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ABSTRACT: 
 
This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, 
~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of 
road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we 
use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear 
non-local term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can 
be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic 
images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model. 
 
 

1. INTRODUCTION 

Road extraction from remotely sensed imagery has been exten-
sively studied for the last few decades due to the variety and 
importance of the potential applications of an automatic extrac-
tion method. While a great number of approaches exist in the 
literature (Fortier et al., 1999, Mena, 2003), the development of 
reliable procedures is still a challenge. The relative failure of 
existing approaches stems from the complexity of the imaged 
scene, i.e. the variety of 'objects' (cars, buildings, shadows...) 
that it contains. Existing algorithms can be classified into three 
main categories, according to strategy: bottom-up, top-down, 
and combined. A bottom-up strategy assumes that first basic 
features are detected, and then constraints are progressively 
added, up to higher-level recognition. This category includes 
mathematical morphology (Zhang et al., 1999), knowledge re-
presentation and reasoning (Wang and Newkirk, 1988), and 
road tracking (Geman and Jedynak, 1996, Merlet and Zerubia, 
1996). Due to their high sensitivity to nuisance factors, bottom-
up methods show strong limitations, and in general, low robust-
ness. A top-down strategy models the objects, and then searches 
for them in the image. Examples include active contours 
(Fortier et al., 2001, Mayer et al., 1998) and marked point 
processes (Stoica et al., 2004, Lacoste et al., 2005). These me-
thods are relatively less sensitive to incomplete and ambiguous 
information, but the computations needed are usually expensive. 
In fact, the borderline between the two strategies is not clear. 
Most methods make use of both bottom-up and top-down 
processing. In addition, there are also "transversal" techniques, 
for instance, multi-scale analysis (Mayer et al., 1998), neural 
networks (Bhattacharya and Parui, 1997), Kalman filters 
(Vosselman and de Knecht, 1995), and so on. 
 
The algorithms mentioned above are mostly restricted to low-
resolution images, and particularly to rural and semi-urban 
areas, where the road network is readily visible, with little 
shadow and few occlusion artefacts compared to inner cities. 
For very high resolution (VHR) imagery in dense urban areas, 
the complexity of the imaged scenes, which contain many road-
like features in the background, undesired noise on the road, 

and occlusions caused by trees and the shadows of high 
buildings (see Figure 1), often results in unreliable road 
extraction. This is particularly true for secondary roads. Being 
narrower, they are more affected by the various types of 
geometric noise present in the image; they are more easily 
completely occluded, for example. This suggests that more 
sophisticated road modelling approaches must be developed in 
order to extract these types of roads in an urban context. 
 
 

 
 
Figure 1. A QuickBird panchromatic image (size = 1400×1400, 

0.61m/pixel) of a dense urban area. 
 

In this paper, our goal is to extract the main and secondary road 
networks in dense urban areas from VHR QuickBird 
panchromatic images. To do so, we introduce a novel non-
linear non-local higher-order active contour (HOAC) phase 
field energy, based on the energy used for the extraction of 
main road networks in (Peng et al., 2007a). The new, non-linear 
term allows the long-range interactions between pairs of 
boundary points on opposite sides of a road to have a different 
magnitude and/or range from those between pairs of boundary 
points on the same side of a road. In practical terms, this allows 
separate control of road width and road curvature: the scale on 
which the road is modelled as being 'straight' can be different 
(usually it is larger) from the road width, unlike the model in 
(Peng et al., 2007a). The effect of this more precise prior 
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knowledge is better road prolongation and thus better extraction 
of those roads for which this prior knowledge is crucial, i.e. 
narrower roads. Promising results on QuickBird panchromatic 
images at reduced resolutions and comparisons with other 
models demonstrate the role and the efficacy of our new model. 
 
