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ABSTRACT:

This paper presents an empirical investigation into the quality of automatic relative orientation procedures. The results of an in-house
developed automatic orientation software called AURELO (Läbe and Förstner, 2006) are evaluated. For this evaluation a recently
proposed consistency measure for two sets of orientation parameters (Dickscheid et al., 2008) and the ratio of two covariances matrices
is used. Thus we evaluate the consistency of bundle block adjustments and the precision level achievable. We use different sets of
orientation results related to the same set of images but computed under differing conditions. As reference datasets results on a much
higher image resolution and ground truth data from artificial images rendered with computer graphics software are used. Six different
effects are analysed: varying results due to random procedures in AURELO, computations on different image pyramid levels and with
or without points with only two or three observations, the effect of replacing the used SIFT operator with an approximation of SIFT
features, called SURF, repetitive patterns in the scene and remaining non-linear distortions. These experiments show under which
conditions the bundle adjustment results reflect the true errors and thus give valuable hints for the use of automatic relative orientation
procedures and possible improvements of the software.

1 INTRODUCTION

Orienting images is one of the basic tasks in photogrammetry. For
aerial images the full automation of this task can be considered as
solved, but for close range photogrammetry full automatic orien-
tation still is a vital research area (cf. the work of Pollefeys (Sinha
and Pollefeys, 2004), Nister (Engels et al., 2006), Zisserman and
Schaffalitzky (Schaffalitzky and Zisserman, 2002)). Due to er-
rors introduced while solving the recognition task, special inves-
tigations into the factors influencing the accuracy which are not
relevant in classical non-automatic bundle adjustment have to be
considered, e.g. texture, repetitive structures, rotation of the im-
ages, use of all or less points in the adjustment. Depending on the
used algorithms, there are various parameters which have an in-
fluence on the accuracy of the result. This paper investigates the
quality of automatic bundle orientation software, especially the
effect of various factors onto the quality of the result. As there is
no general method for automatic mensuration of control points,
we investigate the relative orientation of multiple images instead.
The findings can be generalized for a wide range of scenarios and
applications.

2 METHOD FOR QUALITY CHECK

To evaluate the result of an automatic orientation procedure we
need to compare the orientation parameters between two datasets
directly. Automatic methods may be stochastic or deterministic,
depending on whether they call a random number generator, e. g.
for a RANSAC procedure, or not. In case the algorithm contains
a stochastic component, we cannot use the 3D object points, as
different runs may choose different points and we investigate in
relative orientation procedures without a subsequent absolute ori-
entation. Therefore we follow the approach of (Dickscheid et al.,
2008) which compares the orientation parameters directly. The
measures may be used (1) for evaluating the variations due to
the randomness of the algorithm and (2) for comparing a bundle
adjustment result with a reference dataset or with each other. A
reference dataset in this context is a dataset with superior accu-
racy and thus may be a result of just the same algorithm, e.g. on

an image pyramid level with a higher resolution.

The approach introduces a so-called consistency measure c:
The two parameter sets should differ by a spatial similarity trans-
formation. This transformation is estimated and the square root
of the variance factor of the final estimation is the consistency
measure

c =
√

Ω/R

with the Mahalanobis distance Ω of the two datasets in a common
coordinate system and with the redundancy R, which is 6N − 7
for sets with N images. The full possibly singular covariance
matrices of the orientation parameters of both datasets are rigor-
ously taken into account in this congruence test. The advantage
of this approach is that the comparison is summarized in a single
scalar value. A value of c = 1 means that the differences of the
two sets are (on average) consistent with the precision given by
the orientation procedures. If c < 1, the accuracies are too pes-
simistic, if c > 1, the accuracies are too optimistic. Note that the
reliability of the consistency measure depends on the redundancy
in the estimation of the transformation parameters. Therefore we
expect reliable consistency estimates for datasets with more than
three or four images. We give the consistency measure for every
experiment we describe in this paper.

