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ABSTRACT:

An approach for tree species classification in urban areas from high resolution colour infrared (CIR) aerial images and the corresponding
Digital Surface Model (DSM) is described in this paper. The proposed method is a supervised classification one based on a Support
Vector Machines (SVM) classifier. Texture features from the Gray Level Co-occurrence Matrix (GLCM) are computed to form feature
vectors for both per-pixel and per-region classification approaches. The two approaches are presented and results obtained are evaluated
and compared both against each other and also against a manual defined ground truth. To perform tree species classification on high-
density urban area images, trees must previously be segmented into individual objects. All intermediary methods developed to segment
individual trees will also be shortly described. Tree parameters (height, crown diameter) are estimated from the DSM. These parameters
together with the tree species information are used for a 3D realistic modelling of the trees in urban environments. Results of the
described system are presented for a typical scene.

1 INTRODUCTION

3D city modelling is an active research topic in distinct applica-
tion areas. Although researches have reached maturity concern-
ing building reconstruction, there is a growing need for a detailed
representation of other urban objects such as vegetation areas.
Urban vegetation investigation plays a very important role in ur-
ban planning, environmental protection and consistency develop-
ment policy making.

The first step in 3D reconstruction of urban vegetation consists in
the segmentation of vegetation areas followed by a classification
of each previously identified region. An accurate automatic re-
construction of such types of vegetation areas is a real challenge
due to their complex nature and to their intricate distribution be-
tween man-made objects in dense urban areas.

Many researches deal with the automatic detection, delineation
and classification of tree crowns from aerial or satellite images.
Among the different approaches proposed for tree crown delin-
eation, a first class of algorithms uses object-based methods, which
model tree crown templates to find tree top positions [Perrin et al.,
2006, Larsen, 1997, Pollock, 1996].

Another class exploits shadows around tree crowns to delineate
their contour [Gougeon and Leckie, 2001], such as valley-following
algorithms [Gougeon, 1995] or region growing methods [Erik-
son, 2004]. Other contour based methods use multi-scale anal-
ysis [Brandtberg and Walter, 1998] or active contours [Horvath
et al., 2006] to delineate tree crowns. Applied to forest stands,
this kind of algorithms often perform well as neighbour trees of-
ten are of same species and age. Applied to urban environments,
where neighbour trees greatly vary in size and species, the same
algorithms perform poorly. This is mostly due to the different res-
olution of the input data which can induce false detections for the

tree tops. Consequently, tree crowns are often over-segmented
during the region growing step.

A third class uses local maxima information to estimate tree top
position and the number of trunks [Pinz, 1998, Wulder et al.,
2004]. This kind of techniques are mostly applied on forest stands
and are based on detecting local maxima on a smoothed image.
Provided that the detection filter size is appropriate for the size
of the trees and the image resolution, this technique usually pro-
duces good results on medium or dense forest stands as estimated
tree tops often coincide with real ones.

Urban areas analysis from aerial images received considerable
attention in recent years, still studies mainly deal with the auto-
matic extraction of vegetation structures from aerial images [Straub,
2003,Brandtberg and Walter, 1998] and of tree parameters [Song,
2007].

Tree species classification in urban areas is a very challenging
area of study, due to the great spectral heterogeneity in the urban
environment, to crown shadowing, differential crown illumina-
tions, the great mixture of tree species in a stand, the great variety
of tree ages and shapes.

The tree species classification approach proposed uses a super-
vised classification method based on SVM’s. Texture features
are computed to form feature vectors for both per-pixel and per-
region classification approaches. The two approaches are pre-
sented and results obtained are evaluated and compared both against
each other and also against a manual defined ground truth.

The strategy of our approach consists of several steps: detec-
tion of vegetation areas, segmentation of vegetation types accord-
ing to their height followed by individual tree crown delineation.
Tree species classification is later on performed for each indi-
vidual tree crown previously segmented. The following section
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describes the data used in our research. The methods developed
to detect vegetation areas, to separate lawns from treed areas, to
delineate tree crowns and to perform tree species classification
are presented in the third section. Results obtained on our study
area are presented and evaluated in the fourth section of this pa-
per. Conclusions and perspectives of our work are presented in
the last section of this paper.

