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ABSTRACT: 
 
With the increasing availability of a diverse range of datasets from sources such as airborne and terrestrial laser scanning, InSAR, 
and high resolution satellite remote sensing, there are improved opportunities for dataset integration and the synergistic benefits 
which this can offer. However, accurate registration is a fundamental pre-requisite for data fusion, and an issue which is often 
overlooked. This paper presents a strategy for improving the effectiveness of coastal geohazard monitoring through the integration of 
airborne and terrestrial laser scanning datasets. This approach is based upon a robust least squares surface matching technique, which 
enables the reliable reconciliation of disparate datasets, overcoming disparities between the input surfaces. The development of the 
matching algorithm, which incorporates a robust M-estimator function, is detailed. Application of this approach to a test site located 
on the east coast of England highlights the effectiveness of the robust matching algorithm for data integration, improving the quality 
of the resultant surface models, and facilitating subsequent analysis of change over a four month period. Robust surface matching is 
a flexible technique, which shows significant potential for a range of data fusion tasks, particularly where there is also a requirement 
for reliable change detection. 
 
 

1. INTRODUCTION 

The last decade has seen the commercial realisation of a 
number of technologies, such as airborne laser scanning (lidar), 
terrestrial laser scanning, InSAR, and high resolution optical 
satellite sensors. The net effect of this is the increasing 
availability of a range of datasets, offering unprecedented 
opportunities for exploiting this wealth of geospatial data. In 
particular, data fusion is an area which holds much potential, 
and which has been the focus of significant research effort (e.g. 
Schenk and Csathó, 2002; Buckley and Mitchell, 2004; 
Dowman, 2004). However, while data integration offers 
synergistic benefits, this approach also presents significant 
challenges in terms of ensuring effective reconciliation of 
disparate datasets. In particular, as emphasised by Schenk and 
Csathó (2002), registration to a common reference frame is a 
fundamental prerequisite. 
 
The coastal zone is an environment which demands effective 
assessment of change, and which stands to benefit from an 
approach structured around dataset integration. Coastal 
geohazards, which include processes such as landslides and 
rockfalls, represent a major driver for coastal change. Where 
these phenomena interact with the human environment, 
monitoring is essential for effective coastal management and 
planning. However, the complex nature of cliffed coastal 
topography means that in general, no one technique in isolation 
is capable of delivering an effective monitoring solution. While 
airborne techniques enable rapid acquisition of large tracts of 
coastal terrain, more vertical components of the landscape are 
often obscured. Conversely, while the value of a terrestrial 
approach increases in the vicinity of cliffs, an approach based 
solely on terrestrial acquisition is usually restricted to relatively 
limited spatial extents. 
 
In response to these challenges, this paper presents an 
integrated solution to coastal geohazard monitoring, which 

explores the maturing techniques of airborne laser scanning 
(ALS) and terrestrial laser scanning (TLS). TLS is capable of 
facilitating assessment of localised pockets of geohazard 
activity, offering unrivalled spatial resolution and speed of 
acquisition over traditional land surveying techniques. ALS 
offers several complementary benefits. Firstly, in addition to 
enabling effective capture of areas such as beaches, ALS is also 
well suited to the acquisition of flatter slope elements within the 
cliff. Furthermore, ALS permits rapid acquisition over large 
spatial extents. Whereas aerial photogrammetry can be prone to 
image matching problems in areas of homogeneous terrain, 
such as beaches (Hapke and Richmond, 2000), as a direct 
sensing technique, ALS is capable of returning a consistent 
representation of the terrain. 
 