The paper is organised as follows. In section 2, we recall briefly 
the main principles of the HOAC phase field model of (Peng et 
al., 2007a), dedicated to the extraction of main road networks. 
Section 3 introduces the new, non-linear term that differentiates 
between interactions along the road and across the road, and 
thus enables more sophisticated prior knowledge to be included. 
We explain the optimization scheme in section 4. In section 5, 
the benefits of the new model are illustrated via experiments on 
real QuickBird panchromatic images. Section 6 concludes. 
 
 

2. HOAC MODEL FOR MAIN ROAD EXTRACTION 

In (Rochery et al., 2006), HOACs were proposed for road 
network extraction from low to medium resolution images. In 
contrast to conventional active contours, HOACs incorporate 
long-range interactions between points on the contour (better 
called the 'region boundary'), and thus encode complex prior 
knowledge of road network geometry. For this reason, HOACs 
are more robust, and can be initialized generically and hence 
automatically. In (Rochery et al., 2005), 'phase fields' were 
introduced for region modelling in image processing, and 
HOACs were reformulated as (non-local) phase field models. 
We use the phase field framework in this paper, because it has 
several advantages over parametric active contours or standard 
level set methods: a linear representation space; ease of 
implementation; a neutral initialization; and greater topological 
freedom. To adapt the original phase field HOAC model of 
(Rochery et al., 2005) to the extraction of the main road 
network from VHR QuickBird panchromatic images, (Peng et 
al., 2007b) first proposed a multi-resolution data energy to deal 
with the complexity of VHR images. For the purpose of further 
eliminating false detections in the background, (Peng et al., 
2007a) introduced specific prior knowledge in the form of an 
outdated GIS map, to complement the generic prior knowledge 
carried by the HOAC prior. It has been experimentally 
demonstrated that for the main roads, at full resolution, this 
model is able to keep the unchanged roads, to correct the 
mistakes, and to extract new roads. However, it is still not 
capable of retrieving the narrower roads very accurately. In this 
section, we will briefly review the basic model in (Rochery et 
al., 2005). 
 
We wish to find the region in the image domain containing 
the road network. The phase field framework represents a 

region by a function

R

:φ Ω → ℜ , where is the image 
domain. The function

2Ω ⊂ ℜ
φ defines a region via a threshold : Rζ =  

{ : ( )x x }φ ζ∈Ω > . To model regions, we define a functional 
of φ , 
 
 

( ; ) ( ) ( , ) ,                     (1)M P DE I E E Iφ θ φ φ= +
 

 
where is the image data, and:I Ω →ℜ θ balances the 

contributions of the prior energy PE , which models the 

geometry of the region sought, i.e. in our case, the region 
containing the road network, and the data energy DE , which 
models the image to be expected given the region. 
Minimization of such a functional with respect to φ gives a 

minimizing function *φ , and hence a region . The functional 

must be designed so that is the region sought. 

*R
*R

The prior term PE

,

in (Rochery et al., 2005) is the sum of two 

terms: a local phase field term , and a non-local HOAC 

phase field term

,0PE
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w e λ  and α  are cons . The potential  tants W  effectively
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Ω . As a result, the quantities 2φ are approxi-(1= ± ) /φ

R

±

mately equal to the characteristic functions of  and R . The 
local gradient product ( ) ( )x xφ φ∇ ⋅∇  smoothes this result. 

Hence, it produces a narrow interface , which is centred 

around the region boundary R
CR

∂ . The interaction functionΨ is 
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he energ is equivalent to an active contour model whose 

2 ,
   

r <

 
T y ,0PE
energy is a linear combination of region boundary length and 
region area. ,P NLE  describes long-range interactions between the 

gradient vectors of φ  at pairs of points. Since φ∇ is only non-

zero in R , this is the same as long-range inter ons between 
pairs of region boundary points and their normal vectors. Its 
effect is to prevent pairs of boundary points with antiparallel 
normal vectors from coming too close, and to encourage the 
growth of arm-like shapes. Therefore,

C acti

PE  favours regions 
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of composed of long, low curvature 'arms' roughly constant 
width that meet at junctions, i.e. it models network structures. 

