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ABSTRACT: 
 
Currently available laser scanners are capable of performing hundreds of thousands of range measurements per second at a range 
resolution of a few centimeters. Despite that increasing performance, up to now airborne LiDAR mapping has established itself only 
in fields of application that do not require on-line data processing. A typical example in this context is urban modeling. We want to 
point out some other tasks like object recognition, situation analysis and on-line change detection that have come into reach of 
today's LiDAR technology. Primary goal of the work presented in this paper is the on-line data preparation for subsequent analysis. 
We present a workflow of real-time capable filter operations to detect the ground level and distinguish between clutter and man-
made objects in airborne laser scanner data of urban regions. Based on interpretation of single scan lines, straight line segments are 
first segmented and then connected, and the resulting surfaces are delineated by a polygon. A preliminary step is done towards fast 
reconstruction of buildings for rapid city-modeling, co-registration or recognition of urban structures. 
 
 

1. INTRODUCTION 

1.1 Problem description 

Airborne laser scanning (ALS) of urban regions is nowadays 
commonly used as a basis for 3D city modeling. Typical 
applications lie in the fields of city planning, tourism, 
telecommunication, architecture, archeology and environmental 
protection. A good overview and a thorough description of ALS 
principles can be found in (Wehr & Lohr, 1999). Laser scanning 
has several advantages compared to classical aerial photography. 
It delivers direct 3D measurements independently from natural 
lighting conditions, and it offers high accuracy and point 
density. 
 
Despite increasing performance of LiDAR systems, most 
remote sensing tasks that require on-line data processing are 
still accomplished by the use of conventional CCD or infrared 
cameras. Typical examples are airborne monitoring and 
observation devices that are used for automatic object 
recognition, situation analysis or real-time change detection. 
Looking at urban regions, these sensors can support law 
enforcement, firefighting, disaster management, and medical or 
other emergency services. At the same time it is often desirable 
to assist pilots with automatic aircraft guidance in case of poor 
visibility conditions. Three-dimensional information as 
provided by the LiDAR sensor technology would ease these 
tasks, but in many cases the complexity of irregularly 
distributed laser point clouds prevents an on-line data 
processing. 
 
In another aspect, on-line pre-processing and reducing the ALS 
data to the essential information are important for efficient data 
storage and data transfer in a sensor network. Additionally, 
when combining different data sets, e.g. showing the same 
urban region in oblique view from different directions, the 
pairwise co-registration is even more accurate when dealing 

with structures of higher order like surfaces instead of the 
original point clouds (Gruen & Akca, 2005). 
 
In the classical workflow of ALS data processing e.g. for city 
modelling, the first step is to register all the collected data by 
using navigational sensors (INS and GPS), resulting in an 
irregularly distributed 3D point cloud. Automatic processing of 
these data is quite complex since it is necessary to determine a 
set of nearest neighbors for each data point to handle search 
operations within the data set. The common technique for that is 
the generation of a triangulated irregular network (TIN). This 
approach leads to most accurate results, but it is not applicable 
for real-time applications. 
  
1.2 Contribution 

Most of currently used airborne laser scanners like the RIEGL 
LMS-Q560 utilize opto-mechanical beam scanning to measure 
range values in single scan lines. The third dimension is 
provided by the moving airborne platform. This paper aims at 
fast pre-classification of LiDAR points and segmentation of 
buildings in urban environments based on the analysis of these 
scan lines. Instead of initial georeferencing of all range 
measurements, the analysis of geometric features in the 
respective local neighborhood of each data point is performed 
directly on the 2D regularly distributed scan line data. These 
operations can be executed comparatively fast and are 
applicable for online data processing. This paper presents a 
workflow of real-time capable operations to detect the ground 
level and distinguish between clutter and man-made objects in 
airborne laser scanner data of urban regions. A preliminary step 
is done towards the fast reconstruction of buildings including 
their facades for rapid city-modeling or object recognition. The 
detected rooftops can even be used for a fast co-registration of 
different views of the same urban region. If an accurate city 
model is already available, the proposed methods could be used 
for a structural comparison, e.g. for change detection. 
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1.3 Related work 

