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ABSTRACT:

We discuss the joint calibration of novel 3D range cameras based on the time-of-flight principle with the Photonic Mixing Device (PMD)
and standard 2D CCD cameras. Due to the small field-of-view (fov) and low pixel resolution, PMD-cameras are difficult to calibrate
with traditional calibration methods. In addition, the 3D range data contains systematic errors that need to be compensated. Therefore,
a calibration method is developed that can estimate full intrinsic calibration of the PMD-camera including optical lens distortions and
systematic range errors, and is able to calibrate the external orientation together with multiple 2D cameras that are rigidly coupled to
the PMD-camera. The calibration approach is based on a planar checkerboard pattern as calibration reference, viewed from multiple
angles and distances. By combining the PMD-camera with standard CCD-cameras the internal camera parameters can be estimated
more precisely and the limitations of the small fov can be overcome. Furthermore we use the additional cameras to calibrate the
systematic depth measurement error of the PMD-camera. We show that the correlation between rotation and translation estimation is
significantly reduced with our method.

1 INTRODUCTION

An important and fundamental requirement for many computer
vision applications is the availability of 3D-range measurements.
A standard method is the usage of a stereo-system consisting of
two rigidly coupled standard CCD-cameras. However for real-
time applications efficient dense real-time stereo algorithms are
needed. These algorithms consume a significant amount of CPU
and/or GPU resources, and might have problems in un-textured
scenes. Within the last couple of years a new generation of active
cameras has been developed based on the time-of-flight principle.
These so called PMD-(Photonic Mixing Device) cameras (Lange
et al., 1999),(Xu et al., 1998) emit modulated infrared (IR) light
using LEDs with 20 MHz modulation frequency, and measure
the time between emitting the modulated light and receiving the
echo of the light using a special PMD correlation sensor element.
This new technique delivers dense depth maps at a resolution up
to 176x144 pixels at frame rates up to 25Hz. The cameras are
suitable for near range measurements of up to 7.5 m distance and
potentially offer dense depth at no additional computational costs
(Kraft et al., 2004).

The cameras offer both a range image with pixel-wise depth and
a reflectance image with IR modulation intensities. Due to the
measurement with active illumination, the emitted light is con-
centrated to a small field-of-view (fov), typically around 20 de-
gree horizontal fov. The resulting images are quite noisy and of
low resolution. To overcome this shortcomings we propose to
combine a PMD image with one or more high resolution CCD
images. In this paper we address the exact calibration of such
a PMD-camera in combination with at least one standard CCD-
camera.

The combination of PMD-cameras with other measurement de-
vices like standard CCD-cameras is gaining more importance as
the advantages of the absolute range measurement of the PMD-
camera and the higher resolution of the CCD-camera can be com-
bined. The accuracy of stereo systems and PMD-cameras was

compared in (Beder et al., 2007a) and a fused surface reconstruc-
tion was proposed in (Beder et al., 2007b), which requires a re-
liable relative calibration of the stereo and the PMD camera. In
(Kuhnert and Stommel, 2006) a fusion of PMD and stereo was
proposed, where the accuracy of the results is highly dependent
on the quality of the calibration. The relative orientation of a
PMD and an optical camera for pose estimation is also required
in (Prusak et al., 2007) and (Streckel et al., 2007).

Figure 1: The PMD-camera and additional CCD-cameras used
for calibration.

Previous approaches to calibrate PMD cameras were described
in (Kahlmann et al., 2006) and (Lindner and Kolb, 2006), who
both use the calibration method of (Zhang, 1999) and (Bouguet,
1999) on the reflectance images to estimate internal and external
orientation. The depth image is not used for pose estimation,
because the scope of those works also is the depth calibration
of the cameras. The authors conclude that the poor quality of the
low resolution reflectance images makes precise localization very
difficult (cf. also (Prasad et al., 2006), (Fuchs and May, 2007)).

We will present a novel approach for calibrating focal length,
principle point, lens distortion and depth calibration for PMD-
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and standard cameras in a joint method. Simultaneously we esti-
mate the relative external transformation between the PMD- and
CCD-cameras and achieve high accuracy by using multiple im-
ages from each camera. Our method uses the relfectance- and
depth images provided by a PMD-camera and the reflectance im-
ages from the standard CCD-cameras. We use an analysis-by-
synthesis approach, in combination with non-linear optimization
for parameter estimation.

