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ABSTRACT: 
 
Building boundary data are necessary for the real estate industry, 3D city models and many other applications. In this study, a novel 
approach integrated high resolution imagery and Lidar data is proposed for automatically obtaining building boundaries with precise 
geometric position and details. The high resolution images were used to directly extract the building boundaries with precise 
geometric position, our approach is focused on improving the correctness and completeness of the extracted boundaries by 
integrating Lidar data. The approach consists of four steps: Lidar data processing, building image generation, line segment extraction, 
and boundary segment selection. Firstly, the segmented building points need to be determined from raw Lidar data. Then, a building 
image is generated by processing an original image using a bounding rectangle and a buffer, which are derived from the segmented 
building points. Based on the building image and rough principal direction constraints, an algorithm is proposed to estimate the 
principal orientations of a building, which ensures the accuracy and robustness of the subsequent line segments extraction. Finally, 
an algorithm based on Lidar point density analysis and Kmeans clustering is proposed to identify accurate boundary segments from 
the extracted line segments dynamically. The experiment results demonstrated that the proposed approach determined building 
boundaries well.  
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1. INTRODUCTION 

Building boundary data are necessary for the real estate 
industry, city planning, homeland security, flood management, 
and many other applications. The extraction of building 
boundary is also a crucial and difficult step toward generating 
city models. The automatic extraction of a building boundary 
from an image has been a research issue for decades; many 
related studies have been reported. McGlone and Shufelt (1994) 
extracted building boundaries by calculating vanishing points 
using the Gaussian Sphere technique to detect horizontal and 
vertical lines. Mohan and Nevatia (1989) described an approach 
based on perceptual grouping for detecting and describing 3D 
objects in complex images and applied the method to detect and 
describe complex buildings in aerial images. Xu, et.al., (2002) 
employed a Gabor filter to eliminate noisy edges, and then used 
a Normalized Central Contour Sequence Moment to select 
regular contours. A detailed review of techniques for the 
automatic extraction of buildings from aerial images was made 
by Mayer (1999). However, a difficult problem still exists in 
automated extraction of building boundaries because it is 
almost impossible to automatically distinguish building 
boundaries from other line segments in a high accuracy only 
based on aerial imagery. Moreover, a robust solution for 
boundary extraction is needed because too much complex 
information is contained in an image, especially for a very high 
resolution image. 
 
Many studies also focused on boundary extraction by using 
Lidar point clouds. Weidner (1996) used the difference between 
DSM and DTM to determine the building outlines. Vosselman 
& Sander (2001) and Haala & Brenner (1999) used plan maps 
to support boundary extraction from Lidar points. Many related 

papers have been published (Morgan and Habib, 2002; 
Rottensteiner and Briese, 2002; Overby, et.al., 2004; 
Vosselman and Kessels, 2005; Brenner, 2005). In general, it is 
hard to obtain a detailed and geometric precise boundary only 
using Lidar point clouds considering its low spatial resolution. 
To eliminate noise effects and get building boundaries with 
precise geometric position, some researchers used the minimum 
description length (MDL) method to regularize the ragged 
building boundaries (Weidner and Forstner, 1995; Suveg and 
Vosselman, 2004). Zhang et.al.(2006) used Douglas–Peucker 
algorithm to remove noise in a footprint, then adjusted the 
building footprints based on estimated dominant directions. 
Sampath and Shan (2007) performed building boundary tracing 
by modifying a convex hull formation algorithm, then 
implemented boundary regularization by a hierarchical least 
squares solution with perpendicularity constraints. However, 
regularization quality is also dependent on the point density of 
Lidar data; and limitation of Lidar data resolution and errors in 
filtering processes may cause obvious offset and artefacts in the 
final regularized building boundary (Sampath and Shan, 2007).  
 
Although it is difficult to obtain building boundaries with 
precise geometric position using Lidar data, Lidar data is able 
to directly provide measured three-dimensional points. On the 
other hand, although very high resolution images can provide 
building boundaries with precise geometric position, the 
accuracy of automatic boundary extraction is still in a low level. 
It seems to be valuable to extract building boundaries by 
integrating very high resolution imagery and Lidar data. 
However, how to integrate the two data sources for building 
boundary extraction is still a problem; few approaches with 
technical details has been published (Rottensteiner, 2005).  
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2. METHODS 

In this study，a new approach integrating very high resolution 
imagery and Lidar data is proposed to automatically obtain 
detailed building boundaries with precise geometric position. 
The proposed approach can be proved to preserve the boundary 
details, including some tiny segments at a corner, a short 
segment. Since the boundaries with precise geometric position 
can be directly extracted from very high resolution images (e.g., 
5cm spatial resolution); our approach is focused on improving 
the correctness and completeness of the extracted boundaries by 
integrating Lidar data. This process consists of four steps: Lidar 
data processing, building image generation, line segment 
extraction, and boundary segment selection. Firstly, the 
segmented building points need to be determined from raw 
Lidar data. Secondly, a building image is generated by a 
building bounding rectangle and a building buffer. Thirdly, a 
new algorithm is proposed for determining the principal 
orientations of building boundaries based on rough principal 
orientations constraint, which ensures the accuracy and 
robustness of the subsequent line segments extraction. Finally, 
an algorithm based on Lidar point density analysis and Kmeans 
clustering is proposed to provide a dynamic way to accurately 
identify boundary segments from non-boundary segments.  
 
The proposed approach is focused on building boundary 
extraction and can be used in 3D building model reconstruction 
and 2D building digital line graph generation. Stereo aerial 
images should be selected for 3D building reconstruction and 
the extracted boundaries will be the basic elements of the 
subsequent processes such as line segments matching and 3D 
line segments generation. While an orthoimage would be more 
appropriate than an aerial stereo pair for getting a 2D digital 
line graph. Aerial stereo, orthoimage, or some other images can 
be processed by using a little different strategy of data 
registration as declared in the next section.  
 
2.1 Data pre-processing (Lidar data processing) 

In order to obtain the segmented building points from raw Lidar 
data, the first process is usually to separate the ground points 
from non-ground points, and then identify the building points 
from non-ground points. Numerous algorithms have been 
developed to separate ground points from non-ground points. 
Sithole and Vosselman (2004) made a comparative study of 
eight filters and identified that all filters perform well in smooth 
rural landscapes, but all of them produce errors in complex 
urban areas and rough terrain covered by vegetation. They also 
pointed out that the filters estimating local surfaces were found 
to perform best. So the linear prediction algorithm proposed by 
Kraus and Pfeifer (1998) is used for deriving bare DEM from 
raw Lidar data. Comparing the bare DEM and the raw Lidar 
data, non-ground points can be identified.  
In a dataset that contains only non-ground points, building 
points need to be separated from non-building data (mainly 
vegetation). The region-growing algorithm based on a plane-
fitting technique proposed by Zhang, et.al.(2006) is used. In this 
process, areas of non-ground points are firstly found and 
labelled by connecting the eight neighbours of a cell. For each 
non-ground area, inside and boundary points are identified. 
Then non-ground points for each area are segmented by region 
growing based on a plane-fitting technique. Finally, the 
segmented patches for non-building objects are removed. The 
remaining patches are identified as building patches. It is 
reported that the omission and commission errors of determined 
building are 10% and 2% respectively using this approach 

 
2.2 Building image generation 

In order to retrieve the interested building features from a very 
high resolution image, a building image is firstly generated to 
reduce the complexity of processes. In a building image, