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ABSTRACT: 
 
Within this paper an approach of calibration for a terrestrial laser scanner with two mirrors driven by two galvanometers is 
presented. This includes a mathematical model for the interior of the laser scanner as well as the determination for the parameters to 
be calibrated. The mathematical model is derived from the functionality of the laser scanner, whereby the principle of “Ray Tracing” 
was used. According to the inner structure of the scanner device and the functionality of the scanning system the laser ray would be 
divided into three parts. Every part could be represented by a metric length and a unit vector which could be deduced by using the 
algorithm in triangular angers and the matrix of reflection respectively. The mathematical model is then the result of combination of 
these three vectors of laser parts. It was suspected that the lengths of the laser ray and the angles of the mirror rotations were 
obtained inexactly during measurement. However they could be corrected by adding offsets and factors for the scale caused by not 
exact orthogonal configuration of the mirror axes. In order to estimate these parameters the adjustment model was established using 
the Gauss-Markov-Model. Results from the test with simulated data showed that the mathematical model and the adjustment model 
were adequate to the presented approach.  
 
 

                                                                 
* Corresponding author.  fan@bv.tum.de; phone +49 89 289-22586; fax +49 89 280-9573; www.carto-tum.de. 

1. INTRODUCTION 

In recent years laser scanning has found wide-spread use for 
acquiring geometric information for applications in cultural 
heritage documentation, forestry, forensics, deformation 
measurements, etc. The success of this relative new technology 
can be attributed to his advantages: (i) 3D Laser scanning 
records full automatically dense points clouds from the object 
surfaces with less effort than other 3D acquisition techniques; 
(ii) 3D Laser scanning is an active measuring system which 
allows the measurement independently of both the texture of 
the target object surface and the natural light conditions. For 
these reasons Laser scanning is becoming more and more 
popular nowadays. But most of available Laser scanners on the 
market are concerning the accuracy to the millimeter range. 
One of the important reasons is the lack of exact calibration for 
the opto-mechanical deflection of the Laser scanning mirror 
axes. 
  
In the presented approach an experimental terrestrial laser 
scanner with two mirrors driven by two galvanometers was 
built up. Experiments have shown that the accuracy of this laser 
scanner in range is better than 2 mm. Although a very high 
precise opoto-mechanical deflector for the two mirrors is used. 
For obtaining accurate 3D coordinates of the objects an 
additional scanner calibration is still required.  
 

For measuring one point on the object surface, three 
observations are made, namely the range l , the angles 1γ  of 

the mirror on the horizontal axis, and the angle 2γ  of the 
mirror on the vertical axis. Normally, point clouds are 
processed in a Cartesian coordinate system which has to be 
conversed from the spherical coordinate system. In our work we 
used a mathematical model for the scanning system, in which 
additional parameters were introduced. This model considers 
the inner structure of the laser scanner.  
 
This model is based on the principle of “ray tracing”. The laser 
ray could be divided into three parts: (i) in the first part the laser 
light runs from the laser centre to the middle of the first mirror, 
it would be represented by , (ii) the laser light is mirror 
reflected on the first mirror surface with a certain rotation angle 

1l

1γ , then it runs to the second mirror. This part is the second 

part of laser ray, and would be represented with , (iii) the 
laser light is reflected on the second mirror surface with a 
rotation angle 

2l

2γ  and runs to the target object, this is the third 

part of the laser ray . Thus the propagate path results in five 

parameters, which consist of three distances ,  and  and 

two rotation angles 

3l

1l 2l 3l

1γ  and 2γ .  
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 In the presented approach we assumed that the length of the 
first part of the laser light  is known and constant and both of 
the angles between the optical axis and the laser path from the 
laser centre are zero. It was suspected, that the distances  and 

were not exactly measured and the angles of the mirrors 

rotation 

1l

2l

3l

1γ  and 2γ  were incorrect, too. These four parameters 
should be corrected by the calibration, i.e.: 4 offsets 
( , ,2dl 3dl 1γd , 2γd ) to these four parameters 

( , ,2l 3l 1γ , 2γ ) should be found out by the calibration. 
Additionally to these offsets we introduced the 
parameters , , and for the scale because of 

effects given by different Field of Views (FOV).  
2l

m
3l

m
1γ

m
2γ

m

 
In order to estimate the eight parameters 
( , ,2dl 3dl 1γd , 2γd , , , , ) the equations in 

the mathematical model were linear zed. Then the adjustment 
model was established using the Gauss-Markov-Model. In the 
next step we simulated sets of measured data according to the 
functionality of the laser scanner. The data sets differ in FOV 
(16 degree and 19 degree). The simulated data were exploited 
to estimate the eight parameters and to validate the adjustment 
model. The results showed that the process of the adjustment is 
adequate to the presented approach.  

