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ABSTRACT: 
 
Airborne laser scanning (ALS) is increasingly becoming a standard method for the collection of dense elevation models, especially 
in 3D urban mapping. However, automation in processing of ALS point-clouds involves handling huge datasets, irregular point 
distribution, multiple views, and relatively low textured surfaces. Since raster data structure is the most commonly used data 
representation method and is relatively easy to store and process, there comes a need to convert the ALS point clouds into raster data 
format. Since the ALS point clouds are rarely at the same location as the centre of the discretization grid, approximation is therefore 
required. A simple and most often used method is selecting a known point value to represent the grid. Such a point-to- point 
transformation often leads to serious information loss. Transformation of the ALS point clouds to grid is known as a special case of 
the change of support, because it changes the data volume from point to area. In this paper, we present block Kriging to model this 
kind of change of support towards rasterization of the ALS point clouds. The mathematic and algorithmic formulations are 
illustrated. Results from the UW campus show that the proposed method can better preserve the information in the ALS point clouds 
than the point-to-point transformation. Quality assessment is designed and conducted to evaluate the performance of block Kriging. 
Detailed error analysis is also provided to illustrate the accuracy of the proposed method. 
 
 

1. INTRODUCTION 

Airborne laser scanning (ALS) or light detection and ranging 
(LIDAR) is a rapidly emerging technology in photogrammetry, 
remote sensing, surveying and mapping communities, which 
provides high accurate Earth’s surface contour information for 
the generation of digital elevation models (DEMs), three-
dimensional (3D) city models, and 3D vegetation mapping 
(Ackermann, 1999; Baltsavias, 1999; Wehr and Lohr, 1999; 
Haala, and Brenner, 1999; Shan, and Sampath, 2005; Koch et 
al., 2006). A typical ALS system consists of a platform (e. g., a 
helicopter or an aircraft) and an integrated sensor system 
including a laser scanner, a Global Positioning System (GPS) 
receiver, and an inertial measurement unit (IMU). Raw ALS 
data acquired by an ALS system is usually characterized as a 
set of sub-randomly distributed points in three-dimensional (3D) 
space, called 3D point clouds, with the x, y coordinates 
specifying the geographical location and the z coordinate the 
elevation. Recently, many methods have been proposed to use 
the data acquired by the ALS system to generate dense digital 
elevation models (DEMs) (Brovelli and Cannata, 2002; Sithole 
and Vosselman, 2004; Ma, 2005).  
 
Generally, ALS data are represented with three basic data 
structures: point clouds, raster models, and triangulated 
irregular network (TIN). Point clouds contain all the original 
information, but the data volume is very huge and this makes 
the processing and application of ALS data difficult. While TIN 
is more flexible and fewer point is needed to be stored to 
present the terrain, it is not suitable for information extraction.  
Compared to the point clouds and TIN, raster models are the 
most common data representation method and are relatively 
easy to store and process. Moreover, most of the existing digital 
image processing algorithms can be used for raster data 

processing. To this end, there comes a need to convert the ALS 
point clouds into raster data format.  
 
Although ALS enables point sampling at very small separation 
distances, subsequent prediction from points to a grid (altitude 
matrix) is subject to much uncertainty. This research focuses on 
the use of Kriging, an optimal technique for unbiased spatial 
prediction, to derive a digital surface model (DSM) from ALS 
point clouds. Although ordinary Kriging and universal Kriging 
have been used for this purpose (Stein, 1999), there is no 
systemic investigation on the effects of terrain morphology, 
sampling density, and different Kriging techniques for ALS 
point clouds on the accuracy of interpolated heights in a raster 
DSM. This research will focuses on this issue. As shown in 
Figure 1, irregularly distributed point clouds (left) are 
interpolated into gird (right).  
 