2 STUDY AREA AND DATA

The study area is located in the city of Marseille, situated in the
south-east of France. Marseille′s climate is Mediterranean, with
a great variety of vegetation species. It is a complex urban area,
with many greened and treed resting places, highly intermingled
with buildings.

Tests were carried out on digital colour infrared aerial images,
taken in November 2004, with a ground resolution of 20cm per
pixel. The Digital Surface Model (DSM) was derived from the
multi-view aerial images using a multi-resolution implementation
of Cox and Roy′s optimal flow image matching algorithm [Roy
and Cox, 1998]. Figure 1 depicts sample images of our study
area.

Figure 1: An aerial image of Marseille (France) representing a
high density urban area, where 1 pixel corresponds to approx-
imately 20cm (a)RGB channels (b)IR channel (c)DSM for the
same area

The following section presents the algorithms we developed to
perform tree species classification.

3 METHODOLOGY

Detection of a class of objects in large images and classification
of objects in segmented images have intensely been researched
in computer vision in recent years. Given a set of distinguishable
objects, their classification can be performed. Before such a task
can be undertaken it is first necessary to partition the image into
regions corresponding to individual objects.

To perform tree species classification, trees must previously be
identified as individual objects. In this section, we summarise our
approach to extract vegetation areas, separate lawns from trees
and delineate individual tree crowns. For a detailed description of
methods developed for this processing steps please refer to [Iovan
et al., 2007].

3.1 Vegetation Detection

A supervised classification system using a linear-kernel Support
Vector Machines (SVM) classifier was used to identify vegeta-
tion areas. The method we propose is robust to the nature of the
urban surface and to the atmospheric conditions. The training
data set is made up manually and contains both vegetation and
non vegetation areas. The feature vector we used contains four
characteristics, namely, the reflectance values of each pixel in the
infrared, red, green and blue bands. The output of this processing
step is depicted in Figure 2 and is further on used to mask out all
non-vegetation areas.

Figure 2: Vegetation detection based on linear-kernel SVM clas-
sification (a)Input image (b)Vegetation mask

3.2 Tree Grass Segmentation

The goal of this second step is to identify treed areas from the
vegetation areas previously delineated. We developed a method
based on texture characteristics of the vegetation areas on the
Digital Surface Model (DSM). Treed areas are characterised on
the DSM by a higher gray-level variance compared to lawn ar-
eas. To segment trees from lawns, we compute the local height
variance as this feature accentuates large changes in height val-
ues between adjacent pixels. The resulting image is thresholded
using a histogram-based method to obtain masks for grass and
treed areas. Figure 3 shows the results obtained for grass/treed
area separation for the test area depicted in Figure 1.

Figure 3: Differentiation between grass and treed areas (a)Local
variance computed on the DSM (b)Vegetation areas on the DSM
(c)Treed areas (d)Lawns

3.3 Individual Tree Crown Delineation

To segment individual tree crowns we work on the treed areas
previously identified corresponding to the DSM, further on called
Canopy Height Model (CHM). We developed a robust region
growing algorithm to segment individual tree crowns on the CHM.
We extract seed points with a one-to-one correspondence with the
tree tops on the CHM. For this step, we first smooth the CHM by
a Gaussian filter. We then evaluate the maximum height of the
trees present in the CHM and we consider all points having the
same height as tree tops. In the first iteration we obtain points cor-
responding to the highest trees in the stand. Therefore, we itera-
tively decrease the analysis altitude, h. At each step, we analyse
all points at higher heights than h and detect a new seed when a
new region appears and it doesn′t touch pixels previously labelled
as seeds. A graphical illustration of this algorithm is presented in
Figure 4.

Tree crown borders are obtained by an approach similar to the
previous one, based on a height descent. The altitude analysis h
is iteratively decreased, and for each step, pixels corresponding to
lower height than the seed’s height are aggregated to the adjacent
seed. The results of this algorithm for tree crown delineation for
the test area presented in Figure 5 - (a) can be seen in Figure 5 -
(b).

