chosen to 
characterize urban areas: buildings, vegetation, natural ground 
and artificial ground. Artificial ground gathers all kinds of 
streets (tar, asphalt…) and pavements whereas the natural 
ground class includes grass, sand and bare-earth regions.  
 
4.2 Support Vector Machines 

The general mathematical formulation of SVMs is briefly 
recalled in this section. 
 
Linear SVMs  D is the data space, Y the label space and A the 
training set (e.g., D = nℜ , Y= {-1, 1} in two-class problem). 
The classification is carried out using a linear discriminant 
function ω (D → Y). xi ∈ A are the N training samples 
available with their labels yi / i ∈[1, N]. The theoretical aim of 
supervised classification is to find a classifier consistent with 
the training set. The SVM method consists in finding the 
hyperplane maximizing the distance (called the margin) to the 
closest training data points in both classes (the support vectors). 
For a linear classifier, ω(x)=w.x-θ, where w ∈D is the normal 
vector to the hyperplane and θ the bias. We aim at finding the 
classifier parameters (w, θ) which verify: 
 

0)(,)( , >−⋅×∈∀ θiiii xwyAyx          (2) 

 
 

Since the SVM method searches the best classifier (i.e., the 
largest margin), we impose: 
 
 

 1)(,)( , ≥−⋅×∈∀ θiiii xwyAyx          (3) 

 
 

The support vectors lie on two hyperplanes 1±=−⋅ θixw  
which are parallel and equidistant to the optimal linear 
separable hyperplane. Finally, the optimal hyperplane has to 

maximize the margin (i.e., the Euclidian distance between both 
hyperplanes, defined as 2/||w|| under the constraints defined in 
Equation 3 Unfortunately, in most cases, such quadratic 
optimization problem is unsolvable: we cannot find a linear 
classifier consistent with the training set. The classification 
problem is not linearly separable. 
 
Consequently, slack variables1 ξi are introduced to cope with 
misclassified samples and prevent Equation 3 from being 
violated. Another reason is the avoidance of over-fitting the 
classifier to the training samples, which would result in poor 
performance. It becomes: 
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The final optimization problem is subsequently: 
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C is a constant which determines the trade-off between margin 
maximization and training error minimization. 
 
Nonlinear SVMs  When the classification problem is not 
linearly separable, one solution consists in changing the feature 
space. The data is projected in a higher dimension space using a 
nonlinear mapping function Φ: D → H, in which the new 
distribution of samples enables the fitting of a linear hyperplane. 
Kernels methods provide nonlinear hyperplanes and improve 
classification abilities. The same margin optimization method 
can then be performed. 
 
Finding Φ is a difficult problem. In practise, the xi points are 
implicitly projected in H by defining a kernel K: 
DxD ℜ→ with K(xi, xj)=(Φ(xi) | Φ(xj)). In fact, the knowledge 
of K is sufficient to compute the optimal classifier. It has only 
to fullfil Mercer's condition (Schölkopf et al., 1998). 
 
Multiclass SVMs  SVMs are designed to solve binary problems. 
When having n>2 classes of interest, various approaches are 
possible to address the problem, usually combining a set of 
binary classifiers. We choose the `one-against-one' approach 
because it has been shown to be more suitable for large 
problems (Hsu and Lin, 2002). For such pairwise classification, 
n (n-1)/2 binary classifiers are computed on each pair of classes. 
Each sample is assigned to the class getting the highest number 
of votes. A vote for a given class is defined as a classifier 
assigning the sample to that class. 
 
In practise  The LIBSVM software is used to implement the 
SVM algorithm (available at http://www.csie.ntu.edu.tw/~cjlin/ 
libsvm). Slack variables are introduced (soft-margin classifier). 
Then, the parameter C has to be optimized with the kernel 
hyperparameters (see Section 4.3). 
 

                                                                 
1 A slack variable is a nonnegative variable that turns an inequality into 

an equality constraint. 
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4.3 Kernel selection 

Without sufficient a priori knowledge of the influence of 
geometric and radiometric parameters on the pulse shape (or 
even strong hints about characteristic behaviours on urban 
areas), the design of a kernel dedicated to our specific purpose 
given our cues is a very difficult task. Therefore, a generic 
kernel was selected, the Gaussian kernel defined as: 
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where γ tunes how similar to the training data the test data is 
expected to be (γ→ 0 for instance leads to over-fitting and 
consequently reveals a low generalization ability of the 
classifier). 
 