                          
 

Figure 1.  Rasterizing ALS points 
 
 

2. BACKGROUND 

2.1 Spatial interpolation and Geostatistics  

Since the ALS point clouds are rarely at the same location as 
the centre of the discretization grid, spatial interpolation should 
be used. It is a procedure of estimating the value of a field 
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variable at unsampled sites within the area covered by sample 
locations. Normally, three kinds of approximation are often 
used. (1) If there is only one point in one grid, then the point is 
used to represent the value of the grid. (2) If more than one 
point in one grid, the average value of the points is used, or the 
median, maximum, or minimum one is chosen. (3) If no data 
point is in the grid, the nearest point to the grid centre is used. 
In conclusion, the above methods all use the value of a certain 
point to represent the grid of interest. This scheme usually leads 
to part of the natural dispersion not reflected by the data, and 
causes information loss. In order to better represent the data, 
geostatistic approach for spatial interpolation is considered by 
modelling the spatial correlation among the data points in a 
certain neighbourhood. 
 
A fundamental assumption for geostatistical methods is that any 
two locations that are a similar distance and direction from each 
other should have a similar difference squared. This relationship 
is called stationary. If the spatial process is isotropy, spatial 
autocorrelation may depend only on the distance between two 
locations. The rate at which the correlation decays can be 
expressed as a function of distance. If the process is second 
order stationary, the covariance between any two random errors 
depends only on the distance and direction that separates them, 
not their exact locations. Semivariogram is a common tool to 
capture the second-moment structure of spatial data. It describes 
the variability of two locations of the data separated by a 
distance h (Oliver et al., 2005):  
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Where γ(s ,h) is the semivariogram, and Z(s) is the data value at 
location s. 
 
Wallace and Marsh (2005) used geostatistics to extract 
measures that characterize the spatial structure of vegetated 
landscapes from satellite image for mapping endangered 
Sonoran pronghorn habitat. They use variogram parameters to 
discriminate between different species-specific vegetation 
associations. Woolard and Colby (2002) used DEM generated 
from ALS data and spatial statistics to better understand dune 
characterization at a series of spatial resolutions. 
 
Digital images are rich in data, but in many instances they are 
so complex as to require spatial filtering to distinguish the 
structures in them and facilitate interpretation. The filtering can 
be done geostatistically by Kriging analysis. It proceeds in two 
stages. The first involves modeling the correlation structure in 
an image by decomposing the variogram into independent 
spatial components. The second takes each component in turn 
and kriges it, thereby filtering it from the others.  
 
In Lloyd and Atkinson (2002), inverse distance weighting, 
ordinary Kriging and Kriging with a trend model are assessed 
for the construction of DSMs from ALS data. Factorial Kriging 
is a geostatistical technique that allows the filtering of spatial 
components identified from nested variograms. 
 
2.2 Block Kriging 

The elevation of an area of interest (AOI) D can be modeled as 
the random field {Z(s): s ∈ D ⊂ R2}. The ALS point clouds 
covering the AOI can be considered as the collection of 
independent observations at location s = {s1, …sn } on the 

random field, and denotes by the data vector, Z(s) = {Z(s1), …, 
Z(sn)}. 
 
Raster representation of the random field means to lattice the 
continuous domain B and then calculate a typical elevation for 
each grid (pixel). Let the region of a given pixel be B and the 
corresponding area be |B|. The elevation of the pixel can be 
predicted by calculating the average value of the random field 
in B: 
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Since the exact value of Z(B) cannot be calculate directly, we 
can only predict Z(B) using the observed data. Therefore, a 
window is set up around the grid B, raw data points 
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Then, the window B are used to predict Z(B). With block 
Kriging predictor:  
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where λk are chosen to minimize the mean-squared prediction 
error between p(Z,Z(B)) and real, unknown elevation of B: 
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 Under this circumstance, p(Z,Z(B)) is an unbiased prediction of  
Z(B), the optimal weights {λk} can be obtained by:  
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 where the elements of the vector σ(B, s)  are Cov[Z(B), Z(sk)].  
By discrentizing B into points, {µj}, the point to block 
covariance can be approximated using 
 
 

                   (7) ∑
=

≈
n

j
j suCNsZBZCov

1

' ),(/1)](),([

 
Where ∑ is the matrix composed by the covariance of every 
two observed points. Due to the autocorrelation of spatial 
process, the elevation values in a small region always have a 
constant mean u(s), the covariance between observations Z(si), 
Z(sj) is: 
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As shown in figure 2, block Kriging is a method which uses the 
value of a block to represent the value of the grid. 
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Figure 2.  Figure placement and numbering. 
 