Processing of laser scanner point clouds for automatic filtering, 
segmentation, classification and modeling of structures has been 
thoroughly studied by many researchers in recent years. In some 
parts our work follows or extends the ideas presented in other 
articles that are especially mentioned in this section. According 
to (Vosselman et al., 2004), two major classes of segmentation 
algorithms can be pointed out: surface growing and scan line 
segmentation. Pointwise growing of planar faces in combination 
with a three-dimensional Hough transform as described by 
Vosselman and Dijkman (2001) can be used to reconstruct 
accurate 3D building models, but since it needs a TIN structure 
this approach is suited only for off-line data processing. 
 
Fundamental ideas on fast segmentation of range images into 
planar regions based on scan line analysis have been published 
by Jiang and Bunke (1994, 1999). Their algorithm first divides 
each row of a range image into straight line segments, and then 
it performs a region growing process with these line segments. 
Since this is the most obvious way of proceeding, we basically 
adapted that approach to work with our data. Instead of range 
images we have to deal with continuously recorded scan lines 
that are not necessarily parallel. Jiang and Bunke originally 
used the splitting algorithm of Duda and Hart. Axelsson (1999) 
described a classification of points in a scan line based on the 
second derivatives of the elevation difference. In contrast our 
filtering of straight line segments is based on a robust 
estimation technique (RANSAC). This was also proposed by 
Hatger and Brenner (2003) for the segmentation of roads in 
regularized ALS grid data. Since our data is not regularized this 
way, we had to implement a different method to merge straight 
line segments into surfaces. Sithole and Vosselman (2003, 2005) 
used scan line based methods for structure detection in point 
clouds and filtering of ALS data, but they refer to the term 
“scan line” in a different manner. Instead of processing 
hardware generated scan lines like we do, they define scan lines 
with multiple orientations by slicing the point cloud and 
connecting 3D points based on height difference and slope.  
 
From an application-oriented point of view, only few articles 
have yet been published on on-line processing of laser scanner 
data. Examples are automatic uploading of piled box-like 
objects (Katsoulas & Werber, 2004) or the exploitation of 
LiDAR data to obtain traffic flow estimates, described by Toth 
et al. (2004). 
 

2. EXPERIMENTAL SETUP 

The sensors that are briefly described here have been attached to 
a Bell UH1-D helicopter to acquire the data shown in this paper. 
 
2.1 Navigational sensors  

The APPLANIX POS AV comprises a GPS receiver and a 
gyro-based inertial measurement unit (IMU), which is the core 
element of the navigational system. The GPS data are used for 
drift compensation and geo-referencing, whereas the IMU 
determines accelerations with high precision. These data are 
transferred to the position and orientation computing system 
(PCS), where they are fused by a Kalman filter, resulting in 
position and orientation estimates for the sensor platform. 
 
2.2 Laser Scanner 

The RIEGL LMS-Q560 is a laser scanner that gives access to 
the full waveform by digitizing the echo signal. The sensor 

makes use of the time-of-flight distance measurement principle 
with nanosecond infrared pulses. Opto-mechanical beam 
scanning provides single scan lines, where each measured 
distance can be geo-referenced according to the position and 
orientation of the sensor. Waveform analysis can contribute 
intensity and pulse-width as additional features, which is 
typically done by fitting Gaussian functions to the waveforms. 
Since we are mainly interested in fast processing of the range 
measurements, we neglect full waveform analysis throughout 
this paper. Range d (expressed in meter) under scan angle α (-30 
degree to +30 degree) is estimated corresponding to the first 
returning echo pulse as it can be found by a constant fraction 
discriminator (CFD). Positions with none or multiple returns are 
discarded, and with x=d·sin(α), y=d·cos(α) the scan line data is 
given in 2D Cartesian coordinates. Since the rotating polygon 
mirror operates with 1000 scan positions, one scan line can 
successively be stored in an array A of maximum size (1000, 2). 
In praxis, navigational data assigned to each range measurement 
need also to be stored in that array for later georeferencing. 
Figure 1 illustrates the process of data acquisition and 
exemplarily shows a scan line measured at an urban area. 
Buildings appear to be upside down in that representation, 
because the rooftops are nearer to the sensor than ground level. 
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Figure 1. Illustration of data acquisition (top) and exemplary 

scan line (bottom). 
 

