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ABSTRACT:

This paper describes an efficient method for detecting and modeling roof superstructures (detailed volumes present on roofs such as
chimneys, dormer windows...) using only a Digital Elevation Map (DEM) and an initial building model without superstructures. This
problem is made challenging since both detection and reconstruction should be performed simultaneously. Our proposed method is
modular. The first stage (initialization stage) provides a fast and coarse detection of possible superstructures. The second stage (refine-
ment stage) refines the parametric models of the coarse superstructures using either an iterative improvement scheme or a stochastic
diffusion where both heuristics attempt to maximize the benefit of adding a superstructure model to the whole building model. The
final stage selects the most consistent set of superstructures. Experiments as well as method comparisons show the efficiency of the
proposed method.

1 INTRODUCTION

Three dimensional city models are becoming an important tool
for many applications such as planning and monitoring. In re-
cent years there has been an intensive research work to build
automatic and semi-automatic systems for 3D city and building
modeling (Fischer et al., 1998, Frueh and Zakhor, 2003, Kraußet
al., 2007, Suveg and Vosselman, 2004, Werner and Zissermann,
2002). Despite this, there is a striking lack of works that model
and reconstruct buildings with roof superstructures1 (detailed vol-
umes present on the roofs). This kind of modeling achieves a
level of detail that finds applications in virtual or augmented re-
ality and urban planning (Frueh and Zakhor, 2003). This level of
precision impacts directly on the model realism and on the user
confidence in the model quality. Current 3D city modeling algo-
rithms consider the roof superstructures as outliers or noise that
will inevitably bias their results. Very few works have addressed
the detailed reconstruction of buildings. The methods presented
in (Schindler and Bauer, 2003, Mayer and Reznick, 2006) have
dealt with facade reconstruction containing windows.

With the availability of very high resolution aerial image-based
DEMs (10cm resolution), modeling the roof superstructures be-
comes feasible. The data corresponding to the main roof planes
are good enough to use a generic approach, but superstructures
are much smaller features and their data quality can be compared
to the one of entire buildings in satellite images. Generic methods
have been introduced to produce free-form polyhedral building
models from aerial imagery (Baillard and Zisserman, 2000, Du-
rupt and Taillandier, 2006) but satellite data requires model-based
approaches (Lafarge et al., 2007) due to their coarser resolution.
Although superstructures can be described by simple parametric
models, their simultaneous detection and modeling using aerial
image-based DEMs could be challenging. Indeed, 1) the size of
superstructures are very small compared to that of buildings, and
2) DEMs are not always a faithful representation of the real 3D
world in the sense that they have some artifacts that impede fine
details associated with superstructures. The context of this paper
is new because the 3D-reconstruction of buildings with super-
structures using very high resolution aerial images presents two

1The task of superstructure modeling and reconstruction consists in
estimating their type and their geometrical parameters.

different subproblems: the detection and the reconstruction.

Recently, (Brédif et al., 2007) has addressed the detection and
modeling of roof superstructures. Although the proposed algo-
rithm gives good results, its computational cost is very high since
it is based on an exhaustive search strategy, in the sense that a
huge number of superstructure candidates are reconstructed be-
fore selecting the optimal solution. This becomes computation-
ally expensive whenever robust estimation techniques and/or com-
plex superstructure types are used. In this paper, we propose
an efficient approach for detecting and reconstructing roof super-
structures using only a DEM. The remainder of the paper is orga-
nized as follows. Section 2 briefly describes some backgrounds
and states the problem we are focusing on. Section 3 summarizes
the approach described in (Brédif et al., 2007). Section 4 presents
the proposed efficient technique. Section 5 provides some exper-
imental results as well as method comparisons.

2 BACKGROUND AND PROBLEM FORMULATION

We adopt a hybrid model for buildings. This is very similar to the
architectural model in (Dick et al., 2004). It allows the generic
modeling of the main planes of the building with 3D-polygons,
while parametric objects are used to model the smaller features
that are the roof superstructures.