The data term DE takes into account the radiometric properties 
of dense urban areas, which discriminate ro

ads from the back-ground. We model the one point statistics of 
the image intensi-ties, i.e. their histograms. It consists of two 
parts: information from the roads and from the 
background. DE can be written as 
 
 

{ }( , ) ln ( ( )) ( ) ln ( ( )) ( )  .(5)DE I dx P I x x P I x xφ φ φ
+ + − −

Ω

= − +∫
 

 are two-component Gaussian mixture distributions, model-

lin

3. NON-LINEAR TERM FOR SECONDARY ROAD 

Compared to the main roads, the secondary roads are much 

P
±

g the image intensities, where ＋ denotes the roads and － 
denotes the background. Their parameters are learned on sam-
ples of road and non-road in the image by supervised learning. 
 
 

EXTRACTION 

more difficult to deal with, for the following reasons. First, the 
radiometric properties of narrower roads are similar to those of 
the background. Second, narrower roads are more often 
obscured by shadows and trees, which can cause gaps in the 
extracted network. For both reasons, data driven/bottom-up 
models fail to retrieve the roads correctly: strong geometric 
prior information is needed. The network model of equation (2b) 
contains such prior knowledge, but it suffers from a limitation 
that is severe in the case of secondary roads: the interaction 
between points on opposite sides of a road ( ( ) ( ')x xφ φ∇ ⋅∇ <  

0) is of the same strength and range as the interaction between 

nts on the same side of a road ( ( ) ( ') 0)x xpoi φ φ∇ ⋅∇ > . This 
means that the scale on which the r traight 
is the same as the width of the road, whereas in fact road width 
gives only an (approximate) upper bound on the radius of 
curvature of the road: most roads are straighter than they are 
wide. For narrow roads this is particularly problematic, since 
the road region is relatively unconstrained due to the small road 
width. In particular, road prolongation is short-range just when, 
due to the effects of geometric noise mentioned above, we want 
it to be long-range. 
 

oad is expected to be s

 order to change this situation, we need to be able to model 

.1 Interaction functions 

 

In
longer-range, stronger interactions along the road without 
changing the interactions across the road, i.e. we have to 
separate the two interactions. In this section, we will achieve 
this goal by introducing a new energy term. To motivate this 
term, we return to the contour formulation. 
 
3

 
Figure 2. The interactions  and 

Since roads are elongated structures, the interaction between 
points on the same side of a roa  must have longer range (or be d
stronger, which often amounts to nearly the same thing) than 
the interaction between points on opposite sides of a road. To 
achieve this goal, a straightforward solution is to separate the 
interaction function along one side of a road / /+

Ψ  from the one 

across a road / /−
Ψ , as shown in Figure 2. In other words, the 

interaction function must depend on the tangent/normal vectors 
at the pairs of ts that are its argument. Although the length 
scale in the interaction function, d , could be made to depend on 
the inner product between the tangent/normal vectors at the two 
pixels, it would lead to complicated functional derivatives. 
Alternatively, we prefer to perform a linear interpolation 
between two interaction functions. In the contour formulation, 
our new HOAC prior energy ,

 poin

P HOE  takes the form: 
 
 

{

}
1 1

, / /

S S

/ / / /

( ) ' ( ( ) ( '))    

                ( ( ) ( '))  ,                    (6)

P HOE dsds f s s

f s s

γ γ γ

γ γ

+ +

×

− −

= − ⋅ Ψ

− ⋅ Ψ

∫∫

 

/ /

 
 

here , is an arc length parameterization of the w  1: Sγ → Ω
oundary Rregion b ∂ , instead of the entire image domain; ( )sγ  

is the tangent vector to the boundary at s (thus ( ) (s s ')γ γ⋅ ∈  

[ 1,1]− ); ' / /+ 'denotes parallel vectors and '

llel rs. / / / /( ), ( ) : [ 1,1]f x f x
+ −

− →  are two 
linear functions: 
 
