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ABSTRACT:  
 
This paper presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using clustering 
techniques. A building point cloud is first separated into planar and breakline sections using the eigenvalues of the covariance matrix 
in a small neighbourhood. The planar components from the point cloud are then grouped into small patches containing 6-8 points 
and their normal vector parameters are determined. The normal vectors are then clustered together to determine the principal 
directions of the roof planes. Directly using a clustering algorithm on normal vectors presents difficulties due to a lack of a-priori 
information on approximate roof directions. Therefore, a potential based approach is used iteratively with the k-means algorithm. 
This generates the necessary planar parameters, and segments the LiDAR roof points. For reconstruction, a plane adjacency matrix 
is created for the roof using the segmented roof points. Planes that intersect each other are identified and breaklines and roof vertices 
are generated by solving the intersecting planar equations. A vector polyhedral model of the roof is created. 
 
 

1. INTRODUCTION  

Extracting interest features from an airborne Laser (or LiDAR) 
point cloud is not a trivial task. This paper adapts techniques 
from data mining and models building roof under the 
assumption that they are polyhedral planes. Regions on the roof 
such as breaklines, small chimneys etc are considered its “non-
planar” parts. LiDAR returns from roof tops are segmented such 
that each return is mapped to a single roof plane. This is 
accomplished by first detecting points that lie close to 
breaklines in the roof structure and removing them from initial 
analysis (Section 2) using the properties of the principal 
components within a kernel (Kernel-PCA). The remaining 
planar points are used to determine the equations of the roof 
planes, by using clustering techniques (Section 3). It is shown 
that LiDAR points on the building roof can be successfully 
segmented into different planes (Section 4). Finally, the 
segmented roof points are used to determine the roof’s plane-
segment equations and a vector building model is generated 
(Section 5).  

There are several ways to approach the problem of building 
roof segmentation, modelling, and reconstruction. Some 
methods assume a basic building model, or a combination of 
several basic models to fit the data. These are called model 
driven approach which is based on specific assumptions made 
on the building models. Mass and Vosselman (1999) utilized 
the invariant moment technique to determine the roof 
parameters of regular building types using the raw laser 
scanning data.   

Data-driven methods do not assume any underlying building 
model, but make use of the redundancy created from a dense 
point cloud to determine the extant model.  Finding the 
component planes is the key issue in reconstructing the 
buildings. Rottensteiner and Briese (2003), Rottensteiner et al 
( 2005) generate a digital surface model and determine a few 

“homogenous pixels”, i.e., pixels which are most likely to be 
planar. Connected homogenous pixels were used as initial seeds 
to generate planar regions. Statistical tests were used to 
determine thresholds at various stages. Peternell and Steiner 
(2004), Forlani et al.(2005) also used a similar approach. Al-
Harthy and Bethel (2004) used moving windows, instead of an 
explicit grid to determine the slopes in x, y, and the z intercept 
for points. Then a region growing approach was used to extract 
planar segments. Further methods to extract surfaces are 
reviewed in Vosselman et al. (2004).  

Data mining approaches mainly use classification or clustering 
techniques to seek patterns such as planar segments in the data 
set for building extraction. Sampath and Shan (2006), Nizar et 
al. (2006) etc have demonstrated such an approach to building 
reconstruction. Nizar et al. defined feature vectors for each 
point based on a tangential plane and a height difference 
measure. They used these four quantities to cluster points into 
surface classes and separate similar surface classes based on 
their spatial proximity. However, LiDAR returns from non-
planar parts, even in a predominantly planar building, (from 
trees, chimneys, small dormers) etc may affect the clustering 
process. Fitting a plane at roof edges, roof ridges or trees would 
lead to errors in clustering. Interested readers can also refer to 
Tarsha-Kurdi et al. (2007), where Hough transforms were 
combined with RANSAC for building reconstruction. Brenner 
(2005) summarized various building reconstruction techniques 
using image, LiDAR and map data that have been suggested by 
different authors. Interested readers may also refer Brenner and 
Haala (1999), Vosselman and Dijkman (2001), Overby et 
al.(2004), Hoffman et al.(2002), Schwalbe et al.(2005). Schenk 
and Csathó (2002, 2007), Vögtle and Steinle (2000), 
Rottensteiner et al.(2005), Sohn and Dowaman (2007). 
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2.  BREAKLINE DETECTION 

