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ABSTRACT:

This paper presents a method to index ortho-map databases with image-based features and search a map database for regions that match
query images of unknown scales and rotations. The proposed method uses image-based features to index the 2D map locations. Image
feature extractors normally generate features with location, orientation, shape, and a descriptor for normalized image patch. In a map
database, the geographical location, orientation and shape of the image features can be recovered with a reasonable local planarity
assumptions. The paper makes use of a visual word based recognition scheme and extends it by adding geographical dimensions to the
visual words and use them to index 2D locations in a map grid.An indexing-friendly scoring system is defined to measure the similarity
of query and database images which represent unit tiles of the complete map. The implemented scoring algorithm can efficiently give
the matching scores between a query image and all possible database images. Upon searching a new approximately orthogonal image, a
set of scaling and rotations are first selected, and the visual words are transformed and matched against the database. The best locations
along with scales and rotations are determined from the query results of the different set of transformed visual words. Experiments
show a high success rate and high speed in searching map databases for aerial images from different datasets.

1 INTRODUCTION

Nowadays, satellite imagery has become an important part of our
information source. The amount of high resolution satellite im-
agery is growing rapidly, and much of it is now available to the
public through various map services, such as Google Maps, etc.
In this paper, we are interested in the problem of matching aerial
images (with unknown scales and rotations) to a map database.
Given a particular aerial image, we propose a method to find the
locations of similar map data along with the relative scales and
rotations, and provide a confidence measurement for the similar-
ity. Temporal changes, repetitive structures, varying illumination
conditions, and varying cameras lead to appearance variances that
make the problem very difficult to resolve. Our approach effi-
ciently handles the challenges that come with the complexity and
large scale of satellite imagery.

One of the main contributions of this paper is to propose a new
feature indexing for geo-located features in a map. Our method
adds geometric dimensions to existing visual word (Sivic and
Zisserman, 2003, Nistér and Stewénius, 2006), and uses the ex-
tended visual words on map to index 2D location grids. Unlike
the general image retrieval problem, geographical size and geo-
graphical rotation of features in map database can be recovered.
Visual words with sizes and rotations differentiate features at dif-
ferent scales and different orientations, which leads to a more
efficient indexing and retrieval system.

A significant difference, between a map database and an image
database in normal image retrieval problem, is that unit tile im-
ages in a map database are fully geographically connected, while
normal image database contains independent images. Satellite
imagery can be viewed as a grid of unit tile images of a same size
and the neighboring tile images in a same map database can not
be treated independently. Correspondingly, query images of dif-

ferent sizes need to take varying number of unit tile images as a
group to match. This paper introduces a scoring scheme that can
be applied to matching with such image groups.

The remainder of the paper is organized as follows: Related work
is discussed in Section 2. Afterwards Section 3 introduces our
new visual word and the associated feature indexing system. An
efficient image localization based on the indexing system is given
in Section 4. Experimental results are presented in Section 5.
Conclusions and future work are discussed in Section 6.

2 RELATED WORK

Our localization task is a problem of looking for small parts out of
a much larger image, which is essentially a content-based image
retrieval problem. This section will discuss some related tech-
niques in image retrieval including invariant image features, vi-
sual word indexing and vocabulary tree method.

2.1 Invariant Image Feature

In recent years, there has been an extensive investigation in lo-
cal invariant image features to achieve robustness to viewpoint
changes. Lowe’s Scale Invariant Feature Transform (SIFT) ex-
tracts distinctive scale and rotation invariant features from the
DOG (difference of Gaussian) scale space of images, and de-
scribes the corresponding normalized image patches with SIFT
descriptors, which are 128D vectors constructed from the local
gradient histograms (Lowe, 2004). Figure 2 shows an example
image with SIFT features. While SIFT detector handles only
2D similarity transformation, some other feature detectors (e.g.
MSER) go beyond to achieve invariance to affine changes. A
good overview and evaluation of such affine invariant features
can be found in (Mikolajczyk et al., 2005). SIFT descriptor, as a
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Figure 1: Illustration of the image localization problem. The
background is a zoomed view of part of the satellite map in Park
City, UT, USA, and the smaller image on the left bottom and the
small red box in the map gives a detailed view of a small area.
The color image at the top is a query example from a different
dataset taken about 6 years later.

general method to describe normalize image patch, is also used in
those features. Those local invariant features also partially handle
illumination changes by using normalized SIFT descriptors.