 

/ /− '

[0,1]

 denotes 

antipara vecto

/ / ( ) (1 ) / 2 ,                                 (7a)f x x
+

= +
 

 

 
 

/ / ( ) (1 ) / 2 .                                 (7b)f x x
−

= −  

/ /+
Ψ and / /−

Ψ are the same types of function as in equation (4), 
but h
functi

ave rent range or magnitude. The two interaction 
ons compete with each other: when ( ) ( ') [0,1]s s

diffe
γ γ⋅ ∈ , 

i.e. the two interacting tangent vectors are more parallel, / /+
Ψ is 

dominant; while when ( ) ( ') [ 1, 0]s sγ γ⋅ ∈ − , i.e. the two inter 

acting tangent vectors are l, / /−
Ψ  is dominantmore antiparalle . 

To simplify the formulation, we adjust only magnitude of 
the interaction (although this effectively changes its range also), 
and we further assume that the magnitude of the interaction of 
parallel vectors is stronger than that of antiparallel vectors, i.e. 

/ / / /a

the 

+ −
Ψ = Ψ , where a > 1, is a constant. Equation (6) 
becomes 

 
 

/ /+
Ψ / /−

Ψ  
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{ }
1 1

, / /

S S

1
( ) ' [( 1) ( 1) ( ) ( ')]  .(8)

2P HOE dsds a a s sγ γ
−

×

= − − + + ⋅ Ψ∫∫ γ  

 
 
3.2 Non-linear non-local HOAC phase field energy 

In order to implement , ( )P HOE γ in the phase field framework, it 

needs to be reformulated as a function of the phase field φ , 
instead of the arc length parameterization γ  used in equation 
(8). To this end, we replace tangent vectors by normal vectors, 
and then normal vectors by φ∇ . Subsequently, the range of 
interactions is extended from the region boundary R∂  to the 
whole of the image domain . Due to the fact that Ω ( )xφ∇  is 
approximately equal to zero everywhere outside the narrow 
interface  in Ω , the boundary indicator function CR
 
 

( ) ( ( ) ( ))( ( ') ( ')) ,          (9)S x x x xφ φ φ φ φ= ∇ ⋅∇ ∇ ⋅∇
 
 
is inserted into the first term of equation (8). Thus we have 
 
 

{
2

,

1
( ) ' [( 1) ( )

2

| ' |
               ( 1) ( ) ( ')] ( )} .       (10)

P HOE dxdx a S

x x
a x x

d

φ φ

φ φ

Ω

= − −

−
+ + ∇ ⋅∇ Ψ

∫∫
 

 
When a = 1, this reduces to the non-local HOAC phase field 
term ,P NLE  of equation (2b) (up to a factor of / 2β ). Therefore, 
we define our new additional energy term by 
 
 

{
2

2
,

| ' |
( ) ' ( ) ( )} .            (11)

4P NEW

x x
E dxdx S

d

β
φ φ

Ω

−
= − Ψ∫∫

 

 

 
Since the functional derivative of ,P NEWE will, unlike that of 

,P NLE , contain a term non-linear inφ due to ( )S φ being O( 4φ ), 
we refer to it as the non-linear non-local term. We now define 
our new model as ,0 ,( , )P P NL PE + NEWE DE E Eθ= + + . 
 
Note that whether the two tangent/normal vectors at a pair of 
in-teracting points are parallel or antiparallel, the effect 
of ,P NEWE is always to encourage two points inside the range of 

the interac-tion to attract each other. Thus ,P NEWE reinforces the 

effect of ,P NLE  in the case that the tangent/normal vectors are 

parallel, and it partly annuls the effect of ,P NLE  in the case that 
the tan gent/normal vectors are antiparallel. Accordingly, the 
interaction between pairs of points on the same side of a road is 

stron-ger than that between pairs of points on opposite sides of 
a road. 
 