In addition to c, we use p and rmax from (Dickscheid et al.,
2008): The two values compare two covariance matrices and both
depend on the generalized eigenvalues λi. We compare the two
covariance matrices of the two datasets after applying the esti-
mated spatial similarity transformation. Thus both covariance
matrices are in the same coordinate system and can be compared.
p is the average ratio of the covariance matrices. If p = 1, the
covariance matrices are identical, if p > 1 there is an (average)
deviation in precision. Note that, as p is a metric, p >= 1 and
p is symmetrically. Thus p gives no information about which
covariance matrix is smaller, in other words, which accuracies
are better. The second value rmax is the maximum ratio of the
standard deviations: rmax ≤

√
maxi λi and thus indicates the

maximum difference between the matrices. Note that rmax is not
symmetric: if rmax < 1 then the precision of the second covari-
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ance matrix is better, otherwise it is worse for some function of
the parameters.

If c 6= 1 the covariance matrices are not consistent with the
differences of the two datasets. When arguementing with p and
rmax in this case it is reasonable not only to compare the given
covariance matrices, but to also take the observed differences into
account. Thus p̂ = ĉ p and r̂max = ĉ rmax are also used in
these cases. These values represent the actual occurred accura-
cies. r̂max is maximum standard deviation of arbitrary function
of parameters assuming the estimate ĉ for c to be realistic.

3 ORIENTATION SOFTWARE

For our investigations we use an in-house developed orientation
software for the wide-baseline case of calibrated cameras called
AURELO. The following paragraph gives a brief overview of the
software. Details can be found in (Läbe and Förstner, 2006).

The first step in AURELO is the extraction of feature points
on all given images. The SIFT-descriptor (Lowe, 2004) or the
SURF-descriptor (Bay et al., 2006) can be used to describe and
match the points of an image pair. The SURF descriptor is a
fast adaption of the SIFT-descriptor. We use the implementation
of D. Lowe for the SIFT descriptor 1 and the implementation of
the ETH Zurich, Switzerland, for SURF 2. Because the descrip-
tors are rotation- and scale-invariant, a large number of possible
configurations can be handled. No prior information about the
overlapping parts or the sequence of the images need to be given.
Therefore a matching is done between all possible image pairs.
Relative orientations for each pair of images are computed with
the help of a RANSAC procedure based on the 5-point solution
proposed by D. Nister (Nister, 2004). It should be noted that, as
RANSAC uses a random number generator, multiple runs of the
software may lead to different results. The best pairwise relative
orientations are linked together to generate an input for a conclud-
ing bundle adjustment. Thus the resulting orientation parameters
are given with a full covariance matrix. Note that by default all
points are used in this adjustment, independent of the number of
observations per object point.

4 EXPERIMENTAL RESULTS

4.1 Description of the Datasets and Experiments

We use a wide range of datasets in our experiments because many
effects are highly dependent on the geometric configuration and
on the amount of texture in the images. Due to the limited space,
only a part of the results can be presented in this paper, but we
verified the observed effects in a number of further, unpublished
experiments. The datasets we used for the data here are summa-
rized in Table 1, see also Figure 1. Two cameras were used to take
the images: Nikon D70s with a 20mm lens (6 Megapixel images,
datasets A,B,D) and HP photosmart 435 (3 Megapixel, datasets
C,E).

We calibrated the cameras and corrected the nonlinear distor-
tion by rectifying the images. All experiments are done with the
same settings for the control parameters, unless otherwise noted.
The standard parameters imply that the feature extraction is done
with the operator by D. Lowe.

Figure 1: Sample images of datasets B,E,F (from left to right).

1http://www.cs.ubc.ca/∼lowe/keypoints
2http://www.vision.ee.ethz.ch/∼surf

dataset # img. description
A 6 entrance of a large building with stairs,

medium texture
B 6 outdoor stairs with rich texture, matches in

background which are far away from cameras
C 4 poster and box on a table, different perspec-

tives and rotations of the camera
D1 12 facade with rich texture, one strip with nearly

parallel viewing directions and high overlap
(ca. 90%)

D2 9 same configuration as D1, but with less over-
lap (ca.75%)

E 3 indoor scene with a regular grid on the wall
F 5 rendered images with 1 Megapixel image

size: two walls with texture on it. The tex-
ture varies between artificial repetitive pat-
terns and real texture.

Table 1: Overview of the datasets used in the experiments.

In the tables we give additional results as given by the orien-
tation procedure:

• the number of object and image points of the final bundle
block adjustment.

