
AUTOMATED VISUAL TRAFFIC MONITORING AND SURVEILLANCE THROUGH A 
NETWORK OF DISTRIBUTED UNITS 

 
 

A. Koutsiaa, T. Semertzidisa, K. Dimitropoulosa, N. Grammalidisa and K. Georgouleasb 

 
a Informatics and Telematics Institute, Centre for Research and Technology Hellas, 1st km Thermi-Panorama road, 

57001 Thessaloniki, Greece - (koutsia, theosem, dimitrop, ngramm)@iti.gr 
b MARAC Electronics, 165 Marias Kiouri & Tripoleos Str, 188 63, Piraeus, Greece - georgouleas@marac.gr 

 
Commission III, WG III/5 

 
 
KEY WORDS:  Computer Vision, Visual Analysis, Fusion, Location Based Services, Calibration, Change Detection, Matching 
 
 
ABSTRACT:  
 
This work aims to present an intelligent system for tracking moving targets (such as vehicles, persons etc) based on a network of 
distributed autonomous units that capture and process images from one or more pre-calibrated visual sensors. The proposed system, 
which has been developed within the framework of TRAVIS (TRAffic VISual monitoring) project, is flexible, scalable and can be 
applied in a broad field of applications. Two different pilot installations have been installed for initial evaluation and testing, one for 
traffic control of aircraft parking areas and one for tunnels at highways. Various computer vision techniques which were 
implemented and tested during the development of the project, are described and analysed. Multiple background extraction and data 
fusion algorithms are comparatively evaluated. 
 
 

1. INTRODUCTION 

1.1 Relative Work 

Traffic control and monitoring using video sensors has drawn 
increasing attention recently due to the significant advances in 
the field of computer vision. Many commercial and research 
systems use video processing, aiming to solve specific problems 
in road traffic monitoring (Kastrinaki, 2003). An efficient 
application for monitoring and surveillance from multiple 
cameras is the Reading People Tracker (Le Bouffant, 2002), 
which was later used as a base for the development of a system 
called AVITRACK, which monitors airplane servicing 
operations (Thirde, 2006). Furthermore, in the FP5 
INTERVUSE project, an artificial vision network-based system 
was developed to monitor the ground traffic at airports 
(Pavlidou, 2005). The system uses the Autoscope® Solo Wide 
Area Video Vehicle Detection System which has been 
successfully deployed worldwide for monitoring and 
controlling road traffic (Michalopoulos, 1991).  
 
1.2 Motivation and Aims 

Robust and accurate detection and tracking of moving objects 
has always been a complex problem. Especially in the case of 
outdoor video surveillance systems, the visual tracking problem 
is particularly challenging due to illumination or background 
changes, occlusions problems etc. The aim of the TRAVIS 
project was to determine whether the recent changes in the field 
of Computer Vision can help overcome these problems and 
develop a robust traffic surveillance application. The final 
system is easily adjustable and parameterised, in order to be 
suitable for diverse applications related to target tracking. Two 
prototypes have been installed each for a different application: 
 
• Traffic control of aircraft parking areas (APRON). This 
application focuses more on the graphical display of the ground 
situation at the APRON. The system calculates the position, 

velocity and direction of the targets and it classifies them 
according to their type (car, man, long vehicle etc). Alerts are 
displayed for dangerous situations, such as speeding. This 
information can be accessible by the respective employees, 
even if they are situated in a distant area, with no direct eye-
contact to the APRON. A pilot installation of this system took 
place at “Macedonia” airport of Thessaloniki, Greece. 
 
• Traffic control of tunnels at highways. The focus of this 
application is on the collection of traffic statistics, such as speed 
and traffic loads per lane. It can also identify dangerous 
situations, such as objects falling, animals or traffic jams. These 
results can be sent to traffic surveillance centres or used to 
activate road signs/warning lights. This prototype was installed 
at a highway tunnel at Piraeus Harbour, Athens, Greece. 
 
 

2. SYSTEM ARCHITECTURE 

The proposed system consists of a scalable network of 
autonomous tracking units (ATUs) that use cameras to capture 
images, detect moving objects and provide results to a central 
sensor data fusion server (SDF). The SDF server is responsible 
for tracking and visualizing moving objects in the scene as well 
as collecting statistics and providing alerts for dangerous 
situations. The system provides a choice between two modes, 
each supporting a different data fusion technique. Grid mode 
separates the ground plane into cells and fuses neighbouring 
observations while map fusion mode warps greyscale images of 
foreground objects in order to fuse them.  
 
