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ABSTRACT:

Model-free image segmentation approaches for automatic building detection, usually fail to detect accurately building boundaries due
to shadows, occlusions and other low level misleading information. In this paper, a novel recognition-driven variational framework is
introduced for automatic and accurate multiple building extraction from aerial and satellite images. We aim to solve the problem of
inaccurate data-driven segmentation. To this end, multiple shape priors are considered. Segmentation is then addressed through the
use of a data-driven approach constrained from the prior models. The proposed framework extend previous approaches towards the
integration of shape priors into the level set segmentation. In particular, it allows multiple competing priors and estimates buildings
pose and number from the observed single image. Therefore, it can address multiple building extraction from single panchromatic
images a highly demanding task of fundamental importance in various geoscience and remote sensing applications. Very promising
results demonstrate the potentials of our approach.

1 INTRODUCTION

Human visual perception involves a set of processes for distin-
guishing top-down attention from the stimulus-driven bottom-
up [Itti and Koch, 2001]. During our entrance in a crowded class-
room in order to localize and recognize someone, we will be look-
ing around, scanning everyone’s face without paying much atten-
tion to the interior design and room’s furniture. However, enter-
ing the same classroom with the intention of finding an available
desk, we will be looking at pretty much the same scene, and yet
our perception will be biased for the arrangement of the furniture,
mostly ignoring other people around [Walther and Fei-Fei, 2007].
Several problems/applications exist in computer vision that relate
perception with specific-object recognition tasks as well as image
segmentation. Variational methods have gained significant atten-
tion towards the integration of prior knowledge into the image
segmentation processes. Level set algorithms, when extended
and formulated towards such a recognition-driven way, became
robust to shadows, noise, background clutter or partial occlusions
of desired for extraction object [Paragios et al., 2005].

In remote sensing and photogrammetry, among various methods,
processing schemes and systems, which have been reported in the
literature, conventional variational curve propagation techniques
(snakes, active contours, deformable models and more recently
level sets) have revealed promising results [Mayer, 1999, Peng
et al., 2005, Cao et al., 2005, Karantzalos and Argialas, 2006].
Model-free level sets have been employed to account for the gen-
eral task of segmenting satellite images [Samson et al., 2001,Ball
and Bruce, 2005, Besbes et al., 2006], for the detection of roads
in a semi-automatic framework [Keaton and Brokish, 2002, Niu,
2006] and for the automatic detection of buildings and other man-
made objects [Cao et al., 2005, Karantzalos and Argialas, 2006].
These methods were purely image-based and therefore were vul-
nerable to misleading low-level information, due to shadows or
occlusions, which is a common scenario observed in remote sens-
ing data.

In this paper, we aim to solve the problem of inaccurate data-
driven segmentation caused by misleading low level information
due to shadows or occlusions. Looking forward to overcom-
ing above limitations, we propose a novel prior-based variational
framework, which can account for automatic building extraction
from a single image. An elegant and powerful mathematical for-
mulation, to align prior buildings shapes with the evolving con-
tour shapes, is introduced. Such a term aims to minimize a multi-
reference shape-similarity measure that admits a wide range of
transformations, beyond similarity and shapes sampling. The ob-
jective function involves both the selection of the most appropri-
ate prior model as well as the transformation which relates the
model to the image. We propose a dynamic and evolving selec-
tion of priors towards accounting for this variation by the use of
a labeling function, which controls priors shape effect to specific
image regions [Chan and Zhu, 2003, Cremers et al., 2006].

Once -and for every optimization iteration- the level set based
segmentation yields to a possible building segment, a prior -from
the database- which fits best to that region is applied. The label-
ing function evolves in time and incrementally determines mul-
tiple instances, from the shape prior set, according to the num-
ber of the detected objects. Here, the term shape prior refers to
building templates, like those shown in Figure 1. Last but not
least, neither point correspondence nor direct methods [Irani and
Anandan, 1999] were used and thus color or texture compati-
bility between the prior and the segmented image was needless.
Parametrization-free shape descriptions possess a significant ad-
vantage over landmark-based and template matching techniques,
which represent shapes by collections of points or features.