The motivation to detect breaklines is, in part to exclude 
LiDAR returns from them from taking part in the clustering 
process that is described in detail in the next section. Normal 
vectors to non-breakline points on the roof are determined and 
clustered. The presence of breaklines, and equally importantly, 
returns from trees, vertical portions of walls etc causes the 
normal vectors to be noisy. The process of removal of 
breaklines also removes returns from trees etc. Breakline 
detection is an important element in building extraction, 
because it implicitly follows the process of human perception, 
as Schenk and Csathó (2002, 2007) pointed out. A kernel 
(neighbourhood) based PCA method is adopted to determine the 
location of these breaklines, in an interesting manner. Breakline 
detection has been studied by Briese (2006), Yokohama (2006). 
Fransens (2003) discuss a methodology based on principal 
components for determining flat regions in a point cloud.  
 
In principle, any point in an n-dimensional linear space can be 
defined as a linear combination of mutually orthogonal basis 
vectors. A principal component analysis of a given set of (3D) 
points would reveal to us the direction of these mutually 
orthogonal vectors (eigenvectors), and their relative importance 
or strength (the eigenvalues). If we can show that a group of 
points can be represented by only two rather than three 
mutually orthogonal basis vectors (i.e., the third coefficient in 
the linear combination is zero), then this group of points lies on 
a plane. By the same logic, for breakline points they need all 
three basis vectors. Let a group of points P be represented by 

in  and let iX ( ),...,1 pi = 3ℜ X be their mean vector, then the 
covariance matrix is calculated as  XXΣ
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i
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 We can then determine the eigenvalues 
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 and their corresponding 
eigenvectors for the matrix . A small valu`e for 

21 ,,ΛΛ XXΣ

1λ  indicates that the dimension of the basis space for the points 
in P is 2, instead of 3. That is, it is possible to represent the 
points in P with just two basis vectors. This indicates that the 
region represented by the points in P is planar. On the other 
hand, if all three eigenvalues are significant, then the points in 
P require all three coordinates to define, and hence do not lie on 
a plane. The conclusion would be that these points lie near a 
breakline. The above principle is summarized as: 
if ελλλλ <)]+ 32+/([ 11 , (where ε is a small quantity) then 
the point set P is planar; otherwise it is on the breaklines.  An 
example of the separation of breaklines and planar regions is 
shown in Figure 1, where the dark points are LiDAR returns 
from planar regions, and bright points are returns from locations 
near breaklines.  
 
 

3. ROOF SEGMENTATION - CLUSTERING 

Having detected and (temporarily) excluded the non-planar 
points from consideration, we are left to deal only with points 
that are planar. To segment these planar points into their 
individual roof segments, their normal vectors are collected and 
clustered. Consider a group of neighbourhood points P in the 

planar point dataset. If the covariance matrix of these points is 
calculated, and the eigenvalues and eigenvectors generated for 
this matrix, the eigenvector corresponding to the smallest 
eigenvalue represents the normal  to 
the least squares plane that can be fitted to the points in P.  
Therefore, N represents the normal vector of the whole roof 
segment to which this small neighbourhood of points belongs to. 
Such a normal vector uniquely determines the direction of 
a roof plane and thus is selected as the feature vector for 
clustering. 

T
ZYX NNN ),,(=N

)(N

 
 

 
Figure 1. Detected breakline points (light) and planar points 

(dark) 
 

3.1 K-means clustering  

K-means clustering algorithm is a simple non-parametric 
unsupervised technique to determine clusters in the input 
dataset. Mathematically, the k-means algorithm partitions the 
data points in feature space into parts by minimizing the 
following objective function 

k
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where refers to the 
iX thi − feature vector assigned to thj −  

cluster, 
jX refers to the mean feature vector of cluster j ,  is 

the number of clusters, m  is the total number of data points 
assigned in cluster

k

j . For a detailed discussion on the k -
means clustering algorithm, please refer to Jain et al. (1998) and 
Tibushirani at al (2001). K-means algorithm, however, requires 
us to know the number of clusters, and their approximate 
locations a-priori. In our case, knowing the number of clusters 
would mean knowing the number of different directions to 
which the planes in the building point to, something that is not 
known.  This also means that the approximate cluster locations 
are also unknown. The next section deals with this problem. 

3.2 Cluster centres and the number of clusters  

To determine the cluster centres and the number of clusters, an 
approach first introduced by Yager and Filev (1994) and later 
developed by Chiu (1994) is used. Chiu assigns each data point 
a potential value, based on its location with respect to its 
neighbouring points. The point with the highest potential is 

280



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3a. Beijing 2008 
 

considered as a cluster centre. Chiu assigns density potential to 
each point  as 

iX
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Here  is the number of points within the neighbourhood 

defined by the radius centred at . Points outside this 
neighbourhood are not considered for potential calculation. The 
first cluster centre is thus chosen as the point that has the 
greatest potential. Once a point is chosen, it is undesirable to 
choose the next cluster centre very close to the first one.  
Therefore, the potential for each point in the neighbourhood is 
reduced as a function of its distance to the first cluster centre  
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Notice that in equation 4, the neighbourhood for reducing the 
potential is . Chiu recommends a ratio of 1.5 between  

and , which is found to be satisfactory in this study. The 
process of acquiring new clusters stops when the cumulative 
potential becomes too small.  

br br
ar

 
It is clear that in this method the value of the r dius ar  is 

crucial for the clustering results. A smaller ar will yield a 
higher number of clusters and vice versa.  Since we are 
operating in the feature vector domain, it is difficult to design a 
reasonable threshold for ar . To overcome the problem, the 
method described by Chiu is iteratively implemented. Starting 
from a smaller radius and increasing it gradually, less and less 
number of cluster centres will be obtained. The cluster centres 
generated for each ar are used as the input to the k-means 
clustering algorithm. As the result of clustering, a likelihood 
estimate for each cluster will be produced. It measures the 
compactness of the clustering and can thus be used to determine 
the optimal value of ar , and hence the number of clusters. 
Figure 2 plots the likelihood estimates with respect to 

a

the 
umber of clusters.  

ction, we have the normal directions to each plane 
 roof.  

t roof planes, and the point 
atches that form a roof plane.  

 

n
 
The error of likelihood estimates, alternatively termed as 
dissimilarity measure, has been defined as the average cluster-
centre to data point distance.  As is shown figure 2, the 
likelihood errors fall sharply onto a point (# Cluster = 4), after 
which the decrease becomes stable. This effect is likened to an 
elbow, and the “elbow joint” is considered to be a good 
estimate of the number of clusters in the data set. The reader is 
referred to Tibshirani et al (2001) for a more detailed 
explanation. The cluster centres, corresponding to the number 

of clusters defined by the “elbow joint” are also noted.  Since 
each cluster represents a group of planar patches that are facing 
the same dire
of the
 
At the end of this process, we know the number of clusters, the 
cluster centres, and the constituent planar patches for each 
cluster. These correspond, in lidar data space, respectively to 
the number of planar faces with the same normal vector, the 
normal vector for each distinc
p

 
Figure 2. Error (likelihood) estimate vs. the number of clusters  

stering process returns the p

e spatially separated. If w

differen

 from the coordinate origin to this patch is 
computed as 

 