Methods like nearest neighbor matching of SIFT descriptors can
then be used to establish the feature point matches between im-
ages. Figure 3 shows an example of SIFT feature matching.
Feature point matches are also used in sparse 3D reconstruc-
tions (Snavely et al., 2006). In this paper, we also use the local
invariant features to build the image-based localization system for
map databases.

2.2 Image Search with Visual Words

We will give a short outline of the visual word based image search
scheme that is described in (Sivic and Zisserman, 2003, Nistér
and Stewénius, 2006, Fraundorfer et al., 2007) to introduce the
terminology, which is used in this paper. The image search pro-
ceeds by a local approach, by detecting local features, computing
a description (feature) vector and matching with a database of

Figure 2: SIFT features shown as arrows. Location, size and
orientation of features are corresponding to the starting point,
length, and direction of the arrows.

Figure 3: SIFT matches shown as lines connecting the corre-
sponding feature points in two images.

feature vectors (see illustration in Figure 4). Each local detection
is described by a SIFT feature vector. Each SIFT feature vector
is then quantized with the so-called vocabulary tree. It assigns a
single integer value, denoted visual word (VW) to a SIFT feature
vector. This eases matching a lot. Instead of computing distances
between SIFT feature vectors only integer values have to be com-
pared. Each image is then represented as a set of visual words.
The set is denoted as a document vector which is a v-dimensional
vector where v is the number of possible visual words. It is usu-
ally extremely sparse which creates a very compact image repre-
sentation leading to a highly scalable and efficient approach. For
an image query the similarity between the query document vector
to all document vectors in a database is computed. As similarity
score the distance (e.g. L1, L2) between document vectors can be
used. The vector with the lowest distance is reported as the most
similar match.

The organization of the database as an inverted file and the sparse-
ness of the document vectors allows very efficient scoring. The
inverted file is not storing the VW’s itself, instead it stores an
image identifier for the image in which the VW was detected.
This creates a list of image identifiers for each individual VW.
When using an inverted file the computation of similarity scores
between the query document vector and the database document
vectors reduces to simple voting. For each VW that occurs in
the query document vector the corresponding inverted file list is
processed and a vote is cast for the corresponding images. By
selecting proper values for the votes the distance can be com-
puted (Nistér and Stewénius, 2006). In most cases TF-IDF weight-
ing is used in the scoring, so that rare VW’s count more than
frequently occurring VW’s. The scoring process is illustrated in
Figure 5.

A crucial step is the quantization of the SIFT feature vectors into
visual words using the vocabulary tree. The vocabulary tree de-
fines a partitioning of the 128-dimensional SIFT feature space.
The partitioning is computed off-line by hierarchical k-means
clustering of a large amount of training SIFT feature vectors which
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creates a tree of cluster centers. For an image query SIFT fea-
ture quantization works by determining in which cluster cell the
feature falls. The corresponding visual word is simply the cell
identifier (a simple integer value). The method used in this paper
is an extension of the just described vocabulary tree method.
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Figure 4: Illustration of the vocabulary tree based image search
scheme: It proceeds by a local approach, by detecting local fea-
tures, quantizing the SIFT descriptors with a vocabulary tree into
visual words and computing the similarity between the query im-
age and the database images (using an inverted file structure).
The database image with highest similarity is reported as match.
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Figure 5: Scoring with an inverted file: For each VW that occurs
in the query document vector the corresponding inverted file list
is processed and a vote is cast for the corresponding images in the
scoring vector. Proper vote values ensure that the scoring vector
contains the used norm distances (e.g. L1, L2) between the query
and database vectors.