• the outlier rate of the matches: Due to the relative orienta-
tion of an image pair computed in the RANSAC loop, out-
liers in the matched points of this image pair are detected.
The average rate of these outliers over all image pairs is
given in the tables.

• σx′ : average precision of the image coordinates in pixel.
As all image observations currently are used with the same
weight and thus the weight matrix for the observations is the
unit matrix and σapriori = 1, σx′ = σ̂0, with σ̂0 being the
square root of the variance factor of the bundle adjustment.

• σXO : The average precision of the projection centres over
all N images (using σ̂0 and the inverse of the normal equa-
tion matrix): σ2

X0 =
∑

n

(
σ2

Xn
+ σ2

Yn
+ σ2

Zn

)
/N . Note

that all datasets have an arbitrary scale, because no absolute
orientation has been done. The unit of the object coordinate
system is defined by the distance from the first to the second
camera. All datasets of one investigation have been scaled
to the same scale to ensure that the values can be compared
to each other.

• σωφκ: average precision of the orientation angles in gon.
• σOBJ , σOBJ,MAX : average and maximal precision of the

object points due to the bundle adjustment result. Also scaled
to the same scale in one table.

4.2 Consistency over Multiple Runs

Due to the fact that a random procedure for the generation of ap-
proximate orientation values is used in AURELO, the user gets
different results when starting the program multiple times with
identical parameter settings and input images. The variations of
the orientation parameters should be small compared to their ac-
curacies.

To test the influence of the random procedure, we run 5 datasets
yielding 10-42 samples. The results of these tests can be found in
Table 2. The variations of the orientation parameters over multi-
ple runs are shown by their standard deviation εX0 and εωφκ with

ε2X0 =
1

N(S − 1)

∑
n

∑
s

∣∣Xsn − X̄n

∣∣2
and

ε2ωφκ =
1

N(S − 1)

∑
n

∑
s

∣∣∣∣∣
(

ωsn − ω̄n

φsn − φ̄n

κsn − κ̄n

)∣∣∣∣∣
2
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dataset plev #runs R εX0 εωφκ [gon] σ̄X0 σ̄ωφκ [gon] εX0/σ̄X0 εωφκ/σ̄ωφκ max. c mean c

A 0 42 29 0.000074 0.00162 0.000537 0.00564 0.14 0.29 1.39 0.63
B 0 10 29 0.000029 0.00404 0.000015 0.00247 1.91 1.63 5.34 2.84

1 10 29 0.000014 0.00137 0.000027 0.00429 0.53 0.32 0.95 0.56
2 10 29 0.000036 0.00271 0.000081 0.01144 0.45 0.24 1.11 0.47

C 1 10 17 0.000101 0.02196 0.000075 0.02529 1.34 0.87 3.28 1.66
D1 2 10 65 0.000022 0.00220 0.001019 0.03895 0.02 0.06 0.21 0.09
D2 2 10 47 0.000023 0.00484 0.000144 0.03621 0.16 0.13 0.44 0.28

Table 2: Comparison of multiple runs of AURELO with identical parameter settings. Plev: pyramid level on which the orientation has
been computed (0: original images, 1: first pyramid level, ...). R: redundancy for the similarity transformation between the samples,
R = 6N − 7 with N images. εX0 ,εωφκ : standard deviation of the projection centres and the orientation angles calculated over
the multiple runs. σ̄X0 , σ̄ωφκ : average precision for projection centres and orientation angles due to the covariance matrix of the
orientation parameters over all samples. Max. c, mean c: Maximal and mean consistency measure of all consistency measures between
all samples (pairwise).

computed over S multiple runs. Note that all results of a dataset
are transformed to the same datum in order allow a comparison.
The ratio of the standard deviations εX0 , εωφκ and the mean ac-
curacies σ̄X0 ,σ̄ωφκ should be small, at least less than 1.0. (These
two values can be combined to one value cs, see (Dickscheid
et al., 2008).) This is fulfilled for most of the tests, except for
dataset B on pyramid level 0 and dataset C. These unexpected
results can be explained with the weak treatment of outliers in
AURELO: The decision about inlier and outlier is done only with
the epipolar geometry calculated from the approximate orienta-
tion values. These values are computed in the RANSAC loop
with only 5 homologous points and thus a wrong decision con-
cerning outlier/inlier is possible. No robust adjustment is used,
so that small outliers still may present in the final result. This re-
sult thus reveals a deficiency of the algorithm: it does not always
yield reliable results due to its randomness, especially on a high
precision level. This needs a clarification of the causes, which e.
g. could be the non-robustness of the final bundle adjustment.