Section 2 introduces the geometric camera model and the depth
calibration model. These models are used in section 3 to esti-
mate the internal and external camera parameters using all im-
ages taken of a planar checkerboard calibration pattern. Finally
we will present our results in section 4.

2 CAMERA CALIBRATION

In the calibration process we are estimating the internal camera
parameters for the single cameras as well as the external param-
eters. We typically use 30 to 80 images per camera in the camera
rig. So with four cameras we use up to 320 images in the cali-
bration process. We assume a rigidly coupled camera rig and as a
result we only estimate the absolute external camera parameters
of the first camera in the rig. The positions and rotations of the
other cameras are estimated relatively to this first camera. E.g.
with four cameras and 20 images per camera we estimate 20 ab-
solute external camera parameters (20x translation and rotation)
and three (3x translation and rotation) relative external camera
parameters.

The cameras will from now on carry the indexes k, kε(1, ...,K),
the images per camera will be indexed with indexes j, jε(1, ...,M)
and a pixel in an image is indexed with i, iε(1, ..., N).

The initial estimation of the external orientations and internal pa-
rameters is based on correspondences between a reference object
(here a planar checkerboard pattern) and points in the camera re-
flectance images. The detection of the checkerboard is done au-
tomatically if possible, otherwise the corners of the checkerboard
have to be selected manually. Assuming that the checkerboard
is located at the Z = 0 plane 2d-3d point correspondences can
be established and the computation of the initial internal and ex-
ternal camera parameters is done using standard computer vision
methods from OpenCV (Intel, n.d.).

2.1 Camera and Estimation Model

The geometric camera model assumed follows the definition in
(Mugnier et al., 2004, p.229) and is defined as follows. A 3d point
Xi is projected to a 2d point xijk according to the homogeneous
equation:

xijk ∝ KkRjk(Xi −Cjk) (1)

where Cjk is the position of the jth image of the kth camera and
Rjk is the rotation of the jth image of the kth camera. xijk is the
ith pixel in the jth image of the kth camera. The internal camera
parameters are contained in the calibration matrix:

Kk =

0@ fk,x sk xk,H + ∆x(xijk, qk)
0 fk,y yk,H + ∆y(xijk, qk)
0 0 1

1A (2)

Note that we have one calibration matrix Kk per camera. The
additional factor ∆x(xijk, qk) models the nonlinear lens dis-
tortion. The lens distortion is modeled following the definition

in (Heikkila and Silven, 1997) and has the parameters qk =
(r1, r2, t1, t2). From the initial camera parameter computation
we have an estimate for principal point (xk,H , yk,H), shear sk,
focal lengths (fk,x, fk,y) and nonlinear distortion parameters. For
the PMD-camera we also have depth images given, so that for
each pixel xijk in a PMD-image the corresponding depth λijk(dl)
is known. Note that the depth λijk(dl) is dependent on the depth
deviation parameters dl, lε(0, ..., 5) (see section 2.2). Hence, for
each pixel the corresponding 3d point Xi can be computed as
follows:

Xi = λijk(dl)
RT
jkK−1

k xijkq
xT
ijkK−T

k K−1
k xijk

+ Cjk (3)

Assuming the planar calibration object to be located at the Z = 0
plane, one can derive one constraint per pixel by requiring Xz =
0 (Xz is the z-component of Xi) . Using equation (3) this is
expressible as

λijk(dl)r
T
z,jkK−1

k xijk + Cz,jk

q
xT
ijkK−T

k K−1
k xijk = 0 (4)

or equivalent

λijk(dl) = −
Cz,jk

q
xT
ijkK−T

k K−1
k xijk

rT
z,jkK−1

k xijk
= f

(1)
ijk (5)

where rz,jk = (rx, ry, rz)
T (the last column of the rotation ma-

trix Rjk) and Cz,jk = z-component of Cjk.

The depth constraint using only the planar reference object is ob-
viously not sufficient for calibration. Hence the reflectance image
has to be used as well. The second constraint that can be derived
is, that the reflectance is assumed to be equal to the known re-
flectance of the reference object

Iref (Xi) = Iref

0@λijk(dl)
RT
jkK−1

k xijkq
xT
ijkK−T

k K−1
k xijk

+ Cjk

1A
= I(xijk)

(6)

or by substituting λijk(dl)

I(xijk) = Iref

 
Cjk −

CzRT
jkK−1

k xijk

rT
zK−1

k xijk

!
= f

(2)
ijk (7)

where I(xijk) denotes the reflectance image and Iref denotes
the reference image (here the image of a smoothed checkerboard
pattern).