Our framework fundamentally extends previous work for auto-
matic building detection in single panchromatic images. Per-
formed experimental qualitative and quantitative evaluation demon-
strated proposed algorithm’s efficiency. The successful recognition-
driven results along with the reliable estimation of the transfor-
mation parameters suggest that the proposed method forms a highly
promising tool for various geoscience segmentation and regis-
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Figure 1: First row: Four different 3d building models with dif-

ferent footprint and roof type. Second and third row: A database

of 8 prior binary 2d templates. Each one competes the other one

to fit best in a building segment

tration applications. We organize the rest of the paper in the
following way. In Section 2, we briefly describe the proposed
projective-invariant prior-based formulation for building detec-
tion. The generalized variational framework for the integration of
multiple competing shape priors for multiple building extraction
is detailed in Section 3. Experimental results and the performed
qualitative and quantitative evaluation are presented in Section 4.
Finally, conclusions and perspectives for future work are in Sec-
tion 5.

2 PROJECTIVE-INVARIANT SHAPE PRIOR
FORMULATION

Given an image I(x) at domain (bounded) Ω ∈ R2, an interface
C and a level set representation φ : Ω → R+ one can form a
data-driven cost functionalEseg(φ) towards image segmentation.
The basic idea in model-based approaches is to extend this data-
driven cost functional by adding another energy Eprior which
favors certain contour formations [Rousson and Paragios, 2008]:

Etotal(φ) = Eseg(φ) + μEprior(φ) μ > 0 (1)

The proposed shape constraints Eprior affect the embedding sur-
face φ globally (i.e. on the entire domain ). In the simplest case
(no pose variations between the evolving interface and the prior
model), such a prior term can take the following form using the
approximations of DIRAC and HEAVISIDE distributions:

Eprior =

∫
Ω

(
Hε(φ(x)) −Hε(φ̃(x))

)2
(2)

where φ̃ is the level set function embedding a given training shape
(or the mean of a set of training shapes). Positive and nega-
tive values of φ̃ correspond to object and background regions in
Ω̃, respectively. The prior term is a weighted sum of the non-
overlapping positive and negative regions of φ̃ and φ. At each
time step, φ is modified in image regions where there is incon-
sistency between the object and background areas indicated by
Hε(φ) and Hε(φ̃). The change in φ is weighted by δε.

With the above formulation the pose and location of the object
of interest is assumed to be identical to the ones of the refer-
ence shape. In a realistic segmentation problem and in particular
for automatic building detection in aerial and satellite neither the
pose nor the location of objects are know. Statistical models of

shape variation with respect to the reference frame are a simple
approach to deal with this problem [Riklin-Raviv et al., 2007].
However these methods perform well if and only if the under-
lying assumption for the model is supported from the data. In
the case of buildings, that are being observed in remote sensing
imagery, the implicit assumption of statistical modeling using a
simple Gaussian is rather unrealistic and a real need exists to cope
with important variation of the priors.

To this end, the shape-term was extended to incorporate all pos-
sible projective transformations between the prior shape and the
shape of interest. This was addressed by applying an adequate 2D
transformation T : R2 → R2 to the prior shape φ̃. The recovery
of the transformation parameters, given the prior contour and the
curve generated by the zero-crossing of the estimated level-set
function, is described subsequently. In order to minimize the en-
ergy functional, one has to apply a gradient descent process that
calls for the evaluation of φ simultaneously with the recovery of
the transformation T for the prior shape φ̃.

2.1 Planar Projective Homography

To generalize the admissible geometric relation between two cor-
responding shapes we employ the concept of planar projective
homography. The equivalence of geometric projectivity and al-
gebraic homography is supported by a set of theorems presented
in [Springer, 1964]. The relation between corresponding views
of points on a plane (world plane) in a 3D space can be modeled
by a planar homography induced by the plane. Planar projective
homography (projectivity) is a mappingM : P2 → P2 such that
points pi are collinear if and only if M(pi) are collinear (projec-
tivity preserves lines) [Springer, 1964], [Hartley and Zisserman,
2003].