 
3. OUR METHOD 

3.1 Study area and data 

The raw ALS dataset covered the main campus of the 
University of Waterloo (UW), Waterloo, Ontario was acquired 
by the Airborne Laser Terrain Mapper (ALTM) manufactured 
by Optech (http://www.optech.ca/) on March 11, 2006. The 
average flying height was 1,200 m above ground level and the 
flying speed was 66.9 m per second. The scan angle is 20º. The 
desired resolution is 0.908 m. The raw data contain more than 
seven millions point clouds.  
 
A subset of the raw data (64 m by 64 m) is used in this study. It 
contains 5280 points. So, the point density in the scene is 1.28 
point/m2. Figure 3 shows the study area by Orthoimage which is 
part of the UW main campus. This area was selected since it 
offers an ideal site for studying the effectiveness of selected 
spatial statistics approach: it contains different kinds of objects 
such as trees, bare ground, buildings, and parking lots. Figure 4 
shows the raw ALTM data point of the study area. It is shown 
that the point density is not uniformly distributed in the whole 
study area. The point density in the left lower part is bigger than 
other area. Figure 3 shows that the lower left of the study area 
was covered by trees. So the higher density was due to the 
multi-return from trees. 
 

 
 

Figure 3.  Orthoimage of the study area – UW main campus. 
 
3.2 Exploratory data analysis  

The first stage of Kriging requires a preliminary analysis of the 
raw data to determine which type of Kriging should be 

employed. The histogram shown in Figure 5 illustrates the 
distribution of the height values used in this investigation. The 
histogram displays a slightly skewed towards low elevations. So 
the distribution of the height is fairly normal.  
 
Semivariogram is a measurement of the spatial autocorrelation 
between the data point. As the distance between two data points 
increases, the value of the semivariogarm increases accordingly. 
When the distance reaches a certain value, the value of the 
semivariogram will increase very slowly, and not exceed a 
certain value. This certain value is called range. Its range is a 
measure of the distance threshold under which the data is 
correlated.  

 
Figure 4.  Raw ALTM points. 

 
By measuring the distance between two locations and plotting 
the difference squared between the elevation values at locations, 
a semivariogram cloud is created. Shown in Figure 6, the x-axis 
is the distance between the locations, and on the y-axis is the 
difference of their elevation squared. Each dot in the 
semivariogram represents a pair of locations, not the individual 
locations on the map. We can see clearly from the 
semivariogram that in a distance of 25 m, the autocorrelation 
between the elevations are gradually decreased. So the range of 
the semivariogram is 25 m. 
 

 
 

Figure 5.  Histogram of elevation. 
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Input: raw data points (x, y, z)  n*3, 
total grid number N, grid size, 
distance threshold 

 

For grid i, find out the index of point in 
it and the index of point in the 

corresponding window 

no point in the grid? 

yes 

Figure 6.  Semivariogram of elevation. 
 
3.3 Block size and distance threshold 

In the exploratory data analysis, the range of the semivariogram 
of the raw ALS data points was already estimated. It is 25 m, 
that’s to say if the distance between two points exceeds 25 m, 
there should be no spatial autocorrelation between them. So 
when the elevation of a gird is estimated, only the data points in 
the distance of 25 m should be considered.  
 
The block size is another important parameter for rasterizing the 
raw ALS point clouds. If small block size is used, then the 
result will be more concise. The total number of point cloud in 
the study area (64 m by 64 m) is 5280, so the point density is 
1.23 points/m2. On average, there is about one point in every 
square meter. In block Kriging, the covariance between the data 
points in the block and the points in the distance threshold are 
taken into account. Only when at least one point resides in the 
block, block Kriging could be used. In this study, the block 
sizes of 1 m × 1 m, 2 m × 2 m, 4 m × 4 m, are used, respectively. 
 
3.4 Block Kriging 

Figure 7 demonstrated the step by step procedure to compute 
the elevation of every gird. The input includes the raw ALS 
data point, the gird size, and the distance threshold. The 
distance threshold is used as a window for estimation. Only the 
data point in the window will be used for calculation. Then for 
every grid, First, calculate the covariance every two points the 
window. Second, calculate the covariance between the gird and 
every point. Third, the elevation is calculated by block Kriging 
by Equations (4) and (6) mentioned in Section 2. 
 