2l
m

3l
m

1γ
m

2γ
m

 
The remainder of this paper is structured as follows: in the 
second section it will be described how the laser scanner works. 
According to this functionality the mathematical model is 
developed in the section three. In the fourth section the 
parameters to be calibrated will be introduced and the fifth 
section presents the test with simulated data. Finally, the 
conclusions are presented in the section six.  
 
 

2. FUNCTIONALITY OF LASER SCANNER 

The terrestrial laser scanner used in this work was built up at 
the Institute of Navigation, University of Stuttgart, Germany. 
The figure below shows the inner structure of this device.  
 

 
 

Figure 1. laser scanner with two galvanometers 
 
Figure 1 shows the device without cage. And it can be 
abstracted as that shown in the figure 2. The main constituents 

of the laser scanner are two rotation mirrors and laser centre, in 
which the laser beam could be emitted and received. The two 
mirrors are attached to rotor shafts of electric motors which 
have rotor capable of performing a limited rotation. The scanner 
device has also a position sensor of electrostatic capacitance 
type arranged around the rotor shaft of the motor, and output 
from this sensor is fed back to the instruction signal given to the 
motor, thereby to position the mirror. And the positions of the 
mirrors are given in angles. In the range measurement the CW-
laser principle is applied which obtains the range by means of 
measuring the phase difference between the transmitted and the 
received signal backscattered from the object surface.  
 
 Galvanometer 
 
 

 

Laser 
center 

Figure 2.  abstracted model of laser scanner. The red line 
represents the laser ray. The coordinate system (in blue) is the 
default coordinate system in the local scanning system.  
 
The abstracted model shows the path of the laser ray clearly. At 
first laser light is emitted from the laser center. Then it runs to 
the first mirror. There it is reflected with a certain rotation angle 
of the mirror. Shortly after that it is reflected by the second 
mirror with another rotation angle. Finally, it runs to the target 
and then back to the laser center in the same way.  
 
The technical data of this laser scanner can be cited in a table. 
Table 1. Technical data of the laser scanner in the presented 
work. 
Laser output power: 0.5 mW 
Laser wavelength: 670 nm 
Instantaneous Field of 
View (IFOV): 0.1° (aperture by sending: 1 mm) 

Field of View (FOV), 
variable: Max. 30° x  30° 

Aperture by receiving 24 mm 
Sampling: 2-dim. Line scanning 
Number of pixels per 
image: 

200 x 200 or 400 x 400 (default 
setting) 

Ambiguity interval: > 10 m 

Resolution Range:  0.1 mm (for diffuse reflectivity 60% 
and 1 m range) 

Tone of measurement  10 MHz and 314 MHz 

Measurement rate 2 KHz (working with one ton) 
600 Hz (working with two tone) 

Scanning rate 40 sec/scan 
As shown in the first and second figures the terrestrial laser 
scanner requires distraction mechanisms in two different 
directions for surveying a certain region of an object of 
investigation, whereas the two mirrors were driven by two 

Laser center  
Galvanometer 

Mirror 

Mirror Laser ray 
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 galvanometers. A laser scanner of this type is also called a XY-
Scanner. (Figure 3.) 
 

Figure 3. XY-Scanner 
 
The figure 3 denotes the basic principle of the XY-Scanner. The 
two galvanometers should be installed orthogonally. The laser 
beam is initially reflected by the mirror driven by Y-
Galvanometer. Afterwards, it is reflected by the mirror driven 
by X-Galvanometer.  
 
For measuring one point on the object surface, three 

observations are made, namely the range l , the angles 1γ  of 

the mirror on the horizontal axis, and the angle 2γ  of the 
mirror on the vertical axis. Normally, point clouds are 
processed in a Cartesian coordinate system which has to be 
conversed from the spherical coordinate system. In the 
presented work we established a mathematical model for the 
scanning system, in which additional parameters were 
introduced. This model considers the inner structure of the laser 
scanner which was described as the functionality of laser 
scanners in this section. 
 
 

3. MATHEMATICAL MODEL 

The mathematical model presented in this paper is established 
according to the principle of “ray tracing”. This including the 
involved coordinate systems and vectors of laser ray will be 
described in this section. 
 