3. USED METHODS AND DATA PROCESSING 

Most parts of typical buildings will appear as local straight line 
segments within the scan line data, even if the airborne laser 
scanner is used in oblique configuration to obtain information 
concerning the facades of buildings. Our method is intended to 
filter the data points in each scan line to keep only those points 
that are most promising to represent parts of buildings. 
Consequently, points at ground level and those belonging to 
objects with an irregular shape like trees or other vegetation are 
removed. To distinguish between clutter and man-made objects, 
the RANSAC technique is used to fit straight line segments to 
the scan line data.  
 
3.1 Random sample consensus (RANSAC) 

The random-sample-consensus paradigm (RANSAC) as 
described by Fischler and Bolles (1981) is a standard technique 
to estimate parameters of a mathematical model underlying a set 
of observed data. It is particularly used in case that the observed 
data contain data points which can be explained by a set of 
model parameters (inliers) and such data points that do not fit 
the model (outliers). To apply the RANSAC scheme, a 
procedural method has to be available that determines the 
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parameters to fit the model to a minimal subset of the data. In 
this paper we use RANSAC to fit line segments to subsets of 
2D points in a scan line. If we have a set of n points {p1, …, pn} 
and we assume that this set mostly contains points that 
approximately lie on straight line (inliers) and some others that 
do not (outliers), simple least squares model fitting would lead 
to poor results because the outliers would affect the estimated 
parameters. RANSAC estimates a straight line only by taking 
the inliers into account, provided that the probability of 
choosing only inliers among the data points is sufficiently high. 
To compute a straight line, a random sample of two points (the 
minimal subset) pi and pj is selected. The resultant line’s normal 
vector n0 can easily be computed by interchanging the two 
coordinates of (pi – pj), altering the sign of one component and 
normalizing the vector to unit length. This yields the normal 
vector n0 and with (x–pi)·n0 = 0 the line’s Hessian normal form 
is given. Given this representation it is easy to check any other 
point p if it is an inlier or outlier simply by computing the 
distance d = |(p–pi)·n0| to the previously obtained line. If the 
distance d is below a pre-defined threshold, we assess that point 
as inlier. The number of inliers and the average distance of all 
inliers to the line are used to evaluate the quality of the fitted 
straight line. This procedure is repeated several times in order to 
converge to the best possible straight line.  
 
3.2 Scan line analysis 

The following steps are executed to fit straight line segments to 
the scan line data and to remove irregularly shaped objects: 
 

(1) Choose an unmarked position i at random among the 
available data in the array A holding the scan line data. 

(2) Check a sufficiently large interval around this position i 
for available data, resulting in a set S of 2D points. 

(3) Set the counter k to zero. 
(4) If S contains more than a specific number of points (e.g. 

at least six), continue. Otherwise mark the current 
position i as discarded and go to step 14. 

(5) Increase the counter k by one. 
(6) Perform a RANSAC-based straight line fitting with the 

2D points in the specified set S. 
(7) If RANSAC is not able to find an appropriate straight line 

or the number of inliers is low, mark the current position 
as discarded and go to step 14. 

(8) Obtain the line’s Hessian normal form (x–pi)·n0 = 0 and 
push the current position i on an empty stack. 

(9) Pop the first element j off the stack. 
(10) If the counter k has reached a predefined maximum and 

the number of points in S is high enough, store the 2D 
normal vector information n0 at position j and mark that 
position as processed. 

(11) Check each position in an interval around j that has not 
already been looked at whether the respective point lies 
sufficiently near to the straight line. If so, push its 
position on the stack. Additionally, include the 2D point 
in a new set S’. 

(12) While the stack is not empty, go to step 9. Otherwise 
continue with step 13. 

(13) If the counter k has reached its maximum (e.g. two 
cycles), set it to zero and continue with step 14. 
Otherwise go to step 4 with the new set of points S:=S’. 