One common challenge, of relevance to virtually all coastal 
monitoring approaches, is the issue of establishing reliable 
survey control. The coastal arena is a dynamic environment, 
and tidal fluctuations coupled with the presence of terrain 
instability have the potential to undermine the integrity of both 
short- and long-term control points. In order to overcome this 
problem, this paper presents a robust least squares surface 
matching solution, which facilitates the automated registration 
of disparate datasets. This overcomes the reliance upon physical 
control points, and instead derives control from the surface 
geometry of the datasets. Change detection is a common 
requirement in many natural environment applications, and an 
inherent advantage of least squares surface matching is its in-
built capacity for detection of differences between the matching 
surfaces. In the application at hand, this may relate to multi-
temporal geohazard activity, vegetation change, or surface 
discrepancies arising as a result of differing acquisition 
techniques. However, where such differences are extreme, least 
squares surface matching may fail, or the matching surface may 
be 'pulled' into an erroneous solution. In order to address this 
issue, a robust maximum-likelihood estimator (M-estimator) 
has been incorporated in the matching algorithm. This 
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facilitates automated down-weighting of outlying observations 
corresponding to regions of difference. To date, investigation of 
robust surface matching in the field of geomatics has been 
relatively limited and largely restricted to experimental datasets. 
This paper presents the application of this approach to real-
world laser scanning datasets in the context of coastal 
geohazard monitoring.  
 
The overall aim of this research is to develop a flexible and 
effective strategy for coastal geohazard monitoring, which 
simultaneously addresses the problematic issue of dataset 
registration in the dynamic coastal zone. In order to achieve this, 
an approach based on the integration of airborne and terrestrial 
laser scanning datasets is proposed. A robust surface matching 
algorithm has been developed, which facilitates automated 
fusion of the multi-sensor, multi-temporal datasets, and offers 
an inherent capacity for change detection. The development of 
this algorithm is presented in the following section. The coastal 
monitoring methodology is then outlined, and results of multi-
sensor dataset fusion are presented alongside multi-temporal 
change analysis. The outcomes of the research are discussed 
and in conclusion, key research findings are highlighted. 
 
 

2. ROBUST SURFACE MATCHING 

2.1 Surface Matching Overview 

In the most general case, the goal of surface matching is to 
establish the optimal transformation which aligns or registers 
two free-form 3D point datasets (Besl and McKay, 1992). One 
surface is usually treated as the 'fixed' reference surface, while 
the other is regarded as the unfixed matching surface, with the 
objective being to register the matching surface to the reference 
surface. In most applications, this task is not straightforward, 
and through efforts to address this problem, a wide range of 
solutions have been proposed. One of the most familiar 
approaches is the Iterative Closest Point (ICP) algorithm, 
initially proposed by Besl and McKay (1992). In its 
fundamental form, the ICP algorithm is an iterative procedure 
which searches for pairs of closest points between two surfaces, 
and estimates the rigid transformation which aligns them. The 
recent uptake of TLS has prompted a resurgence of interest in 
the basic registration issue from within the geomatics 
community. This has been further sustained by the increased 
availability of multi-sensor data, which requires registration to a 
common reference system prior to further analysis. A wide 
range of solutions have been proposed, but a review of these is 
beyond the scope of this paper. A comprehensive overview of 
surface matching strategies can be found in Gruen and Akça 
(2005). 
 
This paper adopts a solution which is based on least squares 
surface matching. Least squares matching is a well-established 
technique for many photogrammetric routines, and is also 
applicable to the surface matching problem. Ebner and Strunz 
(1988) and Rosenholm and Torlegård (1988) introduced least 
squares surface matching for the absolute orientation of 
photogrammetric stereo-models, utilising existing DEMs as the 
reference surface. This same basic approach, which relies upon 
least squares minimisation of vertical differences  between the 
two surfaces (Z-minimisation), has been applied by a number of 
researchers since (e.g. Karras and Petsa, 1993; Mitchell and 
Chadwick, 1999; Mills et al., 2005).  
 

Least squares matching is generally sufficient for matching of 
2.5D surface models, presenting an effective alternative to the 
more intensive ICP algorithm (Mitchell and Chadwick, 1999). 
2.5D DEMs currently dominate natural environment 
applications, and consequently, least squares matching through 
Z-minimisation is well-suited to the application presented here. 
The matching algorithm is based on the 3D conformal 
coordinate transformation, which provides a means of 
converting from one 3D coordinate system to another. This can 
be expressed in matrix notation as: 
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Where the initial coordinates of a point, (x, y, z), are modified 
through application of the scale factor, s, the rotations (ω, φ, κ), 
as defined by the orthogonal rotation matrix, M, and the 
translation vector (Tx, Ty, Tz), in order to obtain the final 
transformed coordinates, (X, Y, Z). 
 