3.1 Coordinate systems and vectors 

The mathematical model is based on the principle of “ray 
tracing”. The laser ray could be divided into three parts: (i) the 

first part 1l  represents the laser light running from the laser 

centre to the middle of the first mirror; (ii) the second part 2l  
represents the laser light between the two mirrors (it is reflected 

on the first mirror surface with a certain rotation angle 1γ , then 

it runs to the second mirror); (iii) the third part 3l  represents 
the laser light between the second mirror and the target (it is 

reflected on the second mirror surface with a rotation angle 2γ  
and runs to the target object). Thus the propagate path results in 

five parameters, which consist of three distances 1l , 2l  and 3l  

and two rotation angles 1γ  and 2γ .  
 
In the presented approach we regarded these three parts of laser 
path as vectors. In order to describe these vectors detailed and 
obviously, it is necessary to introduce three coordinate systems, 
in which the three vectors lay respectively. (See. Table 2.) 
 
Table 2. Coordinate systems in mathematical model 
 
Coordinate 

system Origin X-axis Y-axis Z-axis 

Origin 
coordinate 

system 
 (N-

system) 

Laser 
centre 
point 
O  

Parallel to 
the driving 
axis of the 

second 
mirror 

Parallel to 
the driving 
axis of the 
fist mirror 

Perpendicular 
to his XY-

plan 

1. mirror 
coordinate 

system  
(S1-

system) 

Centre 
of the 
first 

mirror
O′  

Perpendicul
ar to his Y-
axis on the 
mirror plan 

the driving 
axis of the 
fist mirror 

Perpendicular 
to the first 
mirror plan 

2. mirror 
coordinate 

system  
(S2-

system) 

Centre 
of the 
second 
mirror 
O ′′  

the driving 
axis of the 

second 
mirror 

Perpendicu
lar to his 
X-axis on 
the mirror 

plan 

Perpendicular 
to the second 
mirror plan 

 
Note: all of the three coordinate systems are right hand system. 
 
The coordinate systems including the vectors of the three parts 
of the laser path could be illustrated in the graphic below. 
(Figure. 4) 
 

 
 
Figure 4.  coordinate systems and vectors of the laser path 
 
In the figure 4 A′ is the incidence of the laser light on the first 
mirror and A ′′ represents the incidence of the laser light on the 
second mirror. 
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In different coordinate systems the vectors should be 
represented differently, as you can see in the table below. 
 
Table 3. Explaining for vectors 

vector 
In N-

system 
In mirror coordinate 

system 
explaining 

Nr1
r

 
1S

1r
r

 
(in S1-system) 

Vector to the centre of the first 

mirror (fromO  to O′ ) 

N
2r
r

 
2S

2r
r

 
(in S2-system) 

Vector to the centre of the second 

mirror (fromO  to O ′′ ) 

N
1l
r

 
1S

1l
r

 
(in S1-system) 

The first part of laser vector 

(from O to A′ ) 

1
2
Sl
r

 (in S1-system) Nl2

r
 

2S
2l
r

 (in S2-system) 

The second part of laser vector 
(from A′ to A ′′ ) 

N
3l
r

 
2S

3l
r

 

(in S2-system) 

The third part of laser vector 
(from A ′′  to object) 

N
1r
r

Δ  
1S

1r
r

Δ  
(in S1-system) 

Vector from O′  to A′  

Nr2
r

Δ  
2

2
Sr
r

Δ  
(in S2-system) 

Vector from O ′′  to A ′′  

 
3.2 Rotation matrices 

For the mathematical model two types of rotation matrices were 
needed. They would be defined and described in the following. 
 
3.2.1 Matrix for reflection 
 
According to the law of the reflection the laser ray is reflected 
at the mirror plan. Because the incident laser vector and the 
reflected laser vector have opposite directions in norm direction 
of the mirror plan, the matrix for reflection is then: 
 

                           
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
=

100
010
001

S                             (1) 

 
3.2.2 Rotation matrices for mirror coordinate systems 
 
Using the rotation matrices the vectors can be transformed from 
the N-system to the mirror system (S1- or S2-system).  In 
photogrammetry (Kraus 2004) the rotation and orientation of 
the mirrors could be described by dint of affine transformations. 
 

                              zyx
S
N RRRR ⋅⋅=                 (2) 

 
Where S1

NR  is the rotation matrix for the first mirror (S1-

system) with the rotation angle 1γ  of the mirror on the 
horizontal axis, and 2S

NR  is the rotation matrix for the second 

mirror (S2-system) with the rotation angle 2γ  of the mirror on 
the vertical axis.  
 

3.3 The known vectors 

Aiming to simply the situation to a certain extent we assumed 
in the presented approach that both of the angles between the 
optical axis and the laser path from the laser centre are zero. On 
the other hand we got some known parameters for the device 
from manufacture as following: 
 

• The distance between the laser centre and the centre 
of the first mirror is 0.0625 m. 