For the PMD-camera we can use both constraints (5) and (7) to
estimate the external orientation and internal camera parameters.
In the case of the standard CCD-cameras only the constraint (7)
can be used. We will now show how to use these constraints to
precisely calibrate the external and internal camera parameters
as well as the depth calibration of the PMD-camera in a joint
approach.

Figure 2 shows two input images to the calibration procedure
from a PMD-camera. On the left the depth measurement and
on the right a reflectance image is shown.
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Figure 2: Depth image and grey value image from PMD-camera

2.2 Depth Calibration Model

The depth measurement with PMD-cameras suffers from system-
atic errors (Fuchs and May, 2007). The error is not only a con-
stant offset but a higher order function (Kolb and Lindner, 2006).
We chose to model the corrected depth as:

λ∗ = d0 +(1.0+d1)∗λ+d2∗x+d3∗y+d4∗λ2 +d5∗λ3 (8)

where λ∗ is the corrected depth, x, y are the image coordinates,
λ is the measured depth and dl, lε(0, ..., 5) are the parameters to
estimate.

The depth deviation is dependent on the distance to the object
and can be modeled as a polynomial because the modulation of
the light is not perfectly sinusoidal. The factors d2 and d3 define
a tilt in the image plane of the PMD-camera with respect to the
optical axis, which was observed in the measurement data.

3 OPTIMIZATION

Now we will show, how the internal camera parameters and the
external orientation can be determined from the depth and the re-
flectance image. From our estimate of the internal and external
camera parameters we approximately know the internal camera
parameters as well as rotation R(0)

jk and position C
(0)
jk of our cam-

eras. We will now show how to estimate those quantities starting
from approximate initial values.

The rotation matrix can be represented using its Taylor expan-
sion: (cf. (Förstner and Wrobel, 2004, p.53))

R(ν+1)
jk ≈ R(ν)

jk +

0@ 0 −κ φ
κ 0 −ω
−φ ω 0

1A (9)

For every optimization step the relevant parameters are collected
in a parameter vector p. One can synthesize the depth image from
the parameters using equation (5) as

λijk(dl) = f
(1)
ijk(p) ≈ f (1)

ijk

“
p(ν)

”
+
∂f

(1)
ijk

∂p

˛̨̨̨
˛
p(ν)

∆p (10)

and synthesize the reflectance image from the parameters using
equation (7) as

I(xijk) = f
(2)
ijk(p) ≈ f (2)

ijk

“
p(ν)

”
+
∂f

(2)
ijk

∂p

˛̨̨̨
˛
p(ν)

∆p (11)

Note, that in this formulation no derivative of any observed noisy
low-resolution depth or reflectance image is required for the Tay-
lor expansion. An efficient way to synthesize depth and reflectance
image is to render the checkerboard on the GPU. We are exploit-
ing this possibility here as we render checkerboard- and depth

image on the GPU including the full camera model. This signifi-
cantly speeds up the calibration process.

Figure 3: Depth image and grey value image from PMD-camera
with reprojected checkerboard and depth plane

Figure 3 shows the synthesized images generated with equations
5 and 7. On the left the synthesized depth image and on the right a
synthetized reflectance image is shown. The synthesized images
are overlaid on the real images.

Denoting the Jacobian with

A(1)
ijk =

∂f
(1)
ijk

∂p

˛̨̨̨
˛
p(ν)

A(2)
ijk =

∂f
(2)
ijk

∂p

˛̨̨̨
˛
p(ν)

(12)

and
∆l

(1)
ijk = λijk(dl)− f (1)

ijk

“
p(ν)

”
(13)

∆l
(2)
ijk = I(xijk)− f (2)

ijk

“
p(ν)

”
(14)

one obtains the parameter covariance as (cf. (Förstner and Wro-
bel, 2004), p.87)

C(ν+1)
pp =

 
NX
i

MX
j

KX
k

1

σ2
jk

AT (τ(k))
ijk A(τ(k))

ijk

!−1

(15)

where τ(k) indicates the current camera type. (1=PMD-camera,
2=CCD-camera) The variance factors σjk are initially set to 1.