3.4 Tree Species Classification
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Figure 4: Detecting tree tops from the DSM (a)3D view of the
DSM: all points higher than the analysis altitude h are evaluated
for tree top estimation (b)2D view of the 30th iteration (c)Seed
points detected after the final iteration: we can notice that we ob-
tain one seed region for each tree.

Figure 5: Tree crown delineation results. (a) Input data (b) Seg-
mentation results for the proposed region growing method

3.4.1 Feature Extraction Tree species are defined by several
characteristics, such as average height, crown shape, leaf shape
and color, stem density, crown spectral characteristics, and so on.

Images are composed of tone (i.e. spectral information) and tex-
ture (i.e. tonal variability in a given area), two interdependent
characteristics [Baraldi and Parmiggiani, 1995, Harralick et al.,
1973]. The texture of an image contains information about the
spatial and structural arrangement of objects [Tso and Mather,
2001]. There are two classes of texture measures: first order (oc-
currence), and second order (co-occurrence) statistics [Harralick
et al., 1973, Mihran and Jain, 1998]. First-order statistics are de-
rived from the histogram of pixel intensities in a given neighbour-
hood (i.e. moving window), but don’t take into consideration spa-
tial relationship between pixels. Second-order statistics are com-
puted from the Gray Level Co-occurrence Matrix (GLCM) which
indicates the probability that each pair of pixels values co-occur
in a given direction and distance [Harralick et al., 1973, Mihran
and Jain, 1998].

Other methods used to characterise image texture include Fourier
analysis, wavelets, variograms, fractal dimension [Tso and Mather,
2001].

In this study we focused on first- and second- order measures
to characterise tree species. We computed the following texture
measures: Mean, Standard Deviation, Range, Angular Second
Moment, Contrast, Correlation, Entropy, Inverse Difference Mo-
ment. Many texture features can be computed from the GLCM
matrix. Each element of the GLCM, g(i, j|d, θ) describes the rel-
ative occurrence of two pixels with gray level (i) and gray level
(j), respectively, and separated by inter-pixel distance (d) in the
angle direction (θ). A GLCM is defined as:

G(d, θ) = [g(i, j|d, θ)] (1)

The use of the GLCM method requires an appropriate window
size, inter-pixel distance and direction. Classification results greatly

depend on the selected window size: if it is too small, the spatial
information extracted is not statistically reliable, whereas a too
large window allows the overlapping of different classes.

We use the tree crown delineation results as additional infor-
mation to compute the second order statistic parameters of the
GLCM method. This allows us to overcome the overlapping
classes problem. We propose two approaches to compute tex-
ture measures : a pixel-based one in which texture measures are
computed for each pixel over a square-neighbourhood centred on
it and a region-based one where texture measures are computed
on all pixels belonging to a tree crown. The size of the window
for the pixel based approach was chosen of 31 × 31 pixels to
make statistically reliable the measurements. As for the region
approach we compute second order features for all pixels inside
a tree crown border.

The choice of an appropriate distance between pixels is closely
related to the coarseness or the fineness of the texture being anal-
ysed. The coarser the texture, the more the distance between
pixels can be increased. As we are interested in preserving all
possible differences between species, we decided to consider a
distance of 1 pixel and thus to characterise texture in its finest
level of detail.

Direction is important in the case of anisotropy in the texture.
This is not the case for tree crowns, therefore we decided to com-
pute second order statistics over a direction of 0°.

3.4.2 Texture Classification The supervised classifier used is
a linear-kernel SVM one in a one-against-one configuration. Sup-
port Vector Machines demonstrated in recent years excellent per-
formance in a variety of pattern recognition problems. For a de-
tailed analysis of SVM’s please refer to [Vapnik, 1995, Li and
Kwok, 2003].

Texture classification was done using different feature vectors
computed on four different colour spaces: RVB, XYZ, Lab, HSV.
Since we want to separate vegetation regions which look similar,
it seems that using perceptual relevant colour spaces is important.
For a review of colour spaces in the context of image segmenta-
tion, please refer to [Ceccato et al., 2001].