4.3 Orientation Parameters on Different Pyramid Levels

An important factor for the computation time and memory con-
sumption of the orientation procedure is the size of the input im-
ages. Therefore we investigate the decrease of accuracy when
calculating the whole orientation procedure on a higher image
pyramid level instead on the original image. All thresholds used
in AURELO remain constant during the tests. Table 3 shows the
results of two datasets which can be regarded representative for
the conclusions drawn.

All pyramid levels where we got a useful result are listed.
In these two datasets the number of images which could be con-
nected by the orientation procedure nearly remains the same over
all levels. If a dataset includes parts with low overlap of the im-
ages, a decrease in the number of images can occur in lower pyra-
mid levels as in the two given examples.

The number of object points decreases from pyramid level
to pyramid level with the same factor as the number of image
points (not listed in the table). Thus, as to be expected due to the
identical geometry, the distribution of the number of observations
per object point is independent of the pyramid level.

The consistency measure between the first and all other image
pyramid levels is not higher than 1.8, the consistency values be-
tween all the levels (not listed in the table) are in the same range.
Thus the change of the orientation parameters from level to level
are in the order of the assumed precision or slightly higher. There
is no evidence not to trust the internal precision values, especially
when comparing them to each other.

The evaluation of the change in precision when changing the
pyramid level needs to be compared with the theoretical expecta-
tion: In higher levels we expect a loss in precision for two factors:

1. loss of points and 2. less accurate points due to the reduced res-
olution. We thus expect the standard deviation of the orientation
parameters to increase with the same factor as the measurement
accuracy (given with the same pixel size!) and to decrease with
the square root of the ratio of the number of object-/image points.
So a reasonable theoretical factor between two image pyramid
levels l and m is

foσ = (σ0,l/σ0,m)
√

Nm/Nl)

with Nl , Nm points in pyramid levels l and m. This factor can be
compared to the average ratio p of the two covariances matrices
of the orientation parameters. The table shows that the two values
are nearly the same. This validates the use of p for practical cases.

Without taking into account the type of point operator, one
could assume a factor of 2 in the measurement accuracy between
level l and l+1 and a factor of 1/4 in the number of observations.
Thus a reasonable theoretical factor between levels l and l + 1 is
2
√

4 = 4. The table shows that there are sometimes significant
differences to that value. The increase in the standard deviations
is smaller between the original image and the first pyramid image
(max. 2.1). This is also the smallest value. This phenomenon
can be observed with other datasets, too. From a practical point
of view this is an important finding, because it allows the use of
the first image pyramid level without a big loss in accuracy. The
large value of p=10.1 of dataset D1 from level 1 to level 2 may
be explained by a loss of texture: A large area of the image has
the same texture. If on level 2 this texture is not visible any more,
the is a high loss in the number of extracted image points.

4.4 Influence of Twofold and Threefold Points on the Result

To reduce the computation time of the bundle adjustment, we
may consider to reduce the number of observations used for the
reconstruction. One simple possibility would be to ignore ob-
ject points with a small number of observations, especially object
points with only two observations. The consistency of twofold
points can’t be tested very well, because the second observation
may lie at every position on the epipolar line induced by the first
observation. Thus there may be undetected false matches, es-
pecially when repeated patterns occur along the epipolar lines.
These false matches may lead to unstable or at least to less accu-
rate solutions in the bundle adjustment. Thus, if the object points
are used in further applications, twofold points may be deleted
after the adjustment or not used at all in the adjustment. This is
of course only possible if there are enough other n-fold points,
n > 2, available.