The support supp(m) of a model m is simply the vertical projec-
tion of the model onto an horizontal plane. A building model is
defined by B = (R,S) where the roof plane setR defines the ge-
ometry of the 3D polygon that models each of the n roof planes,
and the superstructure set S defines, for each roof planeRi, its ni

superstructures S = Sij , i ∈ (1 . . . n), and j ∈ (1 . . . ni), where
each superstructure Sij describes a volumetric primitive such as
a chimney or a glass roof. The jth superstructure of the roof
plane Ri is the parametric object Sij = (tij , θij , φij) where:

• tij is one of the superstructure types that are illustrated in
Figure 1. This set could be easily extended to include other
superstructure types. Notice that if all superstructure types
are polyhedric then the whole building model will be de-
scribed by a polyhedric object.

179



• φij is the set of altimetric parameters that are specific to the
superstructure type, shown as the h values in Figure 1.

• θij = (x0, y0, x1, y1) is a rectangle aligned with the prin-
cipal orientation of supp(Ri). These parameters give the
position and size of the support of Sij . For superstructure
types that have rectangular supports (chimneys, glass roofs
and terraces in our implementation), the rectangle defined
by θij is identical to supp(Sij).

A superstructure type tij defines hard constraints on the possible
parameter values (θij , φij) of its instances. This introduces loose
priors on the models. The only tight constraint is the alignment of
every superstructure with the principal orientation of supp(Ri).
This constraint does not seem to be restrictive in practice and
introduces robustness in the orientation of the superstructures.

In this work, we address the following problem. Given a DEM
and a building roof model without superstructures, provided by
a set of 3D polygons R, we would like to estimate the set of su-
perstructures belonging to the building, i.e., the set S. Therefore,
there are two sub-problems: (i) the superstructure detection, and
(ii) the superstructure reconstruction. In other words, we estimate
for each detected Sij its parameters (φij , θij) and its type tij .

The Z-error distance between a 3D model m and the DEM over
the support of the superstructure Sij is defined by

dSij (m) =
∑

supp(Sij)

‖zDEM (x, y)− zm(x, y)‖ (1)

where ||.|| is a chosen metric, and m is a 3D model of a super-
structure or a roof plane. Note that the Z-error dSij (Sij) is the
deviation between the DEM and the superstructure model Sij .

The benefit of adding a given superstructure Sij to the building
model will be given by:

e(Sij) = dSij (Ri)− dSij (Sij) (2)

Therefore, a positive score indicates that the superstructure Sij

fits the DEM better than the roof plane Ri. Inversely, a negative
score indicates that the roof plane is a better model. Simpler mod-
els are favored using the additive description length term (Rissa-
nen, 1978) L(Sij) = Ltij . The modified score can be written
as:

eλ(Sij) = dSij (Ri)− dSij (Sij)− λ L(Sij) (3)

The factor λ may be set to zero when the data are of good quality.
Nevertheless, setting λ > 0 may become useful to prevent over-
fitting with noisier data.

3 RELATED WORK

In (Brédif et al., 2007), an approach for superstructure detection
and reconstruction has been proposed. The proposed optimiza-
tion tries to get a set of superstructures by maximizing the sum of
their scores subject to a non-overlapping constraint.

The approach consists in three steps. In the first step, feasible
superstructure candidates are looked for in the 2D domain of the
roof 3D polygon. For every 2D location in this quantified domain
all possible 2D discrete rectangles θij are used and tested for esti-
mating the superstructure parameters φij . In the second step, the
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Figure 1: Four typical roof superstructures: a chimney (4+1 pa-
rameters), a terrace (4+1), a glass roof (4+1), and a dormer win-
dow (4+2).