The topology of the ATUs network varies in each application 
depending on the existing infrastructure, geomorphologic facts 
and bandwidth and cost limitations. The network architecture is 
based on a wired or wireless TCP/IP connection as illustrated in 
Figure 1. These topologies can be combined to produce a 
hybrid network of ATUs. Depending on the available network 
bandwidth, images captured from specific video sensors may 
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also be coded and transmitted to the SDF server, to allow 
inspection by a human observer (e.g. traffic controller).   
 

 
 

 Figure 1: Basic architecture of the proposed system. 
 
 

3. THE AUTONOMOUS TRACKING UNITS 

Each ATU is a powerful processing unit (PC or embedded PC), 
which periodically obtains frames from one of more video 
sensors. The video sensors are standard CCTV cameras, not 
necessarily of high resolution, equipped with a casing 
appropriate for outdoor use and telephoto lenses for distant 
observation. They are also static (fixed field of view) and pre-
calibrated. Each ATU consists of the following modules: 
 
- Calibration module (off-line unit to calibrate each video 
sensor). To obtain the exact position of the targets in the real 
world, the calibration of each camera is required, so that any 
point can be converted from image coordinates (measured in 
pixels from the top left corner of the image) to ground 
coordinates and vice versa. A calibration technique, which is 
based on a 3x3 homographic transformation and uses both 
points and lines correspondences, was used (Dimitropoulos, 
2005). The observed targets are small with respect to the 
distance from the video sensors and they are moving on a 
ground surface, which therefore can be approximated by a plane. 
For more accurate results, a calibration tool (Figure 2) has been 
developed. This tool visualises two camera views, one of which 
is considered the base view according to which the other 
camera is calibrated. It then allows the user to dynamically 
choose corresponding points on the two views before it warps 
them on the ground plane. The user can repeat the procedure 
until the visual results are considered satisfactory. 
 
- Background extraction and update module. Each ATU of the 
system can automatically deal with background changes (e.g. 
grass or trees moving in the wind) or lighting changes (e.g. day, 
night etc) supporting several robust background extraction 
algorithms, namely: mixture of Gaussians modelling 
(KaewTraKulPong, 2001), Bayes algorithm (Liyuan Li, 2003), 
Lluis-Miralles-Bastidas method (Lluis, 2005) and non-
parametric modelling (Elgammal, 2000).  
 
- Foreground segmentation module. Connected component 
labelling is applied to identify individual foreground objects. 
 - Blob tracking module (optional). The Multiple Hypothesis 
Tracker (Cox, 1996) was used, although association and 
tracking of very fast moving objects could be problematic. 

 
 

Figure 2: Screenshot from the calibration tool 
 
 - Blob classification module. A set of classes of moving objects 
(e.g. “person”, “car” etc) is initially defined for each application. 
Then, each blob is classified by calculating its membership 
probability of each class, using a previously trained back-
propagation neural network. Specifically, 9 attributes, 
characteristic of its shape and size, are used as input to a neural 
network: the two sizes of the major and minor axes of the 
blob’s ellipse and the 7 Hu moments (Hu, 1962) of the blob that 
are invariant to both rotations and translations. The number of 
outputs of the neural network equals the predefined number of 
classes. The class is determined by the maximum output value. 
- 3-D observation extraction module. It uses the available 
camera calibration information to estimate the accurate position 
of targets in the scene. Since the camera calibration is based on 
homographies, an estimate for the position  of a 
target in the world coordinates can be directly determined from 
the centre of each blob. Each observation is also associated with 
a reliability matrix 

),( ww yx

R , depending on the camera geometry and 
its position at the camera plane. This matrix is calculated using 
the calibration information (Borg, 2005): 
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ccccww yxJyxJyxR ),(),(),( Λ=

 
 
where  J = Jacobian matrix of the partial derivatives of the 

mapping functions between the camera and the world 
co-ordinate systems, 
 Λ = measurement covariance at location    
on the camera plane, which is assumed to be a fixed 
diagonal matrix.  
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Figure 3: Execution times of ATU modules 
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Figure 3 shows the absolute and relevant execution times per 
frame of the basic modules of the ATUs. The particular times 
have been acquired by applying the non-parametric modelling 
method, working under grid mode. The background extraction 
module is the most crucial one as the computational cost of 
such methods is typically large, causing problems for real-time 
systems. Therefore, many experiments have been conducted in 
order to provide both a qualitative and a computational 
evaluation of these methods. 
 