From this the parameter update is computed as

∆p = Cpp

 
NX
i

MX
j

KX
k

1

σ2
jk

AT (τ(k))
ijk ∆l

(τ(k))
ijk

!
(16)

yielding the improved parameter vector

p(ν+1) = p(ν) + ∆p (17)

The sum of the squared residuals in a depth or reflectance image
are given by:

Ωjk =

NX
i

||A(τ(k))
ijk ∆p−∆l

(τ(k))
ijk ||2 (18)

so that the variance factors can be updated according to (cf. (Förstner
and Wrobel, 2004), p.91)“

σ
(ν+1)
jk

”2

=
“
σ

(ν)
jk

”2 Ωjk
Rjk

(19)

with Rjk = the redundancy of the observations j, k. Starting
with initial variance factors σ(0)

jk = 1 this process should be
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iterated until convergence. We chose as convergence criterion,
that the update is smaller than 1% of the expected accuracy, i.e.
∆p−TC−1

pp∆p < 0.01.

4 RESULTS AND DISCUSSION

For the discussion of the calibration results we will rely on the
covariance matrix and discuss the accuracy and correlations of
the estimated parameters. In our experiments we used a calibra-
tion setup consisting of four cameras, three CCD-cameras and
one PMD-camera. Two of the CCD-cameras have a resultion of
640 × 480 pixel whereas the third CCD-camera has a resolution
of 1024 × 768 pixel. The PMD-camera has an opening angle of
22◦ × 16◦ and a resolution of 64× 48 pixel. We used a checker-
board pattern as a calibration object, printed out at a size of ≈
1.5m× ≈ 1m (black/white square size 145mm× 145mm). We
incorporated 320 images, 80 per camera, at different positions
in front of the checkerboard and at different distances, covering
a distance range of 2.5m to 6.5m. Note that for calibration of
th3e depth error it is essential to cover the whole distance area
during the calibration process, whereas for the estimation of the
internal camera parameters it is essential to use images where the
checkerboard covers the whole fov of the camera.

Figure 4: The initial camera positions of all cameras in the rig.

Figure 4 visualizes the initial estimates of the external camera
positions relative to the used checkerboard pattern as a result of
the methods implemented in (Intel, n.d.). In the top right cor-
ner a single camera rig is shown. Recall that the cameras are
indexed with k, kε(1, ...,K). After the initial parameter estimate
the mean relative transformations between camera k = 0 and the
cameras k = 1, ...,K are computed. The external camera pa-
rameters of camera k = 0 and the mean relative parameters of
cameras k = 1, ...,K are optimized in the following.

Figure 5 visualizes the optimized external camera positions rel-
ative to the used checkerboard pattern. Again in the top right
corner a single camera rig is shown. While the cameras are dis-
tributed coarsly in the initial estimate (figure 4), they are properly
aligned according to distance after convergence (figure 5).

4.1 Internal Camera Parameters

Tables 1 and 2 show the accuracy of the estimated internal PMD-
camera parameters. Focal length and principle point are esti-
mated to sub-pixel accuracy. Note that the used unit pel stands
for pixel as an abbreviation for PictureELement.

To interpret the accuracy one has to consider the correlations of
internal PMD-parameters. In the tables 3 and 4 the correlations of
the internal parameters of the PMD-camera are plotted. It shows
that only small correlations are present in the optimized parame-
ter set.

Figure 5: The optimized camera positions of all cameras after
calibration.

σfx [pel] σfy [pel] σxH [pel] σyH [pel] σs
0.0059 0.0043 0.0024 0.0022 0.0007

Table 1: Accuracy of the internal PMD-camera parameters. fx
and fy are the focal lengths in x and y, xH and yH is the principle
point in x and y and s is the shear.

σr1 σr2 σt1 σt2
0.0012 0.0040 3.902e-06 1.773e-06

Table 2: Accuracy, r1 and r2 are the radial distortion parameters,
t1 and t2 the tangential distortion parameters.

fx[pel] fy[pel] xH [pel] yH [pel] s

fx[pel] 1.000 0.049 -0.103 0.046 -0.093
fy[pel] 0.049 1.000 -0.067 -0.089 -0.017
xH [pel] -0.103 -0.067 1.000 -0.098 0.027
yH [pel] 0.046 -0.089 -0.098 1.000 0.002
s -0.093 -0.017 0.027 0.002 1.000
r1 -0.037 0.039 0.113 0.107 -0.006
r2 -0.109 -0.246 -0.086 -0.047 -0.024
t1 0.034 -0.004 -0.047 -0.052 -0.002
t2 -0.090 0.054 -0.058 -0.101 0.005