Here, similarly to the formulations of [Riklin-Raviv et al., 2007]
the homograph is calculated directly in its explicit form:

T = r +
1

d
tnT

(3)

where T forms the homography matrix determined by the trans-
lation t and rotation r between the two views and by the struc-
ture parameters n, d of the world plane. An explicit expression
for the induced homography can be derived as follows: Let y
and y′ be the corresponding homogeneous coordinates of two
views of a world point in two camera frames (y = (x, y, 1) and
y′ = (x′, y′, 1)), then the transformation from y to y′ can be
expressed as:

y′ = T y, where T =

[
h11 h12 h13

h21 h22 h23

h31 h32 h33

]

The eight unknowns of T (the ratios of its nine entries from Equa-
tion 6) can be recovered by solving at least four pairs of equations
of the form:

x′ =
h11x+ h12y + h13

h31x+ h32y + h33
, y′ =

h21x+ h22y + h23

h31x+ h32y + h33
, (4)

Note that only the ratio t/d can be recovered from T . Clas-
sic approaches recover T by solving an over-determined set of
equations like the one above. The translation and rotation (r, t)
between the image planes, and the scene structure (n, d), can
be recovered by decomposition of the known homography ma-
trix [Faugeras et al., 2001], [Hartley and Zisserman, 2003].

In particular, (i) the translation in the image is described by the
vector t = (tx, ty , tz), (ii) the rotation matrix r ∈ R3 follows the

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

 

128



Weisstein form:

r =

[
cβcγ cβsγ − sβ

sαsβcγ − cαsγsαsβsγ cαcγsαcβ
cαsβcγ − sαsγcαsβsγ − sαsγcαcβ

]

where where sα is shorthand for sin(α) and cα for cos(α) and
(iii) since generally the world plane is not perpendicular to the
optical axis of the first camera parameter n �= (0, 0, 1), the unit
vector n is obtained by: first rotating the vector (0, 0, 1) by an
angle ξ around the y-axis and then by an angle ψ around the x-
axis. Hence, n=(-sinξ, sinψcosξ, cosψ cosξ).

The prior shape is matched to the shape being segmented as part
of its detection procedure. In order to minimize the energy func-
tional (Eq.1) one has to simultaneously evolve the level set func-
tion φ and recover the transformation T (x). At each time step
one re-evaluates the homography matrix entries h, based on the
estimated transformation parameters. The coordinate transforma-
tion T is applied to the representation φ̃ of the prior shape. Thus,
the transformed representation φ̃ (T (x)) is substituted for φ̃ in
Eq.2.

The corresponding prior-based energy Eprior (Equation 4) now
takes the form:

Eprior(φ, T ) =

∫
Ω

(
Hε(φ) −Hε(φ̃ (T (x)))

)2
dx (5)

The transformation parameters T (α,β,γ,tx,ty ,tz ,ξ,ψ,d) are de-
termined via the gradient descent equations obtained by mini-
mizing the energy functional with respect to each of them. The
general gradient descent equation for each of the transformation
parameters (denoted here by u) is of the form:

u

t
= 2μ

∫
Ω

(
Hε(φ) −Hε(φ̃ (T (x)))

) ϑT (u)

ϑu
dx (6)

However, such a prior formulation can not account for multiple
building detection.

3 MULTIPLE PRIORS IN COMPETITION
EXTRACTING MULTIPLE OBJECTS

In order to retain the favorable level set property for multiple ob-
ject segmentation the prior energy of Equation 8 is extended with
a labeling (decision) function L : Ω → {−1,+1}, which indi-
cates the regions of the image where the given prior φ is to be
enforced. The role of the labeling function is to evolve dynami-
cally in order to select these regions in a recognition-driven way
during optimization.