• The distance between two mirrors is 0.036 m. 
 

Then we have: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
0
0

 0.0625

1

1

1

N
z

N
y

N
x

r
r
r

N
1r
r

           (3) 

and  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
036.0
0

0625.0

2

2

2

N
z

N
y

N
x

r
r
r

N
2r
r

           (4) 

and the unit vector for the first part of the laser vector 

                                      
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=
0
0
1

1

1

1

N
l

N
l

N
l

z

y

x

u
u
u

N
l1

ur
        (5) 

3.4 The laser vectors 

The first part of the laser vector was represented by convolution 

of the length of the first part of laser  and its unit vector 1l
N
l1

ur .  

                                           

                                         N
l

N
1 1

ul rr
⋅= 1l                              (6) 

 

Under the assumption in section 3.3 vector Nr1
r

 is then the 

equivalence of the vector N
1l
r

. 
 
3.4.1 The second part of the laser vector 
 
Analog to the equation 6 the second part of the laser vector 
could be calculated with the equation below: 
 

                                         N
l

N
2 2

ul rr
⋅= 2l                               (7) 

where is the length of the second part of laser and 2l
N
lu

2

r
 is its 

unit vector. 

From the figure 4 we see that Nl2

r
 is the reflected vector of the 

incident vector N
1l
r

, hence we can get  by using the matrix 

for reflection (equation 1). This process could be implemented 
in three steps: 

N
lu

2

r

(i) transform N
l1

ur  from N-system to S1-system 
    

            N
l

S1
N

S1
l 11

uRu rr
⋅=                                       (8) 
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 (i  use the matrix of reflection in S1-system 

⋅=                                           (9) 

 transform  from S1-system to N-system 

                (10) 

he calculation of the length was realized by disposing of 

(i) in the triangle 

i)
 

rr
   S1

l
S1
l 12

uSu
 

(iii)  S1
l2

ur 
 

N
l

S1
N

TS1
N

N
l 12

uRS)(Ru rr
⋅⋅⋅=

 
T  2l
triangle geometry: 
 
 AAO ′′′′′Δ we have the equation 

                           

 

S2
2

S2
2

S2
1

S2
2 lrlr

rrrr
=Δ+− )(

                   (11) 

 (ii) put equations 6 and 7 into 11 we can get 
   

       (12

 
he equation 12 is equivalent to the equation below: 

)

 

N
l

S2
N

S2
2

N
l

N
2

S2
N 21

uRrurR rrrr
⋅⋅=Δ+⋅−⋅ 21 )( ll  ) 

T
 

( ) ( ( ) 1
12 )( −

⋅Δ+⋅−⋅⋅= N
l

S2
2

N
l

N
2

S2
N

S2
N 21

ururRR rrrr ll T

 
                                                (13

 
.4.2 The third part of the laser vector 

) 

3

The third laser vector Nl
r

 could be deduced in the same way3  as 
.  

                             

the second laser vector
 

   N
l

N ul
333

rr
⋅= l                                     (14) 

ince the third part of laser ray is the result of the mirror 

           (15) 

 
n the other hand, the length of the third part of laser was very 

                                  (16) 
 

here  is the total length of the laser from measurement. 

ow the mathematical can be established by combining the 

              (17) 

 

 
S
reflection of the second laser ray, the matrix of reflection would 
be used on the second mirror. Then the unit vector of the third 
part of laser could be derived: 
 

N
l

S2
N

TS2
N

N
l uRS)(Ru

3 2

rr
⋅⋅⋅=

O
simple to be calculated finally: 
 

213 llll −−=

w  l
 
N
three parts of laser vectors. 
 

N
3

N
2

N
1 lll

rrr
++=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

Z
Y
X

 

N
l

N
l

N
l 321

uuu rrr
⋅+⋅+⋅= 321 lll

 

4. PARAMETERS FOR CALIBRATION 

It was suspected, that the distances  and were not exactly 

measured and the angles of the mirrors rotation 

2l 3l

1γ  and 2γ  
were incorrect, too. These four parameters should be corrected 
by the calibration, i.e.: four offsets ( , ,2dl 3dl 1γd , 2γd ) to 

these four parameters ( , ,2l 3l 1γ , 2γ ) should be found out by 
the calibration. Additionally to these offsets we introduced the 
parameters , , and for the scale because of 

effects given by different Field of Views (FOV).  
2l

m
3l

m
1γ

m
2γ

m

 
In order to estimate the eight parameters 
( , ,2dl 3dl 1γd , 2γd , , , , ) the equations 

(equ.17.) of the mathematical model were linearized. Then the 
adjustment model was established using the Gauss-Markov-
Model. 