 

4. OPTIMIZATION 

We now want to find the functionφ that minimizes our new 
total energy E. Using gradient descent, at convergence, the 

optimal *φ determines an estimate of the road network. 
Following (Rochery et al., 2005), we use a neutral initialization, 
i.e. the initial value ofφ is set equal to a constant everywhere in 
Ω . During the iterations, no re-initialization or regularization 
is required. To perform gradient descent we need only the 
functional derivative of E: 
 
 

2 31
ln { ( ) ( ( ) ( ))

( ) 2

PE
x x x

x P

δ
θ φ λ φ φ

δφ
−

+

= + −∇ + −   

2 2 | '
(1 ( )) ' ( ') ( )

|x x
x dx x

d
α φ β φ

Ω

−
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2
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x x
x dx x x

d
β φ φ φ

Ω

−
+ ∇ ⋅ ∇ ∇ ⋅∇ Ψ∫  

 
 
The derivatives , /P NLEδ δφ  and , /P NEWEδ δφ  are non-local. 
To avoid performing explicit convolutions, they are calculated 
in the Fourier domain. The resulting evolution equation is 
 
 

2 3( ) 1
ln { ( ) ( ( ) ( ))

2

Px
x x x

t P

φ
θ φ λ φ φ+

−

∂
= + ∇ − −

∂
2 1 2 ˆˆ(1 ( )) { ( ) ( )}x F k d kd kα φ β φ−− − + Ψ

2 1

2
ˆ( ) { ( ) { ( ) ( )}}x F d kd F x xβ φ φ φ−− ∇ Ψ ∇ ⋅∇  

1

2
ˆ( ) { { ( ) { ( ) ( )}}}} ,        (13)x F d kd F x xβ φ φ φ−− ∇ ⋅∇ Ψ ∇ ⋅∇  

 
 

where F and 1F −  denote the Fourier and the inverse Fourier 
transform respectively, and ^ indicates the Fourier transform of 
a variable. In the discretized implementation, all derivatives are 
computed in the Fourier domain, while the time evolution uses 
the forward Euler method. The parameters of the prior energy, 
i.e. 2,, , ,θ α λ β β , and are constrained by stability conditions 
that ensure that a long bar of a given width is a stable 
configuration of the model. This enables a choice of

d

2, ,λ β β , 

and  based on the expected road width: only d α  and θ   
remain. 
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(a)                                            (b) 

         
(c)                                          (d)                                           (e) 

 
 
Figure 3. Experiments at 1/4 resolution. 3(a)-3(b): image data (size = 350×350, road width = 3~5 pixels) and its partial enlargement. 

3(c)-3(e): results obtained using the energy E (with ,P NEWE ) at iterations 1, 1,500 and 27,000. 
 

         
(a)                                          (b)                                           (c) 

 
Figure 4. Experiments at 1/4 resolution. Left to right: results obtained respectively using the energy ME  (without ,P NEWE ), maximum 

likelihood estimation, and a standard, non-higher-order active contour model (with neither ,P NLE  nor ,P NEWE ). 
 
 

5. RESULTS AND COMPARISONS 

In this section, we demonstrate the behaviour of our new model 
containing the non-linear, non-local HOAC term ,P NEWE  via 
experiments on real QuickBird panchromatic images in dense 
urban areas, at reduced resolutions. 
 