Let us now consider the general case of a larger number of build-
ing shape priors (like all those of Figure 1) and possibly some
further independent unknown objects (which should therefore be
segmented based on their intensity only). To this end, we em-
ployed a vector-valued labeling function

L : Ω → Rk, L(x) = (L1(x), ..., Lk(x)) (7)

towards multi-region segmentation. The m = 2k vertices of the
polytope [−1,+1]k yield tom different regions Lj ∈ {+1,−1}.
The indicator function for each of these regions is denoted by
xi = 1, ...,m. Each indicator function xi has the form [Chan
and Zhu, 2003], [Cremers et al., 2006]:

xi(L) =
1

4k

k∏
j=1

(Lj − wj)
2 , with wj ∈ {+1,−1} (8)

With the above k-dimensional labeling formulation, able for the
dynamic labeling of up to m = 2k regions, the following cost
functional can account for a recognition-driven segmentation, based
on multiple competing shape priors:

Etotal = Eseg(φ, robj , rbg) + μEprior(φ, T ,L) (9)

where:

Eprior(φ, T ,L) =

m−1∑
i=1

∫ (
Hε(φ) −Hε(φ̃i (Ti(x)))

σi

)2

xi(L)dx +

∫
λ2xm(L)dx + ρ

m∑
i=1

∫
|∇L|dx

(10)

where the terms associated with the two objects are normalized
with respect to the variance of the respective template: σ2

i =∫
φ2

i dx−
∫
φidx

2. Contrary to [Vese and Chan, 2002] and [Cre-
mers et al., 2006] the labeling function’s dimensionality k is not a
priory fixed and is calculated during optimization. Let a positive
scalar q denote the number of resulting, from the image-driven
functional, segments. Then k is calculated based on the follow-
ing equation:

k = � log(1 + q)

log 2
� (11)

In this way, during optimization the number of selected regions
m = 2k depends on the number of the possible building segments
according to φ and thus the k-dimensional labeling function L
obtains incrementally multiple instances. figure

3.1 Energy Minimization

The multiple shape prior based segmentation process is generated
by minimizing the functional of Equation 9. Minimization is per-
formed by alternating the update of the region intensity descrip-
tors rbg and rbg using a gradient descent evolution with respect
to the level set function φ, the labeling functions L and the asso-
ciated pose parameters Ti(αi,βi,γi,(tx)i,(ty)i,(tz)i,ξi,ψi,di) for

every selected prior φ̃i:

3.1.1 Evolution of the k-dimensional labeling function For
fixed level set function φ and transformation parameters, the gra-
dient descent with respect to the labeling functions Li corre-
sponds to an evolution of the form:

ϑEtotal

ϑLj
= −μ

m−1∑
i=1

(Hε(φ) −Hε(φ̃i (Ti(x))))2

σ2
i

ϑxi

ϑLj

− μ λ2 ϑxm

ϑLj
− μ γ div

∇Lj

‖∇Lj‖
,

(12)

where the derivatives of the indicator functions xi are calculated
from (14). The first two terms in Equation 12 guide the labeling
L to indicate the transformed priors φ̃i which are most similar
to the given function φ (i.e. each labeled segment or the back-
ground). The last term imposes spatial regularity in the labeling
Lj and enforces the selected regions to be compact by preventing
flippings with the neighboring locations.

3.1.2 Multiscale Prior Registration For a fixed level set φ
and labeling function L, the optimization of the projective trans-
formation parameters T (αi,βi,γi,(tx)i,(ty)i, (tz)i,ξi,ψi,di) of

each selected prior φ̃i was derived from the gradient descent sim-
ilar to Equation 6. In order, though, to handle both global and lo-
cal shape deformations a multiscale optimization was introduced.
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(a) (b) (c) (d) (e)
Figure 2: Curve evolution based on the proposed recognition-driven framework. The different steps until algorithms convergence,

are shown (in black). The algorithm did manage to extract all fourth buildings and resulting contours (in black) describe accurately

buildings boundaries. The evolution of the data-driven term is, also, shown in white.