3 MAP DATABASE INDEXING

This section discusses the proposed new visual word for indexing
the map databases, and explains the weighting of the new visual
words.

3.1 The Extended Visual Word

A good indexing of features needs a vocabulary of discrimina-
tive visual words. Although quantization through vocabulary tree
makes SIFT descriptors easily indexable, pure descriptor-based
indexing still results in a lot of ambiguity. The reason for this
is that the feature descriptor itself does not carry much informa-
tion about the size, orientation and shape of the real 3D geometry.
Invariant feature detectors can transform different image patches

of the same 3D structure to a similar normalized patch. On the
other hand, it may also generate similar normalized patches for
different 3D surfaces. Accordingly, the same visual word is very
likely to represent a set of features from different 3D structures
with different projective transformations.

In the context of satellite imagery, local 3D structure correspond-
ing to image features can be approximately recovered by assum-
ing the corresponding part of the ground to be planar. This as-
sumption is reasonable because the variation of elevation is much
smaller than the distance between the earth surface and the cam-
era. Then every image feature can be seen as a geographic im-
age feature. The additional information about the geographical
size and orientation are discriminative properties of image fea-
tures, which can resolve the ambiguity between many different
3D structures on the ground. Therefore, the geographical size
and orientation can be used along with the descriptor for index-
ing. Additionally the geographic properties of affine covariant
regions can also be recovered. This paper only conducts experi-
ments on SIFT features, but the proposed method can be extended
to use these affine invariant features.

Satellite imagery can be ortho-rectified with an affine transfor-
mation because the cameras are very far away from the ground.
Then, the only remaining unknown image transform between rec-
tified images taken by different camera or camera at different time
is approximately a 2D similarity transformation. To cope with
the remaining similarity transformation between query image and
database images we chose the similarity invariant SIFT features.

The visual words stored in our database are triplets consisting
of the quantized SIFT descriptor, the geographical size, and the
geographical orientation. Feature descriptors are quantized with a
vocabulary tree that is trained from millions of features extracted
from the satellite map. Then the geographical orientation and the
logarithm of geographical size are also discretized to integers for
convenient indexing. Hence, each visual word is a 3D integer
vector. Like other indexing-based techniques, inverted files are
constructed for the visual words of each map database.

In detail, for a feature (x, y, ζ, θ, sift), where (x, y) denotes
its UTM coordinate in meters, ζ the geographical size in meters,
θ the angle within the ground plane in degrees, and sift the SIFT
descriptor, it is transformed to an indexing pointer as below:

(fsblog2 ζc, bθ ∗Nθ/360c, fv(sift)) ⇒ (bx/Wtc, by/Htc)

where function fs maps the logarithm of feature size to a smaller
set of Ns integers, Nθ is the number of rotation to use, function
fv uses a pre-trained vocabulary tree to quantize 128D SIFT de-
scriptors to integers, Wt × Ht is the tile size for the database.
(fsblog2 ζc, bθ ∗Nθ/360c, fv(sift)) on the left is the visual
word from the feature, and on the right side(bx/Wtc, by/Htc)
is a location (visual document of a Wt × Ht tile) to index. Our
proposed method is indexing 2D connected location grid other
than independent images in other image retrieval problems. The
map database is stored on disk as tile images with associated
features corresponding each indexed locations. A tile size of
200 × 200 pixel is chosen in our experiment because the orig-
inal image data we downloaded from TerraUSA (Microsoft Ter-
raServer, n.d.) server are organized as 200× 200 pixel tiles.

An advantage of this new visual word is that scaling transfor-
mation and rotation transformation can be applied to the visual
words in the vocabulary, and the transformed visual words will
still be in the vocabulary. Similarly, scaling and rotation can be
applied to any query image to get a new group of visual words
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for querying. For convenience, given a function g of some scal-
ing plus some rotation, the transformation of a visual word t is
denoted as g(t), and the transformation of a visual word group
{t} as {g(t)}.