 

4. NETWORK COMMUNICATIONS 

The final output of each ATU is a small set of parameters 
(ground coordinates, classification, reliability), which is 
transmitted to the SDF server through wired or wireless 
transmission. If the foreground map fusion technique is used, a 
greyscale image is provided at each polling cycle, indicating the 
probability for each pixel to belong to the foreground. 
All these data are transmitted through wired or wireless IP 
connection to the server which performs observation fusion and 
target tracking. TCP protocol is used for transmission of the 
data from the ATUs to the central server whereas UDP is used 
for remote controlling of the ATUs. As an indicator, the 
bandwidth used per ATU when operating under the map fusion 
mode with a frame rate of 3fps is about 192Kbps (3fps x 
8Kbyte/frame). 
 
The system requires frame synchronisation and constant frame 
rate of all ATUs, which are achieved by using the Network 
Time Protocol (NTP). The system’s clocks synchronise to the 
central server’s clock and a appointment time technique (Litos, 
2006) is implemented to ensure that frames from all cameras 
are captured at the same instant despite network latency.  
 
A secondary system based on media server software streams 
video on demand to the central server in order to enable human 
visual monitoring of the scene. As an alternative, compressed 
motion JPEG images (JPEG 2000) can be used for streaming. 
 
 

5. SENSOR DATA FUSION SERVER 

The SDF Server collects information from all ATUs using a 
constant polling cycle, produces fused estimates of the position 
and velocity of each moving target, and tracks these targets 
using a multi-target tracking algorithm. It also produces a 
synthetic ground situation display (Figure 4), collects statistical 
information about the moving targets and provides alerts when 
specific situations (e.g. accidents) are detected.  
 

 
 

Figure 4: SDF window with 3 targets on the airport APRON 

 
5.1 Data fusion 

A target present simultaneously in the field of view of multiple 
cameras will result in multiple observations due to the fact that 
the blob centres of the same object in two different cameras 
correspond to close but different 3-D points. Two techniques 
are proposed for grouping together all the observations that 
correspond to the same target:  
 
5.1.1. Grid-based fusion 
 
A grid that separates the overlap area (in world coordinates) in 
cells is defined. Optimal values for the cell size are determined 
considering the application requirements (e.g. maximum 
distance between vehicles). Each observation is assigned two 
index values  that indicate its position on the grid: ),( yx ii
 
 

)mod][,mod]([),( cyycxxii swswyx −−=   (2) 

 
 
where , = world coordinates of the top left corner of the 

overlap area 
sx sy

 , = world coordinates of the camera level 
observation 

wx wy

c  = cell size 
 

Observations belonging to the same cell or to neighbouring 
cells are grouped together to a single fused observation. 
 
To implement this technique the grid is expressed as a binary 
image: cells that have at least one assigned observation are 
represented by a white pixel, while those with no observations 
are represented by a black pixel. A connected component 
labelling algorithm is then used to identify blobs in this image, 
each corresponding to a single moving target.  
 
Fused observations are produced by averaging the parameters 
of the observations that belong to each group. More specifically, 
each fused observation consists of an estimated position of the 
world coordinates, an uncertainty matrix as well as a 
classification probability matrix. 
 