Figure 2: The three main stages of the developed approach.

set of superstructure candidates is filtered out using their scores,
in the sense that the score of all retained superstructures is posi-
tive and local maximum. In the third step, the final set of super-
structures (the solution) is found by searching for the Maximum
Weighted Clique in the compatibility graph where each node cor-
responds to a superstructure candidate Sij that satisfies the loose
priors. The weight of the node Sij is set to eλ(Sij), and two
superstructures are compatible and thus linked by an edge in the
graph if they do not overlap.

While this approach provides satisfactory results, its computa-
tional cost is very high. Indeed, the reason is twofold. First, by
adopting an exhaustive search strategy, a huge number of super-
structure candidates are reconstructed in the first step, i.e. their
model parameters φij are estimated from the DEM data. The
computation time associated with this first step will considerably
increase when robust techniques are used for parameter estima-
tion. Second, solving the Maximum Weighted Clique problem
require processing a binary tree whose depth is card(C) where C
is the set of filtered superstructure candidates. While the second
problem can be alleviated by using a Branch and Bound max-
imizer the first problem is still the bottleneck of the proposed
approach.

4 EFFICIENT APPROACH

In this section, we propose an efficient approach to superstructure
detection and reconstruction. The main advantage of the pro-
posed technique is that it does not require an exhaustive search.
Furthermore, its computation time is proportional to the number
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of the real superstructures. The key idea is to coarsely detect the
location of possible superstructures. Then, the parametric mod-
els of such superstructures is refined and validated in latter stages.
Thus, the proposed approach is split into three main stages. Fig-
ure 2 outlines the proposed approach. The first stage consists in
detecting and locating 3D objects able to evolve to feasible super-
structures (Section 4.1). In the second stage, the set of 3D objects
is then refined to a set of superstructure candidates via parameter
fitting (Section 4.2). This refinement stage can use either an iter-
ative improvement scheme or a stochastic diffusion scheme. The
third stage provides the final solution as a set of non-overlapping
superstructures (Section 4.3).

4.1 Coarse detection

We assume that the planes containing the 3D polygons were ob-
tained using robust statistics such as RANSAC (Fischler and Bolles,
1981), that is, their estimation was accurate enough despite the
presence of superstructures. Typically a superstructure corre-
sponds to a set of outlier 3D points in the DEM—those 3D points
that are far from the plane containing the 3D polygon. Therefore,
a simple search for clusters of outliers can provide a coarse lo-
calization of possible superstructures. Every pixel belonging to
the support of a 3D polygon stores the error between the DEM
and the parametric model of the 3D polygon at this pixel. The
obtained difference map is then thresholded using two thresholds
in order to get two kinds of outliers. The lower threshold is set
to the DEM noise. The upper threshold separates the pixels into
low and high superstructure clusters.

Because of the nature of the DEMs used, the map of outliers will
be populated with many isolated pixels and undesirable com-
ponents. To eliminate them, we apply a morphological open-
ing with a circular structuring element whose diameter is pro-
portional to the planimetric DEM resolution. After filtering, we
obtain smoothed homogeneous areas of connected pixels. Con-
nected component labelling is then performed, which gives the
number of regions used in the next stages of the algorithm. Each
of these 2D regions (for example, see Figure 5(b)) represents an
approximation of the support of a candidate superstructure.

4.2 Model refinement

We propose two algorithms for model refinement.

4.2.1 Successive improvements (algorithm I) The obtained
2D homogeneous regions are upgraded to 2D rectangles θk repre-
senting the support of possible superstructures. This is performed
using the alignment assumption—every superstructure is aligned
with the principal orientation of the support of its containing 3D
polygon. At this step, due to the DEM noise and imprecision,
these 2D rectangles do not necessarily correspond to the support
of the real superstructures. Examples are given by i) a detected
rectangle may represent a part of a glass roof (for example, see
rectangles 1 and 2 in Figure 5(c)-upper left), and ii) a detected
rectangle may be larger than the real support of a chimney (for
example, see rectangle 3 in Figure 5(c)). In order to overcome
this and to get a set of feasible superstructure candidates we adopt
a fine modeling scheme by which the support and the altimetric
parameters (θk, φk) are iteratively improved. The proposed fine
modeling algorithm is illustrated in Figure 3. At any iteration, for
a given type tk and a rectangle θk, the estimation of the best φ∗k
is carried out by a classical parameter fitting that maximizes the
benefit eλ (Eq. 3). The iterative improvement (Figure 3) is carried
out by locally maximizing the score eλ(tk, θk) = eλ(tk, θk, φ∗k)
over the parameter θk, for fixed type tk.