3.3  Separation of parallel and coplanar planes  

The clu lanes with the same normal 
vectors T

ZYX NNN ),,(=N . Within each of these 
clusters, parallel planes have to be segmented. Also to be 
segmented are plane segments that might mathematically 
possess the same equation, but a e 
write the equation of a plane as 0=+++ nCZCYCX DZNYNXN , 
then separating parallel planes means that we determine 
different values for the parameter Dn, which would indicate 

ithin a single cluster represented by 
T

ZYX NNN ),,(=N . We take each patch tha  
the clustering algorithm, and determine its centroid ),,( CCC ZYX .  
The distance

r

t parallel planes w
t went into

222/)( ZYXCZCYCX NNNZNYNXN ++++=ρ

If a given cluster has parallel planes, the values of 

   (5) 

ρ  will vary 
significantly among the patches. Parallel planes can thus be 
separated based on these different ρ  values. If we use unit 
eigenvectors, then the quantity 222

ZYX NNN ++ equals unity, and 
 quantity the ρ is the same as –Dn.  For this research, a value of 

ρ =1 meter is used to separate parallel planes. At this stage, all 
the planes in the roof have been determined, i.e. the  of 
parameters T

kZYXk NNN ),,(=N and its corresponding
kD for 

each plane is known. The non-planar (breakline) points that 
have been discarded in section 2 are assigned to the planes by 
back substituting their coordinates to these parameters, and 
assigned to the plane with minimum offset. Non-planar points 
that might actually be reflected returns from trees can be 
eliminated at this stage if the offset value is over a threshold. A 
large minimum offset valu

set

e indicates that the point is a return 
om a tree or a pipe etc.  

 
fr
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Building roof can have two or more planar segments that are 
mathematically the same, but spatially separated. Such coplanar 
segments can be separated in the conventional data space based 
on the concept of density clustering and connectivity analysis.  
In figure 3, points A and B are directly density connected, and 
point C is density connected to points A and B. However, point 
D is not density connected or density reachable to any of the 
points A, B or C.  Therefore, point D lies in a separate cluster 
from A, B and C. This concept depends on the neighbourhood 
defining radius R. For a further reading in this topic, readers are 
referred to Ankerst et al. (1999). In this case, clusters of points 
that lie on the same mathematical plane, but are spatially 
separated. Using an appropriate radius (usually slightly less 
than twice the point spacing), these clusters can be easily 
separated. 

 
Figure 3. Direct density connection (A and B), density 

reachable (A and C), and not density reachable (A and D) 
 

4. CLUSTERING RESULTS AND DISCUSSIONS 

For this research, the ground point spacing is around 1.0 m. 
Figure 4 shows some results of the process on point clouds over 
a few buildings. Color coded roof points of several buildings 
are shown in this figure. The results indicate that almost of all 
points are classified correctly to their respective planes. The 
segmentation of the building in figure 4b shall be used as 
example for discussion. 
 
4.1 Discussion of the process 

Beginning withλ , the relative eigenvalue, it should be noted 

that for a perfect planar region λ should be zero. LiDAR 
datasets contain some noise and the errors associated with each 

measurement preclude this possibility of a zero value forλ . It 
can be proved that this value is the ratio of the sum of the 
distance of the points to the least squares plane, to the sum of 

the distance of the points from their centroid.  The quantity λ is 

compared with a small threshold Tλ , below which the point 
patch shall be considered planar. A value that is very close to 
zero shall result in a planar regions being classified as 
breaklines, and a very large threshold shall result in the 

opposite. A value of .0050=Tλ  is found giving satisfactory 
results. 
 
Figure 5a (left) shows a plot of normal vector values for all of 
the planar patches in clustering.  Each dot represents a planar 
patch and its location stands for the direction of the patch 

normal vector . 
T

ZYX NNN ),,(=N
 
The dots seem to form distinct clusters. Some outliers, probably 
caused by patches formed by LiDAR points near the breaklines, 

are also seen. The k -means and Chiu’s density based 
clustering can successfully determine the number and location 
of these clusters. In the elbow-joint graph (Figure 5-b) that plots 
the likelihood values for different number of clusters, the 
correct number of clusters (5) is chosen at the place where the 
distinct change occurs. 
 