The training and test databases will be presented in the section 4,
together with the experimental results obtained.

4 RESULTS AND EVALUATION

We computed fist- and second- order texture measures in sev-
eral colour spaces for each of the segments previously identified.
The training and testing databases contain two species of trees,
namely lime tree (Tilia) and plane tree (Platanus hispanica). Both
per-pixel and per-region classification approaches are analysed
using the same feature vectors. A manually defined ground truth
serves as data support for the training and evaluation steps. Train-
ing is performed on a set of 18 trees while tests are carried out on
a stand of 19 trees.

Figure 6 presents tree crown regions used for classification pur-
poses. Plane trees are represented with darker tones than lime
trees.

Results obtained for tree species classification are presented in
Table 1, for feature vectors composed from Texture Measures
(TM) computed on different colour spaces. Results are presented
both for pixel-based approaches and for region-based ones.
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(a) (b)

Figure 6: Tree species classification: training and test data-sets
(a)Training area (b)Test area

Table 1: Accuracy of Tree Species Classification Performed on
Different Color Spaces

Color space
and compo-
nent

Pixel-based
approach

Region-based
approach

Classification
accuracy (%)

Classification
accuracy (%)

RGB 58,19 73,68
R 68,09 68,42
G 52,77 68,42
B 62,10 68,42
IR 52,49 57,89
DSM 70,35 63,16
XYZ 61,61 68,42
X_label 62,59 68,42
Y_label 58,62 68,42
Z_label 63,13 63,16
HSV 95,84 94,74
Hue 61,91 57,89
Saturation 90,53 89,47
Value 93,42 100
Lab 53,13 57,89
L_label 81,42 89,47
a_label 79,61 57,89
b_label 76,71 73,68

As we can notice results obtained are very promising, with a clas-
sification accuracy varying from 93,42% for texture measures
computed for pixel-based approach on the Value component of
the HSV color space representation to 100% for the region-based
one for the two class separation problem mentioned above.

4.1 3D Tree Modelling

Tree height is estimated as the distance from the base of the tree to
the tree top. We estimate the position of the trunk of the trees on
the ground as corresponding to the barycenter of the tree crown
surface. The ground altitude at the base of the tree is computed
in this point, from the Digital Terrain Model (DTM) which is
a digital representation of a topographic surface. Tree tops are
estimated as corresponding to the location of the seed points pre-
viously extracted for each tree. The height of the tree tops is
thus directly computed on the Normalized Digital Surface Model
(nDSM). The nDSM is computed as the difference between DSM
and DTM.

Tree height, tree position and tree species information are used
to enhance 3D city models with realistic representation of vege-
tation. Figure 7 depicts the 3D view of our study area with auto-

matically inserted tree models according to real tree species. As
we can observe two different tree models are present in Figure 7.
If we take a closer look at the image, we notice that tree trunks are
correctly positioned on the ground as we can see the projection
of the tree crown on the ground, underneath the tree model.

5 CONCLUSION AND FUTURE WORK

We presented our approach for tree species classification in high
density urban areas. We uses colour infra-red aerial images and
a DSM to extract vegetation, separate lawns from trees, delineate
tree stands into crowns, classifying tree crowns according to their
species, and analyzing tree crowns to determine physical infor-
mation about individual trees which will in the end be integrated
into 3D city models.

Research in the field of urban remote sensing often lacks the tree
species level identification. Our study describes a novel applica-
tion of image texture analysis to classify tree crowns according to
species. The first results are promising, pointing towards future
large-scale classification of vegetation in urban areas from high-
resolution aerial imagery. Two main conclusions can be drawn
from our study. First, both first- and second- order texture mea-
sures were strong predictors of tree species. Second, models that
included all pixels of a tree crown for texture measures compu-
tation explained better class variability. Future work is needed
to evaluate the possibility of extending tree species classification
methods to several classes.
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Figure 7: 3D tree modelling over Marseille
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