The proposed algorithm (Figure 3) is very similar to a hill climb-
ing maximization where the parameter space is a subset ofR4 and
the displacement vector is given by ∆θ = (δx0 , δy0 , δx1 , δy1),
where the δ. belong to the set {−1, 0, +1 quantization step}.

In order to get fine delineation and reconstruction, the quantiza-
tion step is set to the planimetric resolution of the DEM. One can
notice that any superstructure can grow and shrink at any given
iteration. In practice, due the iterative nature of the process, only
10 neighboring rectangles out of 80 are used, that is, M = 10.
We have chosen 5 expansion directions and 5 shrinking direc-
tions. It is worth noting that, in practice, not all coarse supports
require iterations since many of them are already corresponding
to a local max.

Model refinement: successive improvements
Input: a list of 2D rectangles θk provided by the coarse de-
tection stage.
Output: a list of superstructure candidates Ci = (Sij), j ∈
(1 . . . ni).

For every detected 2D rectangle θk and for all its associated
feasible types tk, do the following

1. Compute the scores eλ(tk, θk + ∆θm) for the neighbor-
ing rectangles (θk + ∆θm), m = 1 . . . M .

2. If the current superstructure (tk, θk, φk) is a local maxi-
mum, that is, eλ(tk, θk) ≥ eλ(tk, θk + ∆θm) for all m
or the support of any neighboring rectangle exceeds its
allowed boundaries then add the current superstructure
(tk, θk, φk) to the set of superstructure candidates and
stop the iterations.

Otherwise replace the so far best superstructure
(tk, θk, φk) with the neighbor having the highest score,
i.e., (tk, θk, φk) ← (tk, θk + ∆θm∗ , φm∗) where m∗ is
the neighbor having the highest score. Go to (1).

Figure 3: The refinement algorithm upgrades the coarse 2D sup-
ports to feasible 3D superstructure models by locally maximizing
their score eλ.

Model refinement: stochastic diffusion
Input: a list of 2D rectangles θk provided by the coarse de-
tection stage.
Output: a list of superstructure candidates Ci = (Sij), j ∈
(1 . . . ni).

For every detected 2D rectangle θk and for all its associated
feasible types tk, do the following

1. Compute the scores eλ(tk, θl) for the neighboring rect-
angles (l = 1 . . . L). The neighboring rectangles θl are
drawn using uniform distributions.

2. Replace the current superstructure (tk, θk, φk) with
the superstructure having the highest score, i.e.,
(tk, θk, φk) ← (tk, θl∗ , φl∗) where l∗ is the superstruc-
ture having the highest score.

Figure 4: The refinement algorithm upgrades the coarse 2D sup-
ports to feasible 3D superstructure models by means of stochastic
diffusion.
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4.2.2 Stochastic diffusion (algorithm II) The refinement al-
gorithm presented above upgrades the coarse supports to super-
structure 3D models by searching for local maxima of the scores.
In this section, we propose an alternative refinement algorithm
that is based on a stochastic diffusion. In other words, for each
coarse support and each type, the coarse support is diffused using
a given number of drawn rectangles. Since the 2D orientation is
already known, every drawn rectangle requires drawing four con-
tinuous random variables (width, length, and 2D position). We
have used uniform distributions to get such rectangles. The range
of widths and lengths is set to the type range. The 2D position is
limited to keep the center of the detected coarse rectangle in the
drawn rectangle. The score of all drawn supports is then com-
puted. The selected candidate is the one having the highest score.
Figure 4 outlines this algorithm. Although this algorithm is very
similar to the previous algorithm, the iterative step is replaced
with a stochastic diffusion step (one single pass). The number of
drawn rectangles L was experimentally determined. It was set to
60.