(14) Go to step 1 until a certain number of iterations has been 
performed or no unmarked data is available in the scan 
line. 
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Figure 2. Detected straight line segments in a typical scan line, 

color-coded according to 2D normal direction. 
 
In each iteration step we randomly select a position in the array 
A of scan line data points and try to fit a straight line segment to 
the neighboring data at that position. The described RANSAC 
technique provides a robust estimation of the line segment’s 
parameters, with automatic evaluation of the quality, e.g. by the 
number of outliers. If the fitted straight line is of poor quality, 
the data associated with the current position is assessed as 
clutter. Otherwise, we try to optimize the line fitting by looking 
for all data points that support the previously obtained line, 
which is done in steps (9), (10), (11) and (12). These steps 
actually represent a line growing algorithm. The local fitting of 
a straight line segment is repeated once with the supporting 
points to get a more accurate result. The end points of the 
resulting line segment can be found as the perpendicular feet of 
the two outermost inliers. These and the 2D normal direction 
are stored before the method is repeated until all points in the 
scan line are either assessed as clutter or part of a line segment. 
Figure 2 shows detected straight lines for one exemplary scan 
line, depicted with a suitable color-coding according to the 
normal direction. The median locations of all detected line 
segments are used as subset of the seed-points in the next scan 
line to speed up calculations, so the choice in step (1) is no 
longer “random” at this stage. 
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Figure 3. Automatically identified dividing line between 

buildings and ground level in a scan line. 
 
3.3 Detection of the ground level 

The next step is to identify all points in the scan line that form 
the ground level. A line segment at ground level can be 
characterized by the number of points lying beneath it in an 
appropriate neighborhood with respect to its 2D normal 
direction (that number should be near zero). In general, this is 
not a sufficient condition, but it yields enough candidates for an 
estimation of the dividing line between objects of interest and 
ground level. The dividing line is formed by estimates of the 
sensor-to-ground distance in y-direction at each position in the 
scan line. Each newly found line segment, potentially lying at 
ground level, contributes to that estimate in a neighborhood of 
its position with respect to its normal direction. Thus, this 
approach is permissive to unevenness of the terrain (Figure 3). 
Finally, all line segments lying completely below the dividing 
line are assessed as ground level, whereas line segments 
crossing or lying above are classified as part of a building. For 
increased robustness, the exponentially smoothed moving 
averages of the dividing line’s parameters are perpetually 
transferred from the previously processed scan lines.   
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After most of the clutter and unwanted data points at ground 
level have been removed, the remaining line segments are likely 
to belong to planar parts of buildings, e.g. facades or rooftops. 
With our approach, only the end points of each detected line 
segment have to be georeferenced to result in correct positioned 
straight 3D lines. That reduces the amount of arithmetic 
operations, since only few points need to be converted with 
respect to the sensor orientation.  
 
To give a comparison, Figure 4 (a) shows a rendered 
visualization of a point cloud of an urban area. Each range 
measurement has been georeferenced and every 3D point is 
depicted with its associated intensity resulting from off-line 
waveform analysis. The whole data set contains 1.300.000 
points. Both full waveform analysis and converting of all points 
to the global 3D coordinate system are time-consuming. In 
contrast, Figure 4 (b) shows straight line segments after real-
time capable scan line processing. Each line segment is depicted 
with a color-coding according to its 2D normal direction; the 
detected ground level is shown in yellow. Here the data set 
contains only 35.000 line segments classified as building and 
15.000 line segments at ground level. 
 

 
(a) 

 

 
(b) 

 
Figure 4. (a) Laser data of an urban area scanned in 45° oblique 

view, (b) same urban region after scan line analysis. 
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Figure 5. Two line segments within the same scan line. 

3.4 Merging of line segments within a scan line 

Detected straight line segments within a single scan line are 
often ambiguous and affected by gaps. To merge overlapping or 
adjacent pieces that are collinear, line-to-line distances have to 
be evaluated. Let (P1, P2) and (Q1, Q2) denote two different line 
segments detected within the same scan line (Figure 5).  
 