Because optimal values of C and γ are not known beforehand, a 
grid search is performed in which the cross-validation accuracy 
(CVA) is computed for each point. In a v-fold cross-validation 
procedure, the training data are divided in v subsets of equal 
size. The classifier is trained on v-1 subsets and ran on the 
remaining one. The CVA represents the percentage of samples 
correctly classified averaged over all the subsets when they 
were used as the testing subset. The (C,γ) grid is composed of 
exponentially growing values of C and γ. After the coarse grid 
search, a finer one is computed in a smaller range around the 
optimal parameters found in the first step. Such grid search is 
necessary since the CVA over (C, γ) set is not convex. 
 
4.4 Feature selection and relevancy 

Our feature vector for each lidar point has eight components. 
- μΔr: difference between the pulse range and the highest 

range (lowest altitude) found in a large spherical 
environment (20m radius for instance), 

-  - R: residuals computed from a plane estimated by a 
robust M-estimators with norm L1.2 (p=1.2 is proved to be 
the optimal value for a Lp estimator (see (Xu and Zhang, 
1996) for more details) on the points in a given 
neighbourhood (here a spherical environment of 0.5m 
radius), 

-  - nz: the deviation of the local normal vector from the 
vertical, 

-  - Δzfl: the altitude difference between the first and the 
last pulse of the waveform, 

-  - N: the number of echoes in the waveform, 
-  - A, σ, α: the pulse amplitude, width, and shape, 

respectively (extracted from the waveform processing step 
described in Section 3). 

Featur
e 

Building Vegetatio
n 

Artificial 
Ground 

Natural 
Ground

μΔr variable variable → 0 → 0 
R → 0 high → 0 → 0 

nz (°) [-45,45] variable [-10,10] [-10,10]
Δzfl 0 high 0 0 
N 1≈  1≥  1≈  1 
A variable medium low variable
σ medium high variable variable
α [1.5, 1.6] variable 2≈  2≥  

 
Table 1:  Empirical values of the selected features for SVM 

classification for the four labels. 

 
The three first parameters can be used with every 3D point 
cloud (only geometric information). The three last ones are 
derived by waveform modelling (amplitude can also be 
available with multiple-pulse point clouds). Feature μΔr allows 
to filter points on the terrain from off-ground points; Δzfl and N 
discriminate vegetation points from the others. These two 
information are necessary because the number of echoes alone 
is not sufficient. Multiple reflections can occur when the laser 
beam hits a roof (due to superstructures) and the street (due to 
cars or building edges). R and nz values are also affected by 
such data. The Generalized Gaussian parameters are introduced 
in the SVMs to see how significant they are for the 
segmentation between the four classes and especially natural 
and artificial grounds. 
 
Table 1 summarizes the feature values for the different labels. 
Other features have been tested such as the altimetric texture 
and several moments of the three extracted parameters in a 
given neighbourhood (mean, standard deviation, and skewness) 
and the backscatter cross-section (Wagner et al., 2006) but they 
were not found relevant for our study. 
 
 

5. FULL-WAVEFORM LIDAR DATA 

Two data sets are available for this study. The data acquisitions 
were performed with the RIEGL LMS-Q560 system over the 
cities of Biberach (Germany) and Le Brusquet (France). The 
main technical characteristics of this sensor are presented in 
(Wagner et al., 2006). The specifications of each survey are 
described in Table 2. 
 
 

Area Biberach Le Brusquet
Urban specificity dense rural 
Flight height (m) 500 700 
Footprint size (m) 0.25 0.35 

PRF (kHz) 100 111 
Pulse width (ns)                > 5 

Temporal sampling (ns)                  1 
Vertical section (m) 18 or 36 24 or 48 
Pulse density (/m²) 2.5 5 

 
Table 2:  Overview of the specification of the data sets. 

 
Each return waveform is composed of one or two sequences of 
60 and 80 samples (for Biberach and Le Brusquet, respectively). 
For each recorded waveform, the digitized emitted pulse and 
the echoes found by the hardware detection algorithm are given 
as well as their amplitude and width. In urban areas, the 
digitization of vertical sections of around 30m is sufficient to 
record backscattered signals both from the tree tops and the 
ground below them. 
 
The city of Biberach includes residential, industrial, and dense 
urban areas. The surveyed area of Le Brusquet consists of 
scattered houses in an alpine rural region. 