Given some scaling and rotation threshold, the set of visual words
that have similar scale, similar rotation and the same descriptor
with a visual word is defined. Then the inverted files of those sim-
ilar visual words can also be used in matching. This enables us
to match query images to the image database with some transfor-
mation threshold. For convenience, given a threshold T of some
scaling and some rotation, the set of visual words within such a
range of a visual word t is called T (t).

3.2 Visual Word Weighting

It is important to weight the visual words in the vocabulary so that
visual words are treated differently according to their frequency.
For example, if some visual words show up in all most all the lo-
cations, a small number of occurrence of such feature won’t pro-
vide sufficient information for localization, which means a small
weight should be assigned. A standard IDF (inverse document
frequency) weighting is used in this paper to weight visual words.
Such an IDF weight for a visual word ti is defined

wi = idfi = log
|XY |

|xy : ti ∈ dxy|
where |XY | is the total number of locations to index and |xy :
ti ∈ dxy| is the number of locations n which this visual word
occurs. IDF is set to zero when the number of occurrence is
zero. IDF weighting of the new visual words now gives differ-
ent weights to features that have different scales and orientations.
A a result, the large features now become more important than the
smaller ones since there are less of them. This is also consistent
with our intuition about the features. Without the utilization of
the geographical information, the IDF weighing will lose a pow-
erful dimension for discriminating features. However, due to the
dependency on the real 3D structures, the proposed visual word
will not be applicable to general image retrieval problem except
for the cases where all 3D dense structure and relative sizes can
be recovered.

Figure 6 demonstrates the change of IDF distribution when fea-
ture sizes are used in the location indexing. In this proposed
scheme, more visual words in the vocabulary have zero occur-
rences, which is more efficient for lookup of inverted files be-
cause more lookups are skipped. The proposed visual words also
emphasize the importance of large feature sizes.

4 MAP DATABASE SEARCH

This section will explain the image localization algorithm with
the proposed feature-based indexing. The definition of our scor-
ing system and the associated implementation is introduced, which
are the main contributions of the paper. Specifically handling
of querying sets of database tiles is discussed afterwards. The
querying algorithm for recovering locations along with scales and
rotations is given in the end.

An image with known geographical size and rotation or an hy-
pothesis of the geographical size and rotation can be seen as a
vector d where di gives the number of occurrence of visual world
i. The correlation between any two images is defined as

corr(q, d) =
∑

i

qidiw
2
i
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Figure 6: CDF plot of non-zero IDF for a database. In this exper-
iment, 5 scale levels are used, rotation is ignored. The first red
curve is the IDF for the descriptor-only visual word. The rest are
the curves for the proposed visual words at five different scales
and at all scales. With scales taken into account, much larger
portion of visual words have zero occurrence in the database. vi-
sual words of larger scales will have more zeros occurrences and
larger IDF weights because of less occurrence.

The above definition leads to an easy implementation that does
not require the counting of visual word occurrences as follows:

function ComputeCorrelation(q)

1 set corr(∗, q) to zero

2 for each i in image q
3 for each d in the inverted file of i
4 corr(d, q) + = w2

i

When some threshold is provided, a set of visual words need to
be checked for each visual word in the query document. The
computation will be as follows:

function ComputeCorrelationWithThreshold(q, T)

1 set corr(∗, q) to zero

2 for each i in image q
3 for each j ∈ T (i)
4 for each d in the inverted file of j
5 corr(d, q) + = w2

j

The final normalized matching score between any two sets of vi-
sual words is defined as

score(q, d) =
corr(q, d)√

corr(q, q)corr(d, d)

which measures the confidence of two images being the same
scene.

When querying an image q, its matching score score(q, d) with
all d in the database are computed as above, then the best matches
can be obtained by comparing the scores to determine the largest
ones. To realize efficient query, the self-correlation of database
image corr(d, d) is should be pre-computed when building the
database. corr(q, q) , the self-correlation of query image, only
need to be computed once for each possible transformation on a
query image, and it is constant for all database documents.