The main advantage of the stochastic diffusion scheme is its abil-
ity to escape non-desired local maxima since the search for 2D
supports is performed at random.

4.3 Final solution

The output of the refinement algorithm is a set of superstructures
that may overlap. Thus, the final step consists in selecting a set
of non-overlapping superstructures whose sum of scores is maxi-
mum. This is the maximum Weighted Clique problem. The final
set of non-overlapping superstructures is derived from the set of
superstructure candidates Ci by maximizing their total scores.

argmax
Sij⊂Ci

∑
j

eλ(Sij)

subject to supp(Sim) ∩ supp(Sin) = ∅ where Sin,Sim ∈ Ci.
In our case, since the number of superstructure candidates that
overlap with at least one superstructure is very small, the Maxi-
mum Weighted Clique problem can be solved using a brute force
exploration.

5 EXPERIMENTAL RESULTS

Results have been obtained from DEMs and polyhedric build-
ing models developed at the French Geographical Institute (IGN).
The DEMs have been obtained from a set of calibrated aerial im-
ages using the graph cut algorithm (Roy and Cox, 1998). The
DEM-produced building model (a set of 3D polygons) have been
obtained using the generic reconstruction method (Durupt and
Taillandier, 2006). As a result the input data are given by the
DEM only, the images are not used directly.

We have implemented the L1 and L2 metrics. The L1 metric is
more adapted to non-Gaussian noise typically affecting correlation-
based DEMs, but the computation time of the latter is much faster.
Figure 5 illustrates the application of the proposed approach to
a typical building roof. (a) shows the orthophoto of the corre-
sponding 3D polygon. (b) shows the results of the coarse de-
tection scheme—a set of connected regions, (c) shows the initial
and coarse supports, (d) shows the result of applying the iterative
fine modeling scheme (the set of refined superstructures Ci), (e)
shows the selected non-overlapping superstructures, (f) shows the
roof model with the reconstructed superstructures. We stress the
fact that the orthophoto was not used by the proposed algorithms.
It is only used for visualization and validation purposes.

Figure 6 shows the score evolution associated with two coarse
supports of Figure 5(c) (rectangles 1 and 2). These two coarse
supports represent a fragment of the same upper left superstruc-
ture. Iteration 0 corresponds to the score of the coarse support and
the final iteration corresponds to the obtained local maximum.
One can notice that both supports have converged to roughly the
same superstructure (see Figure 5(d)-upper left). Figure 7 shows
the score evolution associated with another coarse support (rect-
angle 3). The lower part of this figure shows the coarse support
(left) and the support obtained at convergence (right).

For comparison purposes, the DEM data associated with the roof
shown in Figure 5 were processed by the exhaustive search-based
method (Brédif et al., 2007). The detection results are shown in
Figure 8. As can be seen, the detection of chimneys was almost
the same for both approaches. However, the detected low super-
structures were not the same although their overall detection rates
were almost the same (see Figure 5(e)).

Figure 9 shows the results of roof superstructure reconstruction
using our proposed method based on stochastic diffusion. Fig-
ure 10 shows another result of roof superstructure reconstruction.