The multiscale approach is implement via a fixed point iteration
on both the level set function φ and shape priors φ̃i with a down-
sampling strategy. Instead of the standard down-sampling factor
of 0.5 on each level, it is proposed, here, to use an arbitrary factor
f ∈ (0, 1), which allows smoother transitions from one scale to
the next. The full pyramid of images is used φl, l = 0, 1, ...,

starting with the smallest possible images φ0 and φ̃0
i at the coars-

est grid. Thus, the general gradient descent equation for each of
the transformation parameters (denoted by ui) is of the form:

ul
i

t
= 2μ xl

i(L
l)

∫
Ω

(
Hε(φ

l) −Hε(φ̃
l
i

(
T l

i (x)
)
)

σ2
i

)

ϑT l
i (ul

i)

ϑul
i

(13)

Above equation is analogous to Equation 6 (for the single scale
approach), except that (i) the indicator function xi(L) constrains

the integrals to the domain of interest associated with shape φ̃i,
i.e. to the area where xi > 0 and (ii) moreover, is calculated via
fixed point iterations l. figure

4 EXPERIMENTAL RESULTS 1

In Figure 2, the curve evolution obtained by the proposed, here,
variational framework is presented for automatic building extrac-
tion from a high resolution satellite image. Different steps until
algorithm’s convergence are shown. Starting with an arbitrary el-
liptical curve (first image from the left) and after a couple of itera-
tions (second image) the data-driven term (shown in white color)
yielded to two main segments. The concurrent optimization of
the labeling function and the recovery of the appropriate shape
priors transformation parameters (α, β, γ, tx, ty , tz , ξ, ψ and
d) resulted to the boundaries shown with a black color. Among
the competing priors of Figure 1 the fourth from the third row
was chosen in order to recover the smaller segment in the bottom
right. The competing procedure resulted, also, into the fourth
from the second row prior in order to recover the bigger segment
in the middle. The later does not corresponds to a semantic im-
age object. Obviously, this state (Figure 2b) was not the global
optimum and the algorithm continued until convergence (Figure
2e). All four building were extracted and their detected bound-
aries are shown in red. Two shape priors from Figure 1 (the same
as above) were finally chosen for the recovery of the four detected
buildings.

In addition, in the top row of Figure 3, the result of the same prior-
based contour evolution (in black) is shown superimposed on the

1http://www.mas.ecp.fr/vision/Personnel/karank/Demos/2D

input satellite image. The recognition-driven labelling process
did detect, in an unsupervised manner, image building regions
and simultaneously the selected priors did permit the reconstruc-
tion of the familiar objects. The corresponding 3D plots of the
two labeling functions are shown in the middle two rows of the
figure. The k-dimensional labeling function allowed automati-
cally multiple instances depending on the number of the detected
segments from the data-driven term. For example after a cou-
ple of iterations (second column), only one labeling function was
able to handle the two detected segments. In algorithms con-
vergence the segmentation result obtained with k = 2 labeling
functions. Each function controlled which image region has been
associated with which label configuration. Thus, by construc-
tion, the energy minimization leads to a partition of the image
plane into areas of influence associated with each shape model.
The two parallelepiped buildings in the bottom right of the image
were associated with the second labeling function and the two
others with the first one. Such an evolution of the labeling re-
gions (areas of influence) was driven by a competition between
the different shape priors. The joint multiscale optimization of
the transformation parameters allowed to keep track of the cor-
rect pose of each object. Due to such a formulation each location
(area of influence) could only be associated with one shape prior
and therefore, the algorithm is forced to decide which prior favors
most image data.

A visual comparison between the binary output of the purely
intensity-based segmentation (Figure 4b) and and the one of the
proposed, here, prior-based process (Figure 4c) demonstrates the
superior results that were obtained. The resulting output from
the proposed here framework did manage to highly match the
ground truth (Figure 4e). The algorithm influenced by the label-
ing function, was robust and managed to surpass the irrelevant
non-semantic segments. Above observations are supported by
the quantitative evaluation, which indicated that: (i) the purely
intensity-based segmentation scored really low with the overall
detection quality at about only 70% (Table 1, figure3a) and (ii)
the proposed, here, recognition-driven process successfully man-
aged to extract accurately all image buildings with a complete-
ness of about 93%, a correctness of 95% and an overall detection
quality of about 88% (Table 1, figure3b). These quantitative re-
sults can be compared with the lower rates reported by other au-
tomatic algorithms [Doucette et al., 2005, Mayer et al., 2006] but
not directly since different data were used and apart from build-
ings the detection was focused on other man-made objects, too.
However, the developed algorithms efficiency should be empha-
sized.