The position and uncertainty matrices ( ,Z R ) of the fused 
observation are given by the following equations: 
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where  = the position (in world coordinates) of the n-th 

observation in a group of N 
nZ

nR  = uncertainty matrix of the n-th observation in a 
group of N 

 
To calculate the average classification vector, the uncertainty of 
each observation is taken into account. In this case the larger of 
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the two axes of the observation uncertainty ellipse is used to 
specify a weight for the observation in the classification 
averaging. Depending on the magnitude of this metric, a 
corresponding weight is assigned to each observation. The 
average classification vector is then calculated by: 
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∑
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== N
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n

N
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w

1

1
c

c     (4) 

 
These parameters ( , Z R , ) of each fused observation 
comprise the input for the tracking unit. 

c

 
5.1.2. Foreground map fusion 
In this technique, each ATU provides the SDF server with one 
greyscale image per polling cycle, indicating the probability for 
each pixel to belong to the foreground. The SDF server fuses 
these maps together by warping them to the ground plane and 
multiplying them (Khan, 2006). The fused observations are then 
generated from these fused maps using connected component 
analysis and classification information is computed as in the 
ATU’s blob classification module. Although this technique has 
increased computational and network bandwidth requirements, 
when compared to grid-based fusion, it can very robustly 
resolve occlusions between multiple views. 
 
5.2 Multiple Target Tracking 

The tracking unit is based on the Multiple Hypothesis Tracking 
(MHT) algorithm, which starts tentative tracks on all 
observations and uses subsequent data to determine which of 
these newly initiated tracks are valid. Specifically, MHT 
(Blackman, 1999) is a deferred decision logic algorithm in 
which alternative data association hypotheses are formed 
whenever there are observation-to-track conflict situations. 
Then, rather than combining these hypotheses, the hypotheses 
are propagated in anticipation that subsequent data will resolve 
the uncertainty. Generally, hypotheses are collections of 
compatible tracks. Tracks are defined to be incompatible if they 
share one or more common observation. MHT is a statistical 
data association algorithm that integrates the capabilities of:  
 

• Track Initiation: Automatic creation of new tracks 
as new targets are detected. 
• Track Termination: Automatic termination of a track 
when the target is no longer visible for an extended 
period of time. 
• Track Continuation: Continuation of a track over 
several frames in the absence of observations.  
• Explicit Modelling of Spurious Observations 
• Explicit Modelling of Uniqueness Constraints: An 
observation may only be assigned to a single track at 
each polling cycle and vice-versa. 

 
Specifically, the tracking unit was based on a fast 
implementation of the MHT algorithm (Cox, 1996). A 2-D 
Kalman filter was used to track each target and additional 
gating computations are performed to discard observation – 
track pairs. More specifically, a “gate” region is defined around 
each target at each frame and only observations falling within 
this region are possible candidates to update the specific track. 
The accurate modelling of the target motion is very difficult, 

since a target may stop, move, accelerate, etc. Since only 
position measurements are available, a simple four-state 
(position and velocity along each axes) CV (constant velocity) 
target motion model in which the target acceleration is 
modelled as white noise provides satisfactory results. 

 
Figure 5 shows the absolute and relevant values of the 
execution times per frame of the SDF server modules. The 
particular times have been acquired by working under the map 
fusion mode. The data fusion module appears to be the most 
time consuming one. 
 

SDF times

Data fusion 70% 
(31.70ms)

Tracker 1% 
(0.22 ms)

Display 29% 
(13.25ms)

 
 

Figure 5: Execution times of SDF modules 
 
 

6. EXPERIMENTAL RESULTS 

In this section, experimental results that concern the most 
crucial and computationally expensive modules of the ATU and 
SDF software are presented and discussed. These modules have 
been identified as the background extraction module for the 
ATUs and the data fusion module for the SDF server. 
 
For the purposes of deciding on the most appropriate 
background extraction technique for the specific applications, 
tests have been run on various sequences. The masks shown on 
Figure 6 are obtained from the prototype system installation at 
“Macedonia” airport in Thessaloniki. Figure 6 (a) shows the 
original image, while in Figure 6 (b) the three moving objects 
that need to be detected by the background extraction methods 
are marked with red circles. As seen in Figure 6 (c) the objects 
are detected with the mixture of Gaussians method, although 
the shape of the masks is distorted due to shadows. The results 
of the Bayes algorithm are shown in Figure 6 (d). This method 
fails to detect slowly moving objects like the one on the left of 
the image. The Lluis et al method shown in Figure 6 (e) 
produces masks with low level of connectivity, which are not 
suitable for the following image processing steps. Finally the 
non-parametric modelling method (in Figure 6 (f)) yields very 
accurate results, while coping well with shadows, as it 
incorporates an additional post processing step of shadow 
removal. 
 