The algorithm implemented in this work enables matching of 
TIN-based datasets in order to avoid inaccuracies introduced 
through interpolation to a regular grid. This approach seeks to 
globally minimise vertical distances between points on the 
matching surface and conjugate surface patches on the 
triangulated reference surface. This allows for recovery of the 
seven unknown transformation parameters – the rotations 
(ω, φ, κ), translations (Tx, Ty, Tz), and scale factor (s) – which 
relate the two surfaces through the 3D conformal coordinate 
transformation expressed in (1). The development of the 
mathematical model for least squares surface matching, 
implementing the Z-minimisation strategy, can be found in 
Rosenholm and Torlegård (1988); Karras and Petsa (1993) and 
Mitchell and Chadwick (1999), with minor variations, and 
hence will not be reiterated here.  
 
2.2 Robust Surface Matching 

2.2.1 Overview:  This research has seen the extension of 
the least squares surface matching algorithm to incorporate a 
capacity for robust outlier handling. As already explained, the 
registration solution may become sub-optimal or erroneous if 
the matching surfaces contain significant regions of difference. 
This scenario is likely to arise in multi-temporal analysis of 
geohazard activity, where the occurrence of a major landslide 
(for example) could result in differing surface representations at 
different instances in time. Karras and Petsa (1993) employ a 
data-snooping technique in a medical application of least 
squares surface matching for deformation detection. However, 
in their findings, they note that while this approach is successful 
in the detection of isolated outliers, spatially correlated 
deformation is harder to detect (Karras and Petsa, 1993).  
 
An alternative strategy is to incorporate robust estimation 
techniques within the least squares matching procedure. 
Through this approach, weighted least squares can be applied, 
with weights derived from a weighting scheme, which is 
defined through the choice of robust estimation function. This 
allows those points which produce large residual values to be 
down-weighted accordingly. Pilgrim (1996) implemented 
robust surface matching, using a modified M-estimator, for 
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detection of simulated growths and swellings in a medical 
photogrammetric application, noting improved performance 
over the non-robust version of the algorithm. Li et al. (2001) 
evaluate the performance of several robust estimators, through 
application to simulated datasets. However, while these two 
studies highlight the potential of the technique, they are based 
on simulated datasets for close range applications. In the field 
of geomatics to date, little has been done to evaluate the 
practical implementation of this technique using real-world data. 
Robust surface matching is a technique which is well-suited to 
the automated reconciliation of disparate datasets, particularly 
where there is a demand for change detection. Consequently, 
this technique holds tremendous potential for data integration in 
the context of coastal geohazard monitoring. 
 
2.2.2 Implementation:  In this research, a least squares 
surface matching algorithm incorporating a robust function 
from the M-estimator family has been developed. M-estimators 
are a popular class of robust estimator, offering flexible 
performance (Goodall, 1983), and permitting straightforward 
inclusion in least squares procedures. The generalised form of 
the M-estimator can be defined as (Pilgrim, 1996): 
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Thus M-estimators attempt to minimise a function of the least 
squares residuals ( )vf . Further background on M-estimators is 
provided by Goodall (1983) and Mirza and Boyer (1993). In 
this research, Tukey's Biweight was selected for application. 
The Biweight is one of the most commonly-utilised 
M-estimators, and as highlighted by Li et al. (2001) in the 
context of robust surface matching, offers strong robustness 
characteristics. The weight function for the Biweight is defined 
as: 
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Where the Bisquare weights, bw , are calculated as a function of 
the standardised least squares residuals, u. In practice, the 
Biweight function can be implemented through a technique 
known as iteratively reweighted least squares (IRLS). This 
involves the application of weighted least squares, which is a 
straightforward extension of the normal case. Through IRLS, 
the weight matrix is recomputed as a function of the 
standardised least squares residuals after each iteration (Li et al., 
2001). Consequently, the weights are not held fixed, but alter in 
response to the fluctuating residuals. This approach provides a 
means of mitigating the influence of concentrated regions of 
difference between the matching surfaces. Such differences 
may arise for a number of reasons, including as a result of 
geohazard activity or vegetation change. In addition, the 
incorporation of a robust estimator also provides a mechanism 
for automated handling of isolated outlier observations. The 
robust estimation function was incorporated in the least squares 
surface matching algorithm as outlined above, and initial testing 
was carried out using artificial datasets with outlier effects 

induced (Miller et al., 2007). Previous work, focussing on the 
absolute orientation of archival photogrammetric DEMs for 
geohazard monitoring, has demonstrated the superiority of the 
robust algorithm over the non-robust version (Miller et al., in 
press). The remainder of this paper concentrates on the 
evaluation of this approach as a data integration technique, with 
respect to laser scanning point cloud datasets in the coastal zone. 
 