Table 3: Correlation of focal length fx and fy , principle point xH
and yH and shear s.

r1 r2 t1 t2

fx[pel] -0.037 -0.109 0.034 -0.090
fy[pel] 0.039 -0.246 -0.004 0.054
xH [pel] 0.113 -0.086 -0.047 -0.058
yH [pel] 0.107 -0.047 -0.052 -0.101

s -0.006 -0.024 -0.002 0.004
r1 1.000 -0.271 2.0e-4 -0.037
r2 -0.271 1.000 -0.016 0.01
t1 2.0e-4 -0.016 1.000 -0.272
t2 -0.037 0.01 -0.272 1.000

Table 4: Correlation of radial and tangential distortion parame-
ters.

4.2 External Camera Parameters

In the evaluated calibration setup we used four cameras with 80
images each. To evaluate the accuracy of the external camera
parameters we show the mean accuracy of the 80 external camera
positions and rotations of the first camera in our camera rig. Note
that the position and rotation of the other cameras is estimated
relative to this first camera. Table 5 shows the mean accuracy of
the 80 external camera parameters.
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σX [mm] σY [mm] σZ [mm] σω[ ◦] σφ[ ◦] σκ[ ◦]

0.063 0.046 0.271 4.73e-6 4.94e-6 7.91e-6

Table 5: Mean accuracy of all external camera parameters

Standard deviation of the external calibration:

σX [mm] σY [mm] σZ [mm] σω[ ◦] σφ[ ◦] σκ[ ◦]

0.006 0.009 0.004 1.38e-7 1.77e-7 1.22e-7

Table 6: Standard deviation of mean accuracy of the external
camera parameters

Comparing the results in table 5 to the calibration approach in
(Beder and Koch, 2007) where only one PMD-image is used, one
can see that the accuracy is significantly improved by the pre-
sented method. The accuracy of the camera position is improved
by the order of two magnitudes in the direction parallel to the
calibration pattern. In the direction orthogonal to the calibration
pattern the accuracy is improved by a factor of two. The accu-
racy of the rotation estimation is significantly improved as well.
However note, that these values reflect the mean accuracy of the
external parameters of all camera. Observing very small values
for the standard deviations in table 6 yields that the average is a
good indication for the single cameras.

A well-known problem in camera calibration and computer vi-
sion applications is the dependency between intrinsic parameters
(focal length) and camera translation and rotation. In (Beder and
Koch, 2007) this correlation is examined for the case of calibrat-
ing one PMD-camera. Because of the narrow opening angle of
about 22◦×16◦ the correlations between translation and rotation
are strong and the real values could not be estimated to satisfac-
tion. In contrast to that the correlation is significantly reduced
by the combination of the PMD-camera with (multiple) CCD-
cameras. In table 7 the mean correlations of the external camera
parameters all show small correlations. Only Z and κ show some
correlation as φ and X do. However these correlations are by far
less than in (Beder and Koch, 2007).

X[mm] Y [mm] Z[mm] ω[ ◦] φ[ ◦] κ[ ◦]

X 1.000 -0.122 -0.422 0.029 -0.250 -0.074
Y -0.122 1.000 0.194 0.011 -0.035 -0.058
Z -0.422 0.194 1.000 -0.079 0.003 -0.004
ω 0.029 0.011 -0.079 1.000 -0.017 -0.175
φ -0.250 -0.035 0.003 -0.017 1.000 -0.075
κ -0.074 -0.058 -0.004 -0.175 -0.075 1.000

Table 7: Mean correlation of the external camera parameters

X[mm] Y [mm] Z[mm] ω[ ◦] φ[ ◦] κ[ ◦]

X 0.000 0.127 0.032 0.005 0.015 0.012
Y 0.127 0.000 0.039 0.014 0.004 0.009
Z 0.032 0.039 0.000 0.003 0.005 0.003
ω 0.005 0.014 0.002 0.000 0.013 0.010
φ 0.015 0.004 0.005 0.013 0.000 0.008
κ 0.012 0.009 0.003 0.010 0.008 0.000

Table 8: Standard deviation of the mean correlation of the exter-
nal camera parameters