P1, P2, Q1, and Q2 are the georeferenced end points in 3D space. 
Since every range measurement has a time-stamp, P1 and Q1 can 
be chosen to represent the first recorded end point in the 
respective line segment, P2 and Q2 are chosen accordingly. Two 
different distance measures are evaluated to decide whether the 
two line segments are to be merged or not. The first distance d1 
indicates if (P1, P2) and (Q1, Q2) are overlapping. In that case it 
would be zero; otherwise it is set to the minimum Euclidean 
distance between end points of the two line segments. With the 
abbreviations v1 = p1 – q1, v2 = p1 – q2, v3 = p2 – q1, and v4 = p2 – 
q2, distance d1 is defined as 
 

 ( )1 2 3 4
1

min , , ,  if   0      
:

 else

T
i j i j

d
⎧ ≥ ∀ <⎪= ⎨
⎪⎩

v v v v v v
0

 (3.1) 

 
With pv = (p2 – p1)/|| p2 – p1|| and qv = (q2 – q1)/|| q2 – q1||, the 
parameters of the perpendicular feet of each end point with 
respect to the other line segment are given as 
 

s1 = (q1 – p1)T pv  t1 = (p1 – q1)T qv 
s2 = (q2 – p1)T pv  t2 = (p2 – q1)T qv 

 
The second distance d2 is a measure of collinearity. It describes 
the sum of all minimal Euclidean distances of end points to the 
other line segment. Using the above parameters s1, s2, t1 and t2, 
distance d2 can be expressed as 
 

 2 1 1 1 1 2

1 1 1 1 2 2

:

    

d s s

t t

= + − + + −

+ + − + + −
v

v v

p p q p p q

q q p q q p
2v  (3.2) 

 
Let L denote the list of all detected line segments within the 
current scan line. The algorithm to find corresponding line 
segments works as follows: 
 

(1) Initialize the current labeling number m with 1. 
(2) Select the next entry a in L, starting with the first one. 
(3) If a is unlabeled, set its label to m and increase m by 1. 
(4) Successively test each line segment b in L following after 

a if d1(a,b) and d2(a,b) are smaller than predefined 
thresholds. If so, go to step (5), otherwise continue with 
testing until b reaches the end of the list L. In that case, go 
to step (6) 

(5) If b is unlabeled, set its label to the label of a. Otherwise 
set the label of a and b to the minimum of both labels. 
Continue testing in (4).  

(6) Continue with (2) until a reaches the end of the list L. 
(7) Repeat the procedure until labels do not change anymore. 

 
Roughly spoken, the above procedure first initializes each line 
segment detected in the scan line with a unique label. Those 
collinear line segments that are found to overlap or lie adjacent 
are linked together by labeling them with their minimum 
labeling number. This process is repeated until the labels reach 
a stable state. The emerging clusters of line segments with same 
label are then represented by one single line segment, given by 
the two outermost end points of that cluster.  

108



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

3.5 Merging of line segments over several scan lines 

In principle, merging of 3D line segments over multiple scan 
lines is performed similar to the methods described in the 
previous section. In contrast to merging of line segments within 
the same scan line, we are now interested in coplanarity instead 
of collinearity. Thus other distance measures have to be 
evaluated. Let Pi, Pj, and Pk be three of the four end points of 
two line segments. The distance of the fourth end point Pm to 
the plane defined by the three others is a measure of coplanarity. 
We define distance d3 as the sum of all four possible 
combinations: 
 

 ( ) ( ) ( )
( ) ( )3

4
:

T
i m i j i k

i j i k

d
− − × −

=
− × −

∑
p p p p p p

p p p p
 (3.3) 

 
With the notations of section 3.4, d4 is simply defined as the 
minimum Euclidean distance between respective first and last 
end points and the centers of two line segments 
 
 ( 1

4 1 4 12: min , ,d = v v v v )4+

)

 (3.4) 

 
Another distance measure can be expressed by the angle 
between direction vectors pv and qv 
 
 (5 : arccos Td = v vp q  (3.5) 

 
Labeling of line segments over multiple scan lines works 
analogous to the labeling procedure within a single scan line. 
Nevertheless, there are some differences since scan lines are 
recorded successively. Moreover, simply testing of two line 
segments for coplanarity would allow the label to be handed 
over at edges of buildings. To avoid that, the 3D normal 
direction at each line segment has to be estimated. 
 