 
 

6. RESULTS AND DISCUSSION 

6.1 Modelling raw signals 

As described in details in (Chauve et al. 2007), it is still 
appropriate to model complex waveforms with the GG function 
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and all the more crucial in urban areas. Indeed, the benefits of 
full-waveform data for building reconstruction or classification 
are threefold. 
 
First, the GG model improves signal fitting. More relevant 
points are extracted. 5% additional pulses are found which 
correspond to weak pulses in trees, hedges, building edges and 
roof superstructures. Furthermore, taking the 'ringing effect' 
into account allows to exclude artifacts (i.e., non-existing points) 
during post-processing (see Figure 2). On ground and building 
regions, ringing points are re-moved (> 15% of the total number 
of points). 
 
 

    
 

Figure 2: Building point could without taking the “ringing 
effect” into account (left, the black arrow shows the false point 

layer). The same data after the removal of the FW artifacts 
(right). The roof appears no longer doubled. 

 
Furthermore, decomposing parametrically the waveforms 
increases the accuracy of the signal maxima location along the 
lidar beam. The target range detection is subsequently improved 
by more than 0.05m on building roofs and ground. 
Finally and above all, the global signal fitting quality is 
increased. Flattened and high single pulses as well as narrow 
ones are now well detected. 
 
Figure 1 shows that since α values are in many cases larger than 

2  (mean value=1.52), waveforms are in reality flattened, 
compared to Gaussian curves. Depending on the application, 
the Gaussian model can nevertheless be sufficient. For example, 
in forested areas, waveforms are mainly composed of at least 
two peaks. In such application, it is often not of interest to 
extract a shape parameter, which will depend both on the 
reflected target and on the targets already hit by the laser beam. 
But, in urban areas, the GG contribution is all the more 
significant since this parameter provides genuine information 
about the target shape and reflectance. 
 
6.2 Behaviour of extracted parameters 

A morphological analysis of lidar waveforms is needed and a 
simulation step is required to understand how the pulse interacts 
with the targets and to decorrelate geometric and radiometric 
influences. Amplitude and width values have also to be 
corrected according to the waveform angle of incidence and the 
target slope. Analysis of extracted point clouds revealed the 
following general behaviour of the three extracted parameters 
for different targets in urban areas: 
- - High amplitude values are found on building roofs 

independent of the material (except metal), on gravel, on 
sand, and cars. The lowest values correspond to vegetation 
points, due to a higher target heterogeneity and 
attenuation. Streets have also low amplitude values, but 
despite low contrast it is possible to visually discriminate 
different kinds of surfaces. 

- - Vegetation spreads lidar pulses that is why the highest 
width values are found in trees and hedges. Ground and 
building surfaces coincide with low width values, even if 
an increasing roof slope tends to increase pulse width. 

-  - Very low and high shape values are characteristics of 
building edges and vegetation. Building region 
corresponds to α values in a specific range (between 1.5 
and 1.6). Natural ground (especially grass) and artificial 
ground surfaces can also be visually distinguished. 
However, vegetated areas exhibit comparable values (see 
Figure 1). 

 
6.3 Classification 

Both data sets have been classified. Approximatively 0.8% of 
the pulses were used for the training step and 1% to find the 
optimal values of C and γ. For all the tests carried out, the 
correct classification rate for the training step oscillates between 
80 and 90%. It illustrates that the SVM classifier does not over-
fit, but is able to generalize and has been trained sufficiently. 
 
 

Area (number 
of points) Building Vege-

tation 
Artif. 

ground 
Natural
ground

Building 
(76593) 87.1 8.8 3.6 0.5 

Vegetation 
(8943) 10.2 88.9 0.7 0.2 

Artificial 
ground (49048) 2.2 2.1 84.6 11.1 

Natural 
ground (1043) 4.1 ~ 0 33.2 62.7 

 
Table 3: Confusion matrix computed with ground truth 
consisting on 6% of the whole data set of Biberach (ρ=0.81 and 
135627 points). 
 