To test the influence of n-fold points, we have computed the
bundle adjustment with all points and with all but the 2- and 3-
fold points, respectively. The results of three datasets are shown
in Table 4. First we want to compare datasets D1 and D2, as they
consists of images of the same object. The orientation parame-
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dataset pyramid

level
#images in
result [%]

outliers of
matches [%]

# object
points

σx′ σXO σωφκ c foσ p rmax

rich texture 0 12 15.4 19186 0.25 0.0007 0.0026 0.0 - - -
(D1) 1 12 11.2 15470 0.15 0.0011 0.0033 1.0 1.3 1.3 1.5

2 12 12.0 2028 0.30 0.0077 0.0321 1.2 10.9 10.1 19.5
3 12 23.4 676 0.35 0.0391 0.1708 1.3 4.0 4.3 11.8
4 12 14.9 294 0.37 0.1419 0.6263 1.5 3.2 3.7 6.7

medium texture 0 6 20.8 2753 0.38 0.0008 0.0050 0.0 - - -
(A) 1 6 17.6 1597 0.28 0.0016 0.0107 1.8 2.0 2.1 3.0

2 6 19.9 686 0.29 0.0063 0.0398 1.6 3.2 3.4 5.6
3 6 12.2 293 0.41 0.0232 0.1429 1.3 4.3 3.9 6.3
4 4 8.5 113 0.35 0.0844 0.4833 1.0 2.8 3.0 4.8

Table 3: Quality of the orientation on different image pyramid levels. Consistency measure c: Measure between image pyramid level
0 (original images) and all other levels. p, rmax: average/maximal ratio of standard deviations between level l and level l − 1. foσ:
theoretical factor for the decrease of accuracy, foσ = (2σ0,l/σ0,l−1)

√
Nl−1/Nl), l =pyramid level, Nl object points on level l.

dataset points used # object
points

# image
points

σx′ σXO σωφκ σOBJ σOBJ,MAX c p rmax

D1 all 19186 57554 0.25 0.00071 0.0026 0.00209 0.23867 0.0 - -
without 2-fold 9374 37925 0.25 0.00067 0.0028 0.00114 0.00686 0.7 1.2 1.5

without 2,3-fold 5137 25214 0.25 0.00075 0.0032 0.00079 0.00265 1.0 1.5 3.3
D2 all 15565 42707 0.21 0.00036 0.0023 0.00083 0.04141 0.0 - -

without 2-fold 7053 25683 0.21 0.00043 0.0029 0.00052 0.00162 1.2 1.4 4.4
without 2,3-fold 3393 14703 0.21 0.00059 0.0041 0.00039 0.00096 1.5 2.1 14.8

B all 37176 96563 0.28 0.00991 0.0021 0.00583 1.53229 0.0 - -
without 2-fold 12894 47999 0.25 0.01412 0.0025 0.00374 1.30997 10.6 1.4 2.6

without 2,3-fold 5029 24404 0.24 0.02185 0.0033 0.00318 0.71910 7.9 1.9 4.3

Table 4: Quality of the Orientation without points with two or three observations. All orientations have been done on the original
images. Consistency measure: Measure between orientation with all points and with less points. p, rmax: average and maximal factor
between covariance matrices of orientation with all points and with less points.

ters of D1 and D2 do not vary significantly with respect to their
accuracy: the consistency measure is below 1.5. The accuracy of
the image coordinates (σx′ ) remains constant: All points lie on
a facade with very good texture and thus the observations of 2-
fold and 3-fold points have the same accuracy as the other points.
The number of object and image points and hence the computa-
tion time for the bundle adjustment decreases significantly, e.g.
by a factor of 4 when comparing ’all points’ and ’without 2-fold
points’ of D2. The average ratio of the covariance matrices be-
tween ’all points’ and ’without 2-fold points’ is 1.2 (dataset D1)
and 1.4 (dataset D2) which may be an acceptable accuracy loss
in most applications. The ratio for ’without 2,3-fold points’ of
D1 may be also acceptable, but for D2 the value shows a loss in
accuracy. Here the maximal ratio has a large value (14.8). This in
an indication that without 2- and 3-fold points some images could
not be oriented with good accuracy. As the images consist of one
strip and D2 has less overlap, the orientation of the images at the
beginning and end of the strip are difficult without 3-fold points.
We conclude from this observation that for single strips a gen-
eral deletion of 2- and 3-fold tiepoints may be problematic, for
circular arrangements of images this problem would not occur.