Our problem is to locate images with unknown scale and rota-
tion in a map database. It needs to compute not only the best
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possible locations, but also the corresponding scales and rota-
tions. Although the actual stored images in our map database
are 200 × 200 pixel tiles, it is not enough only computing the
matching score between the query image and each database tile,
because the query image could match to a region of multiple
tiles. We need to match query images with any map images with
some reasonable size of Wt×Ht tiles, where Wt and Ht are the
number of tiles along x and y direction. An image made of any
Wt ×Ht tiles is also called a tile group in this paper.

The correlation between a query image q and a tile group D can
be obtained from the query’s correlation with the tile units as

corr(q, D) =
∑

d ∈ D

corr(q, d)

Once computing the correlation of a query with all the database
tiles, the correlation between the query and any tile groups can
obtained by summing up the correlation of all the tiles in the
group.

The self-correlation of the tile groups in the map database needs
to be specifically handled. For any group of tiles D = {d}, its
self-correlation is

corr(D, D) =
∑

i

DiDiw
2
i

=
∑

i

w2
i (

∑

d ∈ D

di)
2

=
∑

d1 ∈ D

∑

d2 ∈ D

corr(d1, d2)

The self-correlation of a tile group is the sum of the correlations
of any two tiles in the tile group. Therefore, only the correlations
between any two tiles need to be pre-computed for fast computa-
tion of self-correlations, and the self-correlation of the tile groups
can then be easily obtained.

To recover the scale and rotation between query and database, we
first choose a set of reasonable scaling and rotation transforma-
tions as hypotheses. A set of thresholds are also selected accord-
ingly to cover the gaps between them. Each transformation then
generates a new set of visual words to match with the database.
The corresponding map sizes for a query image under each trans-
formation is determined according to the scale, and the matching
scores between the query image and all possible tile groups are
then computed. Finally, by finding the maximum matching scores
among all considered transformations, scale, and rotation are re-
covered along with the location. While choosing the top N scores,
to avoid choosing locations that are too close to each other, each
time when a maximum score is selected, its neighboring locations
will be suppressed as non-maximum.

function Query(q)
1 Get the set of geometric transformation G to test

2 for each g ∈ G
3 Compute the tile group size Wg ×Hg

4 Compute correlation of g(q) with database tiles

5 Compute the summed correlation for tile groups

6 Compute the self correlation for tile groups

7 Compute the matching scores

8 Select tile groups with the Nq largest scores

9 Verify 2D transformation for selected tile groups

The final optional step of matching is the geometric verifica-
tion of some top scoring images as tile groups. Putative feature

matches can be established form the inverted files of visual words.
A simple histogram method is then used to get the inliers for 2D
similarity transformation. Since each feature contains informa-
tion about scale, rotation and translation, each putative match can
establish a 2D similarity transformation. A histogram of number
of supporting matches can be constructed, and the largest num-
ber corresponds to the best possible geometric transformation for
this image. Then the best matches among all candidate images
are the ones with largest number of inliers. Geometric verifica-
tion not only filters out false positives, but also recovers more
accurate scale, rotation, and location.

5 EXPERIMENTS

This section first explains how the feature extraction is adapted
for map database, then talks about the database and query images
that are used in the experiments. Experiment with querying im-
ages that are from different datasets with the map database are
presented.

5.1 The Map Database

To extract SIFT features for satellite map database, the huge map
image need to be divided into small pieces on which feature de-
tection is run. As it is not feasible to detect features for the entire
map at once. Enough overlap between sub-images is very impor-
tant for keeping the features that are close the boundary. Other-
wise, features of large scale on the boundary will be lost. In our
experiments, an 800 pixel overlap is used. It means the feature
detection can approximately keep all features of sizes up to 800
pixels. Additionally, GPU-based SIFT implementation is used to
speed up the processing (Sinha et al., 2006, Wu, 2007). The fast
processing with GPU is also another reason that we choose SIFT.