Table 3 gives the classification results over the city of Biberach 
using the vector composed of eight features. It shows that the 
segmentation between different kinds of ground leads to a 
certain rate of misclassification. The main reasons are, first, that 
only few grass or sand regions are present in Biberach area and 
therefore only limited numbers of samples are available for 
training and test. Moreover, the clusters in the feature space of 
these two classes are very close (cf. Table 1). The results are 
there-fore very sensitive to the training step and the selected 
regions. Consequently, the SVM classification often fails when 
discriminating these two regions. Nevertheless, tests carried out 
on the city of Le Brusquet (rural area) show that classification 
in four labels is still conceivable when enough training samples 
are available (Figure 4). The building and vegetation points are 
well classified. As expected, some building points are classified 
as ground (their values can be close, e.g., a flat dark roof close 
to the ground) and as vegetation especially superstructure and 
building edge points. Vegetated points can also be labelled as 
building when the laser beam hits dense tree areas. The Overall 
Accuracy ρ is used as a quality criterion and is defined as: 
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where Ai

j  gives the number of laser points labelled as j and 
belonging to the class i in reality. ρ is equal to 1 when the 
classification is perfect and 1/(number of labels) when the 
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classifier randomly chooses the class for each point with the 
same probability. Figure 3 shows the evolution of the 
classification accuracy depending on the input features, adding 
them by their historical “order of appearance” (see part 4.4). 
 
 

 
 

Figure 3:  Overall accuracy evolution depending on the features 
included in the SVM algorithm. Starting from the vector {μΔr, R, 

nz}, the other ones are added progressively (Biberach area). 
 
Each new feature improves the classification results. A label-
by-label analysis reveals that the amplitude value allows to 
discriminate building and ground points; the feature σ is helpful 
to enhance the building/vegetation separation. In reality, results 
are slightly worse for ground points with α than without the 
integration of this parameter for the Biberach data sets (63.3% 
success without α for the natural ground class), whereas this 
parameter visually improves the results over Le Brusquet (see 
figure 4, no ground truth available for this area). Another 
solution has to be found to discriminate ground surfaces better. 
 

 
 

 
 
Figure 4: Classification results in a scattered urban area (Le 
Brusquet). Above: orthoimage of the region of interest. Below: 
classified point cloud (yellow: buildings, red: vegetation, blue: 
artificial ground and green: natural ground). 
 
Figure 4 and 5 give examples of classified point over the two 
surveyed areas. Moreover, by merging the two terrain classes, 
the Overall Accuracy of the remaining three classes reaches 
0.92 for the Biberach area. It shows that the SVM method is 
suitable for lidar point classification in dense build-up areas. 
 
 

7. CONCLUSIONS AND PERSPECTIVES 

A flexible methodology for full-waveform lidar data analysis 
and classification in urban areas has been proposed in this 

article. In a first part, it has been shown that modelling 
accurately waveforms improves signal fitting and provides 
point clouds with additional useful parameters. Such parameters 
are physically interpretable and significantly contribute to an 
appropriate classification algorithm. The main limitation is that 
the parametric expression of the waveform functions has no 
longer simple formulation and new algorithms are needed to 
perform the optimization step. The Reversible Jump Markov 
Chain Monte-Carlo (RJMCMC) technique is one of them and 
will be soon used to handle more complex modelling functions. 
 
In a second part, we can conclude that the SVM is a suitable 
methodology to perform classification in urban areas since it 
can handle classical geometric features like the 3D coordinates 
together with new features extracted from the waveform 
processing step. First results are promising; discrimination of 
buildings, vegetation, and ground regions was achieved with 
92% accuracy in dense urban areas. Segmentation of different 
kind of surfaces is also possible. 
 
Similar accuracies have been reported for instance in 
(Matikainen et al., 2003), with only multi-echo lidar data. 
Classification with features used in such paper and FW features 
has to be performed to assess the real contribution of full-
waveform lidar data. 
 
Many improvements are conceivable with regards to the results. 
First, other generic SVM kernels have to be tested. On the other 
hand, a specific kernel can be formulated dedicated our specific 
task. For that purpose, the number of features has to be reduced 
and therefore synthetic cues found. Another solution is perhaps 
to iteratively process SVM classification focusing at each step 
on a specific class and segment it more precisely. A third 
possibility is eventually to skip the step of feature choice and to 
use the vectors of the FW data instead. 
 
Finally, the classification results shall be the foundation of 
higher-level reasoning aiming at the 3D reconstruction of 
buildings. For this purpose geometric and topologic object 
features will be modelled, which are required for instance for 
object grouping. 
 
 

 
 

 
 
Figure 5: Classification results in a dense urban area (Biberach). 
Above: orthoimage. Below: classified point cloud (same 
colours as in Figure 4). 
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