Dataset B shows a different behaviour. The consistency mea-
sures between the orientation with all points and without 2-fold
or 2- and 3-fold points is 10.6 and 7.9, thus the orientation pa-
rameters change with respect to their high accuracy level. The
average accuracy of the image points becomes slightly better (σx′

decreases from 0.28 to 0.25 and 0.24). These two aspects allow
the assumption that most outliers were among the 2- and 3-fold
points. A visualization of the object points (not shown here) in-
dicates that many twofold points which are far away and lie on
twigs of a tree have been deleted. There are points remaining
which are very far away, explaining the high maximal value for
the standard deviation of the object points. Dataset B has also

shown high consistency values for multiple runs (see Table 2).
Here again we can draw the conclusion that for this dataset a bet-
ter outlier detection has to be implemented. The results of the
orientation without twofold points may be more accurate due to
outliers even though the average ratio p of the covariance matri-
ces is 1.4.

4.5 Using Different Feature Extractors

If the input images are large, e.g. greater than 5 Megapixel, the
time for point extraction is an important part of the overall com-
putation time. Therefore we integrated SURF as an alternative to
the SIFT operator by D.Lowe. SURF speeds up also the match-
ing by a factor of 2, because the length of the descriptor of a
feature point is only 64 compared to 128 when using the original
operator. Both operators double the image size before extracting
the points. Both operators were used with their standard parame-
ters. Table 5 summarizes a test which shows the influence of the
operators.

The examples show that SURF delivers less points in all cases,
sometimes only 1/3 of the number of Lowe points. The matched
SURF points also contain more outliers than the Lowe points in
all cases. The accuracy of the points is worse in datasets A and
B when using SURF, so that the average accuracy decreases by
a factor of about 4 in these two datasets. This is theoretically
the same loss which occurs when using the next image pyramid
level (see chapter 4.3). This loss in accuracy must be compared
to the computation time: In our tests SURF is faster with a fac-
tor of about 4-8, 4-5 on the smaller images of datasets A and E.
As the same factor (4-5) can be expected when calculating the
Lowe SIFT-points on the next pyramid level, an alternative for
these two datasets with the same loss of accuracy to SURF would
be to use the next pyramid level with the SIFT operator by D.
Lowe. However, there is still the speedup by a factor of 2 during
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dataset Features #images in

result
# object points outliers of

matches [%]
σx′ σXO σωφκ c p computation

time [sec]
B (plevel=0) Lowe 6 37176 6.1 0.28 0.0099 0.0021 - - 648

SURF 6 9181 12.2 0.43 0.0324 0.0066 4.8 3.8 77.3
A (plevel=1) Lowe 6 1597 17.6 0.28 0.0019 0.0107 - - 131.6

SURF 6 555 39.2 0.65 0.0086 0.0438 1.1 4.4 21.3
E (plevel=0) Lowe 3 196 46.1 0.78 0.0071 0.1090 - - 105.2

SURF 3 169 57.7 0.66 0.0145 0.1828 10.0 2.4 23.5

Table 5: Quality of the Orientation calculated with different point extractors. Consistency measure: Measure between orientations with
the two point extractors. Computation time: computation time for feature point extractions in seconds.

matching which may be advantageous when choosing SURF.

Dataset E (repetitive patterns) shows a different behaviour:
The measurement accuracy of SURF is slightly better, the num-
ber of object points is only 13 % smaller. In contrast, the average
distance of the covariance matrices of the orientation parameters
increases by a factor of 2.4 when using SURF. This may be ex-
plained by the fact that the distribution of the observations over
the images is better when using the Lowe SIFT operator. But the
consistency measure between these two orientations is 10, the
orientation parameters show big differences that cannot be ex-
plained by gaussian noise in the image coordinates. So far the
source of this difference is unknown. Further investigations have
to be done to find out which result is more reliable.