4.3 Distance Deviation

The distance error is an important issue for applications using
PMD-cameras. Some approaches to calibrate and define the dis-
tance error function have been proposed (e.g.(Kolb and Lindner,
2006)). However we found our definition in equation 8 to suit
the observed distance error, while not over-fitting the calibration
data.

d0[mm] d1[mm] d2[
1
pel ] d3[

1
pel ] d4[

mm
mm2 ] d5[

mm
mm3 ]

-912.922 0.972 0.845 -0.943 -0.0003 2.347e-08

Table 9: The estimated distance parameters

σd0 σd1 σd2 σd3 σd4 σd5
109.918 0.077 0.083 0.113 1.73e-05 1.27e-09

Table 10: Accuracy of the distance parameters

The absolute values of the distance error function are shown in ta-
ble 9 and the accuracy of the distance error parameters is pictured
in table 10.

d0 d1 d2 d3 d4 d5

d0 1.000 -0.996 -0.004 0.027 0.987 -0.972
d1 -0.996 1.000 -0.02 -0.053 -0.997 0.988
d2 -0.004 -0.02 1.000 -0.024 0.019 -0.018
d3 0.027 -0.053 -0.024 1.000 0.055 -0.059
d4 0.987 -0.997 0.019 0.055 1.000 -0.997
d5 -0.972 0.988 -0.018 -0.059 -0.997 1.000

Table 11: Correlation of the distance parameters.

In table 11 it is visible that the offset d0 is highly correlated with
the inclination d1 and the higher order terms of the polynomial
d4 and d5 are highly correlated with d0 and d1.

Figure 6: Per pixel depth deviation and correction function.

Figure 6 displays the real depth (x-axis) against the measurement
of the PMD-camera (y-axis) per pixel for all used PMD-images.
The real depth is computed by estimating the pose of the PMD-
camera relative to the calibration pattern using the estimated in-
ternal camera parameters. The lines in the graph are the depth
calibration function 8 plotted with the estimated parameters from
table 9. The thicker line is for the principle points, the small
line above and below the thicker line are for x = 0, y = 0 and
x = 63, y = 47. At first glance it is surprising that no offset
is visible compared to the values in table 9. But the value of
the offset d0 is compensated by the higher order terms d1 and d5.
The graph also shows a high scattering in the depth measurement,
especially at distances> 5.5m. Although only very few measure-
ments show this high scattering the used camera is obviously not
suitable for measurements at distances > 5.5m.

Figure 7 shows the mean remaining depth error after calibra-
tion with the standard deviations for all used PMD-images. The
depth measurement error before calibration is between 100mm
and 1.3m, dependent on the distance. The mean remaining er-
ror is reduced to ≈ 100mm within the full operation range. This
is due to the bad SNR as can be seen in figure 2. Apparently
the standard deviations are fairly high, especially from 5.5m on-
wards. The ideal operation distance of this camera is therefore
below 5.5m.
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Figure 7: The remaining per pixel depth error after application of
the depth error function. The mean errors per image are shown
together with their standard deviations.

5 CONCLUSIONS AND FURTHER WORK

We presented a powerful and accurate calibration method for PMD-
cameras in combination with multiple standard CCD-cameras.
We use standard computer vision algorithms for the initial pa-
rameter estimation. Optimization of the parameters is done using
an analysis-by-synthesis approach. The used model is a rendered
smoothed checkerboard pattern. In contrast to point-based cali-
bration methods we obtain a measurement for every pixel and our
method is independent of the used calibration model. The param-
eters are estimated using non-linear optimization. This method
enables us to overcome the limitations of the small opening an-
gle todays PMD-cameras suffer from. Especially the correlations
between translation and rotation could be reduced to a satisfying
minimum. Additionally the depth error function of the PMD-
camera is simultaneously estimated. A remaining positioning er-
ror in the component orthogonal to the calibration pattern of the
PMD-camera is estimated into the depth calibration parameters.
Using the depth error function in combination with the estimated
camera matrix this effect will compensate itself.

Based on the observations in this contribution regarding small
field-of-view and low SNR, an improved PMD-camera prototype
has been developed and will be exploited in the future.

This calibration, especially the combination of standard CCD-
cameras and PMD-cameras is especially useful in applications
where a combination of such cameras is required. Interesting fu-
ture work will include the incorporation of fish-eye cameras in
the calibration procedure. This requires an other camera model
but will be very useful for many applications.
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