Moreover, the developed algorithm was applied for the detection
of buildings to an aerial (appx. 0.7m ground resolution) test im-
age, which covers a wider area, appears complex and where mul-
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(a) (b) (c) (d) (e)

Figure 3: Qualitative evaluation after the application of the proposed recognition-driven segmentation to a high resolution aerial image.

First row: The algorithm did manage to extract all fourth buildings and resulting contours (in black) describe accurately buildings

boundaries. Second and third row: 3D plots from the evolution of the dynamic labeling. The k-dimensional function allowed automati-

cally multiple instances depending on the number of the detected segments from the data-driven term. After a couple of iterations only

one labeling function was needed to handle the two detected segments, while in algorithms convergence the result is obtained with a

k = 2 labeling functions. Fourth row: Initial image (a), the binary output of the pure image-driven functional (b), algorithm’s binary

output (c), the ground truth superimposed in black color (d) and the binary ground truth (e).

tiple objects of different classes, shadows, occlusions, different
texture patterns and some terrain height variability exists. In Fig-
ure 4 the final detected building regions are shown. All buildings,
except one, were fully or partly detected. Most of them have
been recognized as different identities (are labelled and numbered
uniquely) apart from the three-building segment in the top right
of the image which i) was poorly detected and ii) appears as one
segment in the ground truth data, as well. The correctness of the
detection was high at appx. 93% with a completeness at 88% (Ta-
ble 1, figure 4b). The overall quality of algorithms performance
was at 82%, while the detection based on only to the data-term
was lower than 76% (Table 1, figure 4a). figure

5 CONCLUSIONS AND FUTURE WORK

We have introduced a novel recognition-driven variational frame-
work which accounts for automatic and accurate multiple build-
ing extraction from aerial and satellite images. We argued that the
proposed framework fundamentally extends previous approaches
towards the integration of shape priors into the level set segmen-
tation and in particular (i) by allowing multiple competing pri-
ors contrary to [Riklin-Raviv et al., 2007] and (ii) without the
need of having a priori knowledge for the pose of objects in im-
age’s plane, contrary to [Cremers et al., 2006]. The proposed

cost functional is simultaneously optimized with respect to (i)
the data-driven term based on the level set function φ controlling
the segmentation, (ii) the vector-valued labeling function which
indicates regions of influence where the competing shape priors
should be enforced and (iii) a set of parameters associated with
the projective transformation of each prior. The evolution of the
labeling function is driven by the competing shape priors and
each selected image region is ascribed to the best fitted one. The
functional is, also, consistent with the philosophy of level sets as
it allows multiple independent object detection.

The successful segmentation results, the reliable estimation of the
transformation parameters and the adequate performance of the
dynamic labeling encourage future research. A comprehensive
solution for general 3D objects would require to extend both the

Quantitative Measures

Detection case Completeness Correctness Quality

Figure 3b 0.868 0.790 0.705

Figure 3c 0.926 0.946 0.879

Figure 4c 0.813 0.918 0.758

Figure 4d 0.877 0.927 0.820

Table 1: Quantitative Evaluation
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(a) (b)

(c) (d)

Figure 4: Results from the application of the proposed recognition-driven segmentation to a high resolution aerial image. First row:

Initial image (a) and the binary ground truth (b). Second row: the binary output of a pure data-driven segmentation (c) and the binary

output after the application of the proposed algorithm (d).

transformation model beyond planar projective homography and
the labeling function beyond k-dimensional 2D instances. Sim-
ilarly, for the extension to 4D objects and the reconstruction of
buildings in time from several temporal-different data, statistical
shape priors (which additionally allow deformation modes asso-
ciated with each model) are conceivable based on a training sets.
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