4.6 Results with with Repetitive Patterns and Ground Truth

To guarantee that there is no unknown bias in the results of AU-
RELO which is not even visible when comparing results on dif-
ferent image pyramid levels, a comparison with ground truth data
is necessary. Therefore we rendered artificial images with an
OpenGL program. We combined this experiment with an inves-
tigation of different matching strategies and their performance
with repetitive patterns. Therefore the scene (dataset F) shows
two walls (Figure 1). The walls had been textured partly with an
artificial repetitive pattern and partly with rich texture from real
images. We varied the amount of the repetitive patterns.

Table 6 shows experiments with two different matching cri-
teria: The first experiments are done with the standard criterion:
The ratio of the feature vector distance between the second best
and the best match must be below a certain threshold, e.g. 70%
in these tests. If there are multiple matches due to repetitive pat-
terns, non of the matches will be used in general. The second part
of the Table shows experiments with threshold matching: The
distance of the feature vector must be below a defined thresh-
old. Here multiple matches will be used in the RANSAC loop to
compute the relative orientation of an image pair. Thus the rela-
tive orientation is able to use matches of repetitive patterns, but
must detect the false matches as outliers.

In all cases listed the orientation was able to connect all five
images. Tests were also done with 100% repetitive patterns. The
orientation failed completely in this case or give a connection of
two images with very bad accuracies.

Best Matching: The consistency measure c of the experiments
with ’best matching’ is below 1.8. This shows that there
is no bias between the ground truth data and the results of
AURELO that is not in the order of the standard deviations of
the result. Thus the accuracies given represent the true accu-
racy situation when using Lowe features and best matching
in this image setup (large overlap between the images, no
textured background that is very far away).

We can conclude that the orientation procedure is able to
cope with up to 40% repetitive patterns with nearly the same
accuracy ( p̂ between 1.6 and 1.8). As the repetitive patterns
are equally distributed in the scene, there are enough reliable

point correspondences left. Due to the matching criteria no
additional remaining outliers for the bundle adjustment are
to be expected. Even with 80% repetitive patterns the ac-
curacy loss is only about a factor of 2 compared to the ex-
periments without repetitive patterns. In real world scenes
repetitive patterns may cause more problems, because they
are often not equally distributed.

Threshold Matching: The experiments with threshold match-
ing show worse results: Although σXO and σωφκ have higher
values, the errors are larger than indicated by the accuracies:
The consistency measure is always greater than 2.9 and one
experiment is clearly wrong: With 40% repetitive patterns
the consistency measure is 840. Tests show that multiple
runs in this case show different results, often better ones. As
expected, the outlier rate of the matches is higher than for
the best matching: at least 59% outliers. The results show,
that this outlier rate is too high for the current algorithm to
provide reliable results. As p̂ is always much higher than in
the experiments with ’best matching’, we do not recommend
the use of ’threshold matching’. With the current parameter
settings and simple outlier detection methods no advantage
can be observed when there is a high amount of repetitive
patterns in the observed scene.

The same experiments were carried out with the SURF oper-
ator. The results of the SURF operator were always worse than
with the Lowe operator. But the SURF results become better
with more repetitive patterns: The comparison with 80% repet-
itive patterns shows that p̂SURF /p̂Lowe is 1.5. Again, ’threshold
matching’ is always worse than with ’best matching’ when using
SURF.

Figure 2: Quality of the orientation with images with non-linear
distortion. X-Axis: Amount of maximal distortion in the image
in pixel. Y-Axis: consistency measure c and average ratio of co-
variance matrices between dataset without distortion and dataset
with distortion. Used images: dataset A, Nikon D70s camera
with 20mm lens.

4.7 Results with Different Amounts of Distortions

In many practical applications, especially when using consumer
cameras, the question whether to correct the non-linear distor-
tions of the images arises. We used existing lookup tables for
distortion and scaled the distortion offsets. These scaled distor-
tion lookup tables were then applied to the already rectified (and

41



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 
Matching rep. parts % # object

points
# image
points

outliers in
matches [%]

σx′ σXO σωφκ c p p̂

Best 0 1791 5369 3.8 0.20 0.00055 0.0077 1.6 1.0 1.6
20 2030 5941 7.4 0.23 0.00059 0.0084 1.5 1.2 1.8
40 1561 4761 14.3 0.22 0.00222 0.0085 1.2 1.4 1.7
60 1484 4368 21.9 0.23 0.00446 0.0103 1.5 1.5 2.3
80 1133 3316 35.5 0.27 0.01648 0.0141 1.8 1.9 3.4