 

3. DATA ACQUISITION 

3.1 Test Site 

The test site for this research is located at Filey Bay on the 
North Yorkshire coast of eastern England. This nine kilometre-
long bay is fronted by a broad, flat expanse of sand, and is 
backed by moderately-steep cliffs, which rise to between 30 and 
50 metres in height. The cliffs are largely composed of soft 
glacial tills, which are prone to erosion and failure. The main 
test area (Figure 1) is located at the southern end of the bay, and 
is comprised of a relatively large landslide complex. 
 
 

 
 

Figure 1.  Filey Bay test site. 
 
3.2 Data Collection and Preparation 

Two epochs of ALS and TLS data were acquired for the test 
site, in April 2005 and August 2005. Analysis of change over a 
summer period (April to August) allowed for the robust 
matching algorithm to be tested using datasets which were 
likely to include discrepancies due to vegetation growth, as well 
as the potential effects of geohazard activity. ALS data was 
captured by the UK Natural Environment Research Council's 
Airborne Research and Survey Facility (ARSF), using an 
Optech ALTM 3033 instrument. The data was acquired from a 
flying height of 1000 metres, resulting in a spatial resolution of 
approximately 1 point/m2. The datasets were georeferenced 
through on-board GPS-IMU. The April 2005 TLS dataset was 
acquired using a Riegl LPM-i800HA scanner with an 800 metre 
range, while a Leica HDS3000 scanner, with a range of 50 m 
was used for the August 2005 TLS survey. TLS enabled the 
capture of high resolution point clouds, with point densities 
ranging from 20 to 80 points/m2. Standard control approaches 
were employed in order to register the TLS datasets to a global 
coordinate system. Following data acquisition, ground 
classification was performed using TerraSolid's TerraScan 
software in order to remove vegetation and other non-ground 
effects from both the TLS and ALS point clouds. 
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Two parallel check profiles, spaced 60 metres apart, were 
measured by total station for validation purposes. These 
consisted of shore-normal profiles which ran from the cliff-top, 
down the cliff-face, and across the beach into the inter-tidal 
zone. Points were collected every 0.5 metres, and each profile 
was measured three times to ensure precision. The profiles were 
re-occupied for comparison during subsequent surveys.  
 
 

4. RESULTS 

In order to integrate the ALS and TLS datasets prior to multi-
temporal change analysis, the robust surface matching 
algorithm outlined in Section 2 was applied. Quality analysis of 
the individual datasets at the check profile locations indicated 
that the ALS datasets were of consistently higher accuracy than 
the TLS datasets, with an average RMSE of 27 cm, compared to 
66 cm for the TLS datasets. This is most likely due to the nature 
of the terrain. As Figure 1 indicates, parts of the cliff are 
densely vegetated. This may have prevented the TLS points 
from penetrating completely to the ground, resulting in a 
classified ground model which is slightly elevated. The oblique 
scanning angle of TLS is likely to have exacerbated such 
problems. Furthermore, the oblique scanning angle, combined 
with the complex slope morphology resulted in a number of 
data occlusions, which are likely to have further degraded the 
fidelity of the TLS surface model. Consequently, for both the 
April 2005 and August 2005 epochs, the ALS datasets were 
held as the fixed reference surfaces, and the TLS datasets 
registered to these. The scale parameter was omitted from the 
transformation, as no scale variations were anticipated between 
the datasets. This allowed for a refinement in the registration 
solution of the TLS data, ensuring correspondence with the 
ALS datasets. 
 