2l
m

3l
m

1γ
m

2γ
m

 
5. TEST OF THE MATHEMATICAL MODEL AND THE 

ADJUSTMENT MODEL 

In this section the mathematical model and the adjustment 
model would be tested by using simulated measurement data. 
For this proposal a set of measurement data was simulated in 
Cartesian according the functionality of the laser scanner 
(section 2). They were then transferred in angles and distances 
by using: 

        

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

++

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

222

22

ZYX

)/2
Y
Z(arctan

)/2
ZY

X(arctan

l

2

1

γ

γ
              (18) 

 
In order to test the sensitivity of the mathematical model and 
the adjustment model we added known offsets and scale factors 
on the angles and the distances obtained by using equation 18. 
In figure 5 the two types of points are shown graphically, 
wherein the green points were the results of adding known 
offsets and scale factors on the simulated data (the red ones). 
All of the simulated points lay on a plan and the distance 
between neighbour points is three cm. 
 
After the adjustment the same values as we had added were 
received for the parameter of the calibration, as  shown in the 
figure 7, the green points (results after the adjustment) are 
almost identical with the red points (simulated data). This 
means that the mathematical model and the adjustment model 
are appropriate to the calibration and they are sensitive on the 
other hand. 
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Figure 5. simulated data before adjustment. The green points 
were the results of adding known offsets and scale factors on 
the simulated data (the red ones). 
 

 
Figure 6. Data after adjustment in simulation 

 
After the test for sensitivity using simulated data, a small white 
board was measured. The board was located vertically to the Y 
axis of the N-System. And the distance between the board and 
the XZ-plan of the N-System was around 1.6 meters. The 
measurement lasted around 30 minutes. And then the data and 
the known technical parameters of the device were stored in a 
text file. Due to the limitation that we did not have measure 
instrument with higher accuracy, control points for the 
calibration were not available. In this case we choose several 
points in the middle of the measurement field to fit a plan. The 
points on this fitted plan were viewed as the control points of 
the measured points respectively. Figure 7 presents the 
measured points with green color and the fitted plan with red 
color. 
 
 The result of the adjustment is shown in the figure 8. 
Comparing the green points between the measured data and the 
data corrected by adjustment it would be found that (i) the 
curvature of the original data was eliminated; (ii) the average 
distance between the corrected data and the fitted plan were 
significantly smaller than that before adjustment; and (iii) the 
points after the adjustment had a normal contribute. These 
could mean that the adjustment is able to correct the measured 
data in great extent. 
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Figure 7. Measured data (in green) and their approximated plan 
(in red) 
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Figure 8. Results of the adjustment 

 
6. CONCLUSION 

This work presented a mathematical model for the laser scanner 
driven by two galvanometers according the principle of “ray 
tracing”. In the mathematical model the laser ray was treated as 
three parts of laser vectors represented by metric lengths and 
unit vectors. And they could be deduced respectively by using 
the algorithm in triangular angers and the matrix of reflection. 
Then the mathematical model is a combination of the three 
vectors. On the base of the mathematical model the parameters 
for calibration could be derived.  
The simulation denoted that the developed model was sensitive. 
And the test showed that the adjustment model could correct the 
measured data in great extent, although there were not control 
points for the adjustment. 
 

7. REFERENCES 

Kraus, K. 2004. Photogrammetry.  Walter de Gruyter, Berlin. 
New York, pp. 5-16. 

Vozikis, G., Haring, A., Vozikis, E., Kraus, K., 2004, Laser 
Scanning: A New Method for Recording and Documentation in 
Archaeology, Paper ID WSA1.4 
 
Wehr, A., Thomas, M. 2006. Close range Laser scanner, 
Stuttgart, Germany. http://www.nav.uni-stuttgart.de/navigation/ 
forschung/ nahbereich_laserscanner/ 
 
 

60

http://www.nav.uni-stuttgart.de/navigation/

	1. INTRODUCTION
	2. FUNCTIONALITY OF LASER SCANNER
	3. MATHEMATICAL MODEL
	3.1 Coordinate systems and vectors
	3.2 Rotation matrices
	3.2.1 Matrix for reflection
	3.2.2 Rotation matrices for mirror coordinate systems

	3.3 The known vectors
	3.4 The laser vectors

	4. PARAMETERS FOR CALIBRATION
	5. TEST OF THE MATHEMATICAL MODEL AND THE ADJUSTMENT MODEL
	6. CONCLUSION
	7. REFERENCES