Figure 3(a) shows one of the input images at 1/4 resolution. 
Figure 3(b) shows its partial enlargement, to display the 
complexity remaining at this resolution. The parameters ( , ,θ α

)

 

 were . The 
results obtained using the energy with the new non-linear non-
local term

2, , , )dλ β β

,

(100, 0.12, 3.8, 0.0375, 0.0338, 4

P NEWE at iterations 1, 1,500 and 27,000 are illustrated 

in Figures 3(c)-3(e). The result obtained using the energy ME  

(without ,P NEE

,

W ) is shown in Figure 4(a). We see that adding 

P NEWE  enables the recovery of the main and secondary road 

network, whereas the model without ,P NEWE  misses a secondary 

road. In order to illustrate the effects of other terms in the 
model, we computed results using maximum likelihood 
estimation (i.e. 0θ = ) and a standard, non-higher- order active 

contour, i.e. 2β β 0= = (see Figures 4(b) and 4(c)). The MLE 
result shows that local image information alone is not sufficient 
to distinguish the roads from the background, while the 
standard active contour result shows the importance of the 
geometric knowledge introduced by HOACs. Quantitative 
evaluations based on standard criteria (Heipke et al., 1997) are 
shown in Table 1. Ground truth for the evaluations was 
segmented by hand. On the other hand, the computation time 
for the result in Figure 3 was around 80 minutes, which is 
considerably slower than the next nearest time, that obtained 
with the model ME  (Figure 4(a)). Figure 5 presents more 
results at reduced resolutions. The first column shows the input 
image data, which is either at 1/4 or 1/2 resolution. The two 
columns on the right show the corresponding results obtained 
with and without the new non-linear, non-local term ,P NEWE . 
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The importance of ,P NEWE  is clear: it facilitates greatly the 
retrieval of secondary roads. 
 

Image Completeness 
TP/(TP+FN) 

Correctness 
TP/(TP+FP) 

Quality 
TP/(TP+FP+F

N) 
New model E 
(Figure 3(e)) 0.9989 0.9312 0.9303 

ME  ( ) 2 0β =
(Figure 4(a)) 

0.9575 0.9334 0.8963 

,0P DE Eθ +   
(Figure 4(c)) 

0.4895 0.9208 0.4698 

MLE ( 0θ = ) 
(Figure 4(b)) 0.9928 0.2115 0.2112 

 
Table 1. Quantitative evaluation criteria of the different 
methods (T = True, F = False, P = Positive, N = Negative) 
 
 

6. CONCLUSIONS 

Narrow secondary roads in VHR images are very difficult to 
extract, because of occlusion effects and the similar radiometric 

properties of the road region and background. To tackle this 
problem, the incorporation of strong geometric prior knowledge 
of road networks is essential. Building upon previous work 
dedicated to segmenting only main road networks, we have 
presented, in this paper, a novel non-linear, non-local phase 
field term, and applied it to the extraction of main and 
secondary road networks in VHR images. This novel term 
causes pairs of points inside the range of the interaction to 
attract each other. In conjunction with the original HOAC 
geometric term, it allows the interaction between points on the 
same side of a road to be stronger than the interaction between 
points on opposite sides of a road. Therefore, the incorporation 
of the term enables the generation of longer arm-like branches 
and better prolongation. Experiments on road network 
extraction from QuickBird panchromatic images in dense urban 
areas at reduced resolution show that road networks are 
completely recovered using the model with the additional term. 
The new model clearly outperforms the previous model in terms 
of quality of results. However, the new model is 
computationally expensive, which is why the method was 
applied at reduced resolution. To solve this problem, which is 
due to the non-linear nature of the new term, we are now 
working on a novel linear non-local prior term that will have a 
similar effect. 

 
 

         
 

         
 

         
 

         
 
Figure 5. More experiments at reduced resolutions. First column: input images, first row: 1/2 resolution, size = 440×400, road width 
= 2~4 pixels; second row: 1/4 resolution, size = 300×300, road width = 3~5 pixels; third row: 1/4 resolution, size = 400×300, road 
width = 3~6 pixels; last row: 1/4 resolution, size = 512×512, road width = 3~15 pixels. Two rightmost columns: corresponding 
results obtained using the energy E (with ,P NEWE ) and the energy ME  (without ,P NEWE ). 
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