The post-match integrated surfaces for the two epochs were 
validated using the check profile data. The results of this 
assessment for the April 2005 epoch are presented in Table 1. 
This details the vertical quality of both the pre- and post-match 
datasets, and highlights two key outcomes. Firstly, as indicated 
by the RMSE values (Table 1), the application of robust surface 
matching has improved the overall accuracy of the TLS dataset. 
Secondly, the merger of the post-match TLS dataset with the 
ALS surface has resulted in an integrated dataset of markedly 
higher quality than the TLS surface alone. Similar results were 
also achieved through surface matching-based integration of the 
August 2005 datasets. 
 
Examination of the post-match datasets revealed that this 
procedure had been particularly beneficial in overcoming 
weaknesses in the TLS datasets, as illustrated in Figure 2. The 
original TLS surface model (Figure 2A) contains several 
occluded regions, which are manifest as weak areas in the 
triangulation. Surface matching and merger with the ALS 
dataset has enabled effective in-filling of these areas, and has 
also provided multi-resolution coverage (Figure 2B). 
 
 
 
 
 
 
 
 
 
 

 

Surface Profile Mean (m) σ (m) RMSE (m)

A 0.600 0.799 0.995TLS  
pre-match B 0.236 0.448 0.502

A 0.297 0.879 0.922TLS  
post-match B 0.010 0.326 0.323

A -0.074 0.315 0.322TLS-ALS 
merged B -0.056 0.260 0.264

   
Table 1. Profile validation statistics for multi-sensor 

matching of the April 2005 datasets. 
 
 

 
 
 
Figure 2. Occlusions in TLS dataset (A), overcome through 

integration with ALS data (B). 
 
 
Following multi-sensor data fusion, further surface matching 
was carried out in order to facilitate change detection between 
the two epochs. Check profile analysis indicated that the August 
2005 integrated DEM was of highest accuracy, and so this was 
selected as the fixed reference surface for matching of the April 
2005 merged DEM. Post-match check profile validation 
confirmed that robust surface matching had succeeded in 
improving the accuracy of the April 2005 dataset, raising this to 
a level which closely conforms with the absolute accuracy of 
the August 2005 merged DEM. 
 
As already stated, least squares surface matching offers an 
inherent capacity for change detection. The final post-match 
residuals correspond to vertical differences between the 
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matching surfaces, and are output on convergence of the 
software. For the multi-temporal matching carried out here, the 
post-match residuals were analysed in a GIS in order to 
examine change over the period April to August 2005. The 
results of this procedure are presented in Figure 3, alongside an 
ortho-image from August 2005, acquired at the same time as the 
ALS dataset. Regions of difference are consistent with the 
effects of geohazard activity and vegetation change, suggesting 
that the robust matching approach has proved effective in 
reconciling the multi-sensor, multi-temporal datasets through 
refinement of the registration solutions. Figure 3 highlights a 
number of specific trends, including erosion affecting the cliff-
face (A) and toe scarp (E); vegetation growth over the summer 
months (B); and notable changes to the beach level (D). Erosion 
within the landslide scar at C, suggests further widening of this 
feature. Detailed inspection of the differences indicated that the 
incorporation of TLS data had revealed subtle geohazard 
processes, which were not present through analysis of the 
coarser ALS datasets alone. 
 
 

 
 
Figure 3. Elevation differences (metres) between integrated 

April 2005 and August 2005 DEMs. Corresponding 
August 2005 ortho-photo is included for reference. 

 
 

5. DISCUSSION 

The process of conducting monitoring surveys in the coastal 
zone has highlighted the benefits of a surface matching-based 
control approach. The TLS scans were controlled through 
conventional means, using GPS control points. However, 
adverse weather conditions, coupled with limited survey 
windows imposed by tides, meant that control measures were 
not as effective as they may have been under more favourable 

conditions. Consequently, some minor shifts and offsets existed 
between overlapping TLS point clouds. However, as 
demonstrated by Maas (2002), surface matching is a valuable 
tool for elimination of systematic error, and was successfully 
applied here in order to overcome these issues. 
 
Robust surface matching proved effective in refining the overall 
registration solution of the TLS datasets, even in cases where no 
obvious systematic errors were evident. This approach offers 
significant advantages for data fusion, as minor mis-alignments 
can be eliminated. While differences may remain (e.g. as a 
result of the differing acquisition techniques), these are more 
likely to appear as inconsistencies, evident through inspection 
of the post-match surface residuals. Importantly, robust 
estimation offers a mechanism for mitigating the influence of 
outliers and regions of difference between the datasets. This is 
essential for change detection or deformation analysis, ensuring 
that erroneous change artefacts are minimised. 
 