• Let n be the number of scan lines to be traced back (e.g. 
five). L0 denotes the list of line segments in the current 
scan line, L1 is one scan line behind, L2 is two steps behind 
and so forth. 

• First, test every line segment in L0 if it is near to other line 
segments in {L1, …, Ln} in terms of distance measures d3, 
d4, and d5. If line segments a and b correspond this way, 
store this link in a database. 

• After that, line segments in Ln will receive no further links. 
The 3D normal direction at each line segment in Ln is 
estimated by RANSAC based plane fitting to the set of 
associated other line segments. If that set contains too few 
points or the number of outliers is high, the respective line 
segment is of class 2. Those line segments are typically 
isolated or near to the edge of a building. All other line 
segments in Ln belong to class 1 and a 3D normal direction 
can be assigned to them. 

• Initialize all line segments of Ln with new labeling 
numbers. Test every line segment in Ln if it is near to other 
line segments in {Ln+1, …, L2n} in terms of distance 
measures d3, d4 and d5 (these links are already established). 

• If line segments a and b are linked, the following cases 
may occur: 
- a and b are of class 2: do nothing 
- only one line segment is of class 1: the class 2 line 

segment receives the label of the class 1 element 
- a and b are of class 1: if the angle between the 

associated normal directions (calculated same as d5) 

falls below a predefined threshold, set the label of a 
and b to the minimum of both labels 

• Continue comparing Ln to {Ln+1, …, L2n} until labels reach 
a stable state. 

 

Just for clarification: the labels that are assigned to the scan 
lines in section 3.4 are independent from those introduced here. 
The first n scan lines are required for initialization before the 
algorithm starts working. At least 2n scan lines are needed 
before the merging of line segments begins. Line segments that 
form a connected (mostly planar) surface will successively be 
marked with the same label until no more fitting line segments 
are recorded (Figure 6). 
 

 
 
Figure 6. Result of scan line analysis and line segment grouping 

(color corresponds to label). 
 
3.6 Delineation of connected line segments 

For data storage and preparation of subsequent analysis, it is 
convenient to delineate each completed cluster of connected line 
segments by a polygon (closed traverse). The 3D normal 
direction nc of a cluster C can be estimated as the weighted 
average of normal directions of all line segments (weighted by 
line length). It is easy to determine an affine transformation E 
that transforms nc to the z-axis, such that the points of E(C) 
roughly lie in the x-y plane. The boundary is derived by 
determination of a 2D alpha shape (Edelsbrunner et al., 1983) 
with an alpha corresponding to scan line distance.  
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Figure 7. Exemplary alpha shape of a non-convex cluster. 
 
The basic idea behind an alpha shape is to start with the convex 
hull. Then a circle of radius α is rolled around that convex hull. 
Anywhere the alpha-circle can penetrate far enough to touch an 
internal point (a line segment) without crossing over a point at 
the boundary, the hull is refined by including that interior point. 
Then the alpha shape is transformed back by application of E-1. 
Finally, we have a set of 3D shapes representing grouped line 
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segments resulting from scan line analysis (Figure 7, Figure 8). 
Subsequent analysis depends on the problem at hand. For 
building reconstruction and model generation, the detected 
planar faces have to be intersected to find edges and corners. 
Examples for that procedure can be found in (Vosselman, 1999) 
or (Rottensteiner, 2005). 
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Figure 8. Shapes detected at an urban region. 

 
4. DISCUSSION AND CONCLUSION 
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The preceding sections have described a workflow of operations 
to detect the ground level and distinguish between clutter and 
man-made objects in airborne laser scanner data of urban 
regions. Analysis of ALS data is done by scan line analysis 
instead of the usual TIN based approach. With the proposed 
methods, surfaces can be segmented “on-the-fly”, thus enabling 
ALS to be used for applications that require on-line data 
processing. 
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