 

4. RESULTS AND ACCURACY ASSESSMENT 

Table 1 shows the error of ordinary Kriging and block Kriging 
in different block sizes. First, we could see that block Kriging 
did a much better job than ordinary Kriging. The standard error 
of block Kirging is less than 1 m, but the standard error of 
ordinary Kriging is about 4 m, which is unacceptable. 
 

 
 

Figure 7.  Flow chart of block Kriging computation. 
 
 

Block size Min Median Mean Max 

1 m 0.2098 0.3320 0.3353 0.7549 
2 m 0.1631 0.2728 0.2796 0.6845 
4 m 0.1274 0.1980 0.2169 0.5902 

Ordinary 
Kriging 3.778 3.906 3.909 4.333 

 
Table 1.  Error assessment of different block sizes 

 
Secondly, for block Kriging in different block size, the error is 
different. As the block size increases from 1 m to 2 m and 4 m, 
the mean standard error decrease from 0.33 to 0.27 and 0.21. 
This is because when bigger block size is used, more data 
points are considered, the estimated results are more likely to 
represent the true value. This could be further demonstrated in 
Figures 8 and 10, they are the 3D graph block Kriging. The 
block size is 1m by 1m and 2 m by 2 m respectively. As we can 
see, when the block size is 1 m, the result contains quite a lot of 
noise. When the block size increases to 2 m, the result is quite 
good. 
 
 

Find a nearest point from the window no 

1 calculate the covariance every two 
points the window 
2 calculate the covariance between the 
gird and every point 

i<N 

Calculate the Kriging value  

yes

no 

Output: the Kriging value 
for every gird
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Figure 8.  Block Kriging with a block size of 1 m. 
 
 

 
 

Figure 9. Block Kriging with a block size of 2 m. 
 

Figures 9 and 10 show the Kriging results and the standard error 
in raster format, respectively. In Figure 10, each shaded square 
is centred at the intersection of the gird. Each grid is shaded 
with a different grey tone according to the elevation value 
estimated at that location. When the elevation is high, the 
colour is darker. From this figure, we could see Kriging could 
restore the scene when the change in elevation is continuous. 
But at the building edge, the boundary is blurred. That is due to 
the spatial averaging. Figure 11 is the corresponding standard 
error of Figure 10.  This map allows evaluating the precision of 
estimation at any part of the region. The whiter squares 
correspond to areas with smaller error. When compared this 
error diagram with the raw data points shown in figure 4, the 
relationship can be easily found. The areas with high point 
density correspond to areas with low estimation errors. That’s 
to say, as the point density increase, the estimation error 
decrease. Big error occurs at the boundary of the whole dataset, 
this was due to the lack of data at the boundary.  
 
 

5. CONCLUSION 

This paper provides a new approach to rasterize raw ALS point 
clouds. Block Kriging is used as an interpolation method to 
estimate elevations on a regular grid using irregularly spaced 
ALS point clouds. Firstly, the spatial structure of the data is 
analyzed by considering the spatial autocorrelation between 
data points. The spatial variability of the data is integrated into 
the estimation procedure of the semivariogram. Then, the data 
points in the block and other data points nearby are modelled, 
which leads to increased precision of the estimated elevation. 

So the standard error of block Kriging is much less than 
ordinary Kriging. Moreover, as the block size increase, more 
data points are considered when doing the Kriging, the error 
decreases. At the same time, the computation time increases 
quickly. So a balance between time and error should be made.  
 

 
Figure 10. Raster representation of block Kriging of elevation 

(block size 1 m) 
 
 

 
Figure 11. Raster representation of block Kriging standard error 

(block size 1 m) 
 

Several points of the method proposed in this paper can be 
improved by further studies. For elevations at building edges, 
the change should not be continuous. So the problem about how 
to preserve edges in block Kriging needs further study. 
Moreover, the calculation time for block Kriging is quite long, 
for the dataset used in this study, it takes several minutes to do 
Kriging. A quick algorithm should be figured out for its use in 
large area.  
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