ALS and TLS were found to be highly complementary for this 
application. The high spatial resolution of TLS demonstrates 
potential for fine-scale assessment of geohazard activity, which 
may be of value in detecting pre-cursor failure processes. 
However, clearly it is not feasible to survey extended stretches 
of coastline using TLS. Rather, the results presented here 
highlight the value of TLS for concentrated analysis of 
localised pockets of geohazard activity. Integration with ALS 
delivered improved spatial coverage and over wider extents 
provided a coarse indication of change. In this manner, the 
integration of ALS and TLS shows potential for multi-scale 
analysis of coastal geohazards, providing a practicable means 
for monitoring extended stretches of coastline. In addition, the 
capacity of the integrated airborne-terrestrial strategy for 
overcoming data occlusions is a major synergistic advantage. 
One weakness of ALS and TLS is the ‘blind’ nature of these 
techniques. However, most commercial ALS systems offer the 
capability to acquire corresponding imagery. Figure 3 indicates 
the value of contemporaneous imagery as a visual reference for 
interpretation of change. A more direct approach to the 
incorporation of this resource may be valuable for validation of 
the surface matching solution and verification of change.  
 
In this research, ALS was found to provide an excellent source 
of control, offering a consistent and reliable surface model. This 
is in accordance with the findings of others who have 
successfully utilised ALS for control (e.g. Habib et al., 2004). 
By removing the requirement for control points, surface 
matching offers a registration technique which is automated and 
highly cost-effective. The increasing availability and diversity 
of terrain models at a range of scales, means that this is a 
technique which is likely to be of increasing relevance for 
multi-sensor dataset fusion. Although the strategy presented 
here is specific to coastal geohazard monitoring, robust surface 
matching is a flexible technique which is independent of the 
data acquisition technology, and well-suited to a range of 
scenarios. In particular, applications concerned with change 
analysis in dynamic natural environments are likely to benefit, 
especially where it proves expensive or hazardous to establish 
conventional control. Possible applications include glaciology, 
volcanology and landslide hazard analysis, as well as more 
generic data fusion applications. 
 
 

151



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

6. CONCLUSIONS 

Effective dataset registration is a major challenge in the 
dynamic coastal zone. In addition, the complex nature of the 
topography means that no one technique is generally optimal 
for assessment of coastal geohazard processes. Least squares 
based surface matching provides an effective solution for the 
integration of multi-sensor data, and overcomes the requirement 
for physical control points. However, discrepancies between the 
matching surfaces have the potential to degrade the registration 
solution. In response to this, this paper outlines the development 
of a robust surface matching algorithm, which incorporates an 
M-estimator function for down-weighting of regions of 
difference. 
 
The application of this technique for the integration of airborne 
and terrestrial laser scanning datasets has been presented. This 
has highlighted the effectiveness of robust surface matching in 
improving the registration solution of TLS datasets, and has 
demonstrated the further advantages of surface matching for 
multi-temporal change detection. In addition, it is shown that 
the integration of airborne and terrestrial laser scanning point 
clouds produces significant synergistic benefits, particularly in 
relation to overcoming dataset occlusions, and facilitating 
multi-scale analysis. The potential of robust surface matching is 
evident for a range of environmental applications, particularly 
those likely to benefit from dataset integration, where there is 
an associated requirement for change detection. 
 
 

REFERENCES 

Besl, P.J. and McKay, N.D., 1992. A method for registration of 
3-D shapes. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 14(2), pp. 239-256. 

Buckley, S.J. and Mitchell, H.L., 2004. Integration, validation 
and point spacing optimisation of digital elevation models. The 
Photogrammetric Record, 19(108), pp. 277-295. 

Dowman, I., 2004. Integration of LiDAR and IfSAR for 
mapping. The International Archives of the Photogrammetry, 
Remote Sensing and Spatial Information Sciences, Vol. XXXV, 
Part B2, 11 pages. 

Ebner, H. and Strunz, G., 1988. Combined point determination 
using digital terrain models as control information. The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Vol. XXVII, Part B11, 
pp. 578-587. 