Method comparison. In addition to the comparison provided
by Figures 5(e) and 8, we have compared the performance of
three approaches. Figure 11 shows the superstructure detection
results associated with another typical building roof: (a) cor-
responds to the exhaustive search-based method (Brédif et al.,
2007), (b) to the proposed approach based on successive im-
provements, and (c) to the proposed approach based on stochas-
tic diffusion. As can be seen, the detection results obtained with
the proposed approaches (Section 4) are very similar to those ob-
tained with the exhaustive search-based method. However, the
proposed approach is much faster (see Table 1). It should be no-
ticed that some glass roofs were not detected by any method. This
under-detection is due to the difficulty to separate the imperfec-
tions of the DEM from the glass roof models which have very
small height. The rightmost chimneys were not detected by our
proposed method since their size (within the building footprint)
was smaller than the size of the opening operator. Furthermore,
by comparing (b) and (c) one can notice that the method based on
the successive improvements has provided very good delineation
of the 2D supports. This is due to the iterative process by which
the 2D support is estimated by locally maximizing a score in the
parameter space R4. On the other hand, the stochastic diffusion
scheme explores the parameter space at random. However, the
stochastic diffusion scheme can be very useful in cases when the
DEM noise is significant.

Computation time. Table 1 summarizes the CPU time associ-
ated with the typical building shown in Figure 11. The first col-
umn corresponds to the exhaustive search-based method (Brédif
et al., 2007). The second column corresponds to the method
based on successive improvements. The third column corresponds
to the method based on stochastic diffusion. The first row corre-
sponds to the L2 metric-based parameter fitting, and the second
row to the L1 metric-based parameter fitting. An Intel Xeon 1.6
GHz PC with a non-optimized C++ code has been used.

In general, the CPU time of the exhaustive search-based method
is proportional to the building size, whereas the CPU time of our
proposed approach is proportional to the number of the real su-
perstructures.

6 CONCLUSION

We presented an efficient and modular approach for reconstruct-
ing building superstructures using only a DEM, an initial building
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 5: (a) The orthophoto. (b) The connected regions obtained
by clustering outlier points. (c) The initial and coarse 2D rectan-
gles/supports. (d) The superstructure candidates obtained by it-
erative improvements. (e) The selected set of superstructures. (f)
The final roof 3D model.

(Brédif et al., 2007) Succ. improv. Stoch. diffusion

L2 metric 49 s 3.5 s 10.5 s
L1 metric 67 s 7.1 s 14.3 s

Table 1: Computational time associated with the building shown
in Figure 11.
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Figure 6: The score evolution as a function of the iteration num-
ber associated with the two rectangles shown in Figure5(c) (the
upper left corner). Iteration 0 corresponds to the coarse support
and the final iteration corresponds to a local maximum. One can
notice that both supports have converged to the same superstruc-
ture (see Figure 5(d)).
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Figure 7: The score evolution as a function of the iteration num-
ber associated with the coarse rectangle (bottom-left).

Figure 8: The detected and reconstructed superstructures using
the exhaustive search-based method.

(a) (b) (c)
Figure 9: (a) The orthophoto. (b) A shaded view of the DEM. (c)
The detected and reconstructed superstructures.
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Figure 10: (a) The orthophoto. (b) The detected and recon-
structed superstructure.

(a)

(b)

(c)
Figure 11: Detecting and reconstructing superstructures associ-
ated with a typical building roof. (a) results obtained with the
exhaustive search-based method. (b) results obtained with the
proposed approach based on successive refinements. (c) results
obtained with the proposed approach based on stochastic diffu-
sion.

model without superstructures and an easily extensible collection
of parametric models defining the available superstructure types.
The approach consists of three main stages. In the first stage, pos-
sible superstructures are roughly detected using the DEM and a
polyhedric building model. In the second stage, the superstruc-
ture parametric models are estimated using either successive im-
provements or a stochastic diffusion. The final stage selects the
most consistent set of superstructures. The computational time
of the proposed approach is proportional to the number of real
superstructures. Several comparisons with an exhaustive search
based approach show that the approach give similar results. Al-
though determining the type of the reconstructed superstructures
was a by-product of the proposed approach our main objective
was the detection and reconstruction of the superstructures. Fu-
ture work may investigate the superstructure reconstruction di-
rectly from the images.
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