Another crucial issue when deciding on the most appropriate 
background extraction algorithm is its execution time. To 
evaluate the computation complexity, all four methods were 
applied on three sequences of different resolutions (320x740px, 
640x480px, 768x576px). The execution times per frame for 
each of the four methods and three sequences are presented on 
Figure 7. An Intel Pentium 4 3.2GHz with 1GB of RAM 
running on Windows XP Pro was used and all algorithms were 
implemented in C++ using the open source library OpenCV. 
Taking into consideration both the qualitative results and the 
computational complexity of background extraction methods, 
the non-parametric modelling emerges as the one having the 
best trade-off between results quality and execution times. 
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(a)                                          (b) 

 
(c)                                           (d) 

 
(e)    (f) 

 
Figure 6: a) Original image b) Moving objects c) Mixture of 
Gaussians mask d) Bayes algorithm mask e) Lluis-Miralles-

Bastidas mask f) Non-parametric model mask. 
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Figure 7: Background extraction methods execution times 
 

 
 Figure 8: Screenshot from the Manual Marking tool 

In order to analyse the results acquired by the system, ground 
truth data had to be made available. For the airport prototype, 
tests have been conducted using cars equipped with GPS 
devices. For the tunnel prototype on the other hand, the ground 
truth data was collected by viewing image sequences through a 
specially developed manual marking tool (Figure 8), which 
allows the user to specify the correct position of the moving 
targets. The ground truth data has been correlated with the 
system results and then inserted into a database, along with 
other information such as weather conditions. A test analysis 
tool has also been implemented in order to display various 
statistics that can be acquired by querying the database. 
 
This test analysis tool was used in order to provide qualitative 
comparison of the two operation modes of the system, the grid 
and map fusion modes. A very crucial statistic that is suitable 
for this kind of evaluation is the absence error. Its significance 
lays on the fact that a high value of this statistic means that the 
system is prone to be lead to wrong conclusions with severe 
consequences, such as failing to identify an emergency situation. 
As it can be seen on Figure 9 the absence error appears more 
rarely than the other two types of errors (presence and position) 
for both modes. Especially in the map fusion mode, this statistic 
is even lower, achieving half the value of the one acquired from 
the grid mode. 
 
Although the map fusion method appears to provide more 
accurate results, there are other areas where the grid mode 
shows better performance, such as the utilisation of less 
bandwidth. The volume of the data transmitted by each ATU at 
every frame circle for grid fusion as measured for the prototype 
applications was 1Kbyte/frame while for the map fusion mode 
it was measured at 8Kbyte/frame. 
 
Another characteristic of the two methods that is worth 
mentioning is the execution times they achieve, both for the 
ATUs and the SDF. As shown in Figure 10, the grid mode is 
more intensive for the ATUs while the map fusion mode evokes 
bigger execution times at the SDF server. In other words, the 
choice of operation mode is a complex decision that should be 
based on several factors, such as the network capabilities, the 
available computation power of the SDF server unit and the 
total number of ATUs used on the particular configuration of 
the system.  
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603

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



 

SDF map fusion
45.184562ms

SDF grid 
14.260328ms

ATU map fusion 
43.56174ms

ATU grid 
73.923166ms

grid vs map fusion mode times

 
 

Figure 10: ATU and SDF execution times for both modes 
 
 

7. CONCLUSIONS 

This paper presented an automated solution for visual traffic 
monitoring based on a network of distributed tracking units. 
The system can be easily adjusted and parameterised in order to 
be used in several traffic monitoring applications, as it was built 
based on results acquired from two diverse pilot installations. 
The first prototype, installed at an airport APRON, was using 
an outdoor scene with large field of view while the second 
prototype, installed in a highway tunnel, was using an indoors 
scene with smaller distances and more occlusions. The results 
presented were focused on the two most important modules of 
the system, the background extraction method and the data 
fusion technique. After both qualitative and quantitative 
evaluation of multiple alternatives, the non-parametric 
modelling method was chosen as the best solution for the 
system, regarding the background extraction module. On the 
other hand, both the data fusion techniques tested showed 
satisfying behaviour under different situations and the final 
choice between the two should depend on the specific 
application demands and infrastructure. An interesting future 
extension is to take advantage of the low bandwidth output of 
the SDF server in order to create a 3D synthetic representation 
of the scene under surveillance, which could be rendered at 
remote 3D displays. 
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