Goodall, C., 1983. M-Estimators of Location: an Outline of the 
Theory. In: D.C. Hoaglin, F. Mosteller and J.W. Tukey (Eds.), 
Understanding Robust and Exploratory Data Analysis. Wiley 
Series in Probability and Mathematical Statistics. John Wiley & 
Sons, New York, pp. 339-403. 

Gruen, A. and Akça, D., 2005. Least squares 3D surface and 
curve matching. ISPRS Journal of Photogrammetry and Remote 
Sensing, 59(3), pp. 151-174. 

Habib, A.F., Ghanma, M.S., Kim, C.J. and Mitishita, E., 2004. 
Alternative approaches for utilizing LiDAR data as a source of 
control information for photogrammetric models. The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Vol. XXXV, Part B1, 
pp. 193-198. 

Hapke, C. and Richmond, B., 2000. Monitoring beach 
morphology changes using small-format aerial photography and 
digital softcopy photogrammetry. Environmental Geosciences, 
7(1), pp. 32-37. 

Karras, G.E. and Petsa, E., 1993. DEM matching and detection 
of deformation in close-range photogrammetry without control. 
Photogrammetric Engineering and Remote Sensing, 59(9), 
pp. 1419-1424. 

Li, Z., Xu, Z., Cen, M. and Ding, X., 2001. Robust surface 
matching for automated detection of local deformations using 
Least-Median-of-Squares estimator. Photogrammetric 
Engineering and Remote Sensing, 67(11), pp. 1283-1292. 

Maas, H.-G., 2002. Methods for measuring height and 
planimetry discrepancies in airborne laserscanner data. 
Photogrammetric Engineering and Remote Sensing, 68(9), 
pp. 933-940. 

Miller, P.E., Mills, J.P., Edwards, S.J., Bryan, P., Marsh, S., 
Hobbs, P. and Mitchell, H., 2007. A robust surface matching 
technique for integrated monitoring of coastal geohazards. 
Marine Geodesy, 30(1-2), pp. 109-123. 

Miller, P.E., Mills, J.P., Edwards, S.J., Bryan, P., Marsh, S. and 
Mitchell, H., in press. A robust surface matching technique for 
coastal geohazard assessment and management. ISPRS Journal 
of Photogrammetry and Remote Sensing. 

Mills, J.P., Buckley, S.J., Mitchell, H.L., Clarke, P.J. and 
Edwards, S.J., 2005. A geomatics data integration technique for 
coastal change monitoring. Earth Surface Processes and 
Landforms, 30(6), pp. 651-664. 

Mirza, M.J. and Boyer, K., 1993. Performance evaluation of a 
class of M-estimators for surface parameter estimation in noisy 
range data. IEEE Transactions on Robotics and Automation, 
9(1), pp. 75-85. 

Mitchell, H.L. and Chadwick, R.G., 1999. Digital 
photogrammetric concepts applied to surface deformation 
studies. Geomatica, 53(4), pp. 405-414. 

Pilgrim, L.J., 1996. Robust estimation applied to surface 
matching. ISPRS Journal of Photogrammetry and Remote 
Sensing, 51(5), pp. 243-257. 

Rosenholm, D. and Torlegård, K., 1988. Three-dimensional 
absolute orientation of stereo models using digital elevation 
models. Photogrammetric Engineering and Remote Sensing, 
54(10), pp. 1385-1389. 

Schenk, T. and Csathó, B., 2002. Fusion of LiDAR data and 
aerial imagery for a more complete surface description. The 
International Archives of the Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Vol. XXXIV, Part 3A, 
pp. 310-317. 

 

ACKNOWLEDGEMENTS 

This research was jointly funded by English Heritage, the 
British Geological Survey, and an Engineering and Physical 
Sciences Research Council (EPSRC) Doctoral Training Grant 
(EP/P500370/1). The author is grateful to the Natural 
Environment Research Council's Airborne Research and Survey 

152



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

Facility (ARSF) for acquisition of airborne laser scanning data. 
Support from the Life, Earth and Environmental Sciences 
Standing Committee (LESC) of the European Science 
Foundation made the presentation of this paper possible 
(www.esf.org/lesc). 
 
 

153



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 

 

154