The final results (figure 4b as the example) are obtained by 
separating parallel planes based on their distances to the 
coordinate origin, and separating coplanar segments using 
density connectivity analysis (section 3.3).  

 
Figure 4. Segmented planar roof elements 

 

 
Figure 5. Plot of the direction cosines for each planar patch (a, 

left) and the elbow-joint graph (b, right). 

 
Mis-clustering can occur for planar patches that are near non 
planar regions of the roof, such as those near chimneys, 
breaklines, pipes, trees etc. These can cause many outlier points 
that interfere with the clustering algorithm.   
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5. BUILDING MODEL RECONSTRUCTION 

Once the roof has been segmented, we can create an adjacency 
matrix. The adjacency matrix is a neighbourhood map for the 
plane segments on a roof. Equations of adjacent roof planes are 
solved to obtain breaklines and roof vertices. The figure below 
(figure 6) shows a vectorised building (same as the one in figure 
4b) and shall be used for illustrative purposes.   
 

 
 

Figure 6. A vectorised building labelled with vertices and 
planes 

 
5.1 Plane adjacency matrix  

To determine the adjacency of any pair of planes pA and pB, 
the distance between them is first determined. The distance is 
defined as  
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Here, a is any point in pA and b is any point in pB. If the 

quantity is less than twice the point spacing of the 

LiDAR point cloud, we deem the planes pA and pB to be 
neighbors. For the building in figure 6, the plane adjacency 
matrix is shown in table 3. Consider Plane 1 in the adjacency 
matrix. Looking at the row (for plane 1), it becomes clear that it 
is adjacent to planes 2, 3 and 4. The vertices are named E and F 
and represent the breakline E-F in figure 6. E-F is the 
intersection of planes 1 and 2. To determine these vertices, we 
need the planes that are common to both planes 1 and 2. We 
determine this from the adjacency matrix by looking at the rows 
of planes 1 and 2, and determining that planes 3 and 4 are 
common to both planes 1 and 2. Using the equations of the 
planes {1, 2 and 3} vertex F is obtained and E is obtained using 
equations of planes {1, 2 and 4}. To determine the coordinates 
of vertices A, B, C, D etc, each of which has only two 
intersecting planes, we enforce a boundary constraint on the 
breakline. For example, for breakline A-E, A is obtained by 
determining the breakline A-E from equations of planes 1 and 4, 
and constrained such that it lies on the boundary of both planes 

1 and 4.  In this manner, each vertex is defined by at least three 
planes, and each breakline is defined by its two intersecting 
planes.  

pBpAD −

 
 

 
Table 1. Plane adjacency matrix 

 
 

6. CONCLUSIONS 

 
Figure 7. Reconstructed building models  

We have presented a method to segment LiDAR point cloud 
from roof-tops of buildings into different roof planes. We 
demonstrate a method of determining points that lie along the 
breaklines, i.e. along intersection of two (or more) roof planes 
by using eigenvalue and eigenvector analysis. As a 
consequence, we show that LiDAR returns from trees, vertical 
portions of walls etc are also categorized under breaklines, so 
we term them together as non-planar regions. The planar 
sections of the LiDAR returns are divided to planar patches 
characterized by its normal vector and distance to the 
coordinate origin. To group the patches into planar surfaces, an 
iterative combination of density potential based clustering with 
the -means clustering are investigated, which yields 
promising results of moderately complex buildings. 3D vector 
models of the buildings are reconstructed by generating a plane 
adjacency matrix and determining the breaklines and vertices of 
the roof by using the planar parameters derived previously. A 
few more results of reconstructed buildings are shown in figure 

k
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7 These results correspond to the remaining three buildings 
shown in figure 4. 
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