In our experiment, a gray-level satellite map of 16000 meters by
12000 meters in Park city of Utah is used in our experiments. The
background image in Figure 1 is a small part of our database,
where both mountains and cities are covered. It contains 4800
200×200 tile images that are downloaded form the Aerial Photo
data at (Microsoft TerraServer, n.d.). The downloaded map is
dated 1997, and the resolution of the map is 1 pixel per square
meter. With the GPU-based SIFT, 831084 features are detected
from the entire downloaded map.

After feature extraction, a vocabulary tree is trained off-line us-
ing the extracted SIFT descriptors. With this tree and some man-
ually chosen scale set and rotation set, image query tasks can be
performed after loading features from disk, converting them to
visual words, and adding location pointers to inverted files of vi-
sual words. We chose a vocabulary tree with branching factor
10 and 5 levels (i.e. resulting in 100000 leaves) together with
100 different scales and 360 different rotations to establish the
vocabulary. A set of geometric transformations of 5 scales and
9 rotations are used in the query. The thresholds for scaling and
rotations are selected accordingly to cover the entire geometric
transformation space. Our implementation of indexing is using
the method in (Fraundorfer et al., 2007).

5.2 The Park City (USGS Seamless) Experiment

Query images were generated by taking screen shots from online
databases. We first took a set of 20 screen shots from the DOQQ
1.0m B&W (west) data at (The National Map Seamless Server,
U.S. Geological Survey, n.d.). The experiment of searching those
images have a 100% success rate at the top match. We believe the
DOQQ dataset and the TerraServer Aerial Photo dataset are just
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rectified differently from the same original data and the query im-
ages in this experiment differ from the database images only by a
small affine transformation. Experiments prove that the proposed
visual word is working properly under such image transformation
which is approximately a 2D similarity transformation.

5.3 The Google Maps Experiment

For the second experiment, color images from Google Maps are
selected as query images (see Figure 7). 40 images are chosen
from Google Maps in the same area. Variances of scales in the
query images are maintained for verifying how well the proposed
visual word can handle scale changes. More pictures with at
least a few roads are chosen on purpose because those regions
are close to places where people can reach. Considering that the
color image dataset in TerraServer is dated 2003, those query im-
ages might be taken no earlier than 2003, which means a 6 year
gap from our database which is dated 1997. The regions with too
much temporal changes are avoided. Figure 8 demonstrates the
experimental results, which shows a recognition rate of 90% for
top 6 matches and 40% for the top match is obtained. Note that 6
is only .13% of the entire database. Although this is not a general
success rate because the query set is not randomly sampled, the
result is still promising because normally those parts with salient
features are what we are interested in.

Figure 7: Thumbnails of some Sample query images in our ex-
periments.
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Figure 8: Percentage of ground truth locations that make in to the
top X matches without geometric verification. Considering more
top matches gives higher probability of having a correct query.

The query speed without geometric verification is 2hz on a ma-
chine with 3Ghz CPU and 1GB RAM. Geometric verification can
take charge of finding the most likely location together with the
scale and rotation from the top matches. This step takes about 1
to 4 seconds to verify the top 10 putative locations depending on
the number of features.

6 CONCLUSION AND FUTURE WORK

The paper proposed a new visual word for indexing orthogonal
satellite imagery and the associated method for image-based lo-
calization. The proposed visual word incorporates the geographic
information of image features, and gives stronger discriminabil-
ity for indexing images. A scoring implementation is designed to
match a query image to a part of a large image (represented as
multiple tiles), which is significantly different to standard image
retrieval. Scale and rotations are recovered together with location
by matching the proposed visual words. The proposed method
can be used to for information mining from map databases, for
example, searching for interesting patterns on a map. The future
work of this paper includes extending the work to other image
features and experimenting on larger database.
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