Threshold 0 1404 4161 59.2 0.22 0.00542 0.0101 3.6 1.7 6.1
20 1219 4179 68.3 1.56 0.00785 0.0570 2.9 8.6 24.5
40 1254 3676 71.0 1.04 0.00618 0.0710 840.5 11.4 9581.7
60 892 2685 75.3 0.97 0.02894 0.0490 30.7 11.6 243.6
80 861 2005 84.2 1.49 0.02055 0.2303 56.4 27.3 1539.7

Table 6: Quality of the Orientation according to repetitive patterns. Dataset used: dataset F (simulated data). The texture consists of
repetitive parts (percentage given in column 2) and non repetitive parts. Lowe features with best matching (ratio between best and
second best match as threshold) and threshold matching used. The consistency measure c is calculated between the ground truth data
and the experiment, the average ratio of the covariances p and p̂ = cp are calculated between the best matching result with 0% repetitive
patterns and all other experiments.

therefore declared distortion-free) images and the impact on the
orientation results was observed. With the help of the distortion
scaling we set the maximal distortion successively from 1 to 70
pixel. The result for a Nikon D70s camera (dataset A) is visual-
ized in Figure 2. Here even with 70 pixel distortion in the images
AURELO was able to connect all images.

The Figure shows the consistency measure and the average
ratio of the covariance matrices with respect to the maximal amount
of distortion. The consistency increases approximately linear with
the amount of distortion. Even with small distortions less or equal
to 5 pixels the consistency measure has values from 2 to 6. That
means that (with low and with high distortions) the accuracies of
the orientation parameters do not reflect the shift of the orienta-
tion parameters due to non-linear distortion. For distortions equal
or less than 5 pixels the average ratio p between the covariances
is up to 1.2, so the covariances in principle do not change. The
consequence for practical applications is that (at least with this
image setup) it is very difficult to draw conclusions about the re-
maining non-linear distortion in the images and their effect on the
accuracy with the help of the statistical results of a bundle adjust-
ment that does not use any calibration parameters. As the loss of
accuracy can be large, e.g. in this experiment for 5 pixels distor-
tion p̂5 = c5 p5 = 7.2 and for 25 pixels distortion, the actual
distortion of the used lens, p̂25 = c25 p25 = 80, the non-linear
distortions of the camera should always be used if available.

5 SUMMARY AND OUTLOOK

The experiences with the tests showed that the consistency mea-
sure in conjunction with the average and maximal ratio of co-
variance matrices is a useful tool to benchmark different results
of automated relative orientation procedures. To summarize our
findings, the following generalized conclusions can be drawn:

• Orientation procedures which use random number genera-
tors, especially RANSAC algorithms, may produce signifi-
cantly different results when started multiple times. This is
dataset dependent.

• The accuracy loss when using the first image pyramid level
instead of the original images is smaller than the decrease
when using the subsequent smaller levels.

• If there is enough overlap, points with only two or even with
only three observations can be left out with only a very small
loss in accuracy.

• The SURF feature extraction implementation used here runs
significantly faster than the classical SIFT operator, but yields
much worse results. If performance is not a main issue, we
thus recommend using SIFT. If accuracy is no issue, we rec-

ommend to use SURF, which is approximately a factor 2
less accurate in standard deviation.

• Matching SIFT descriptors with a threshold delivers worse
results than matching with the ratio of best to second best
match. This is at least true when no other sophisticated out-
lier detection is used. Even for images with large areas of
repetitive patterns threshold matching has no advantages.

• Unmodeled non-linear distortion has a significant influence
on the result. A big amount of the errors is not reflected in
the estimated accuracies of the orientation parameters.

Not all influences on the quality were taken under consider-
ation in this paper, e.g. the influence of the geometry (rotated
images), the reflectance properties of the object, the lighting con-
ditions and so on. Nevertheless the findings can help to produce
more reliable results and improve the orientation procedures.

For AURELO the need for the implementation of a more so-
phisticated outlier detection method and/or the use of a robust
bundle adjustment became clearly visible. The comparison with
other orientation procedures is also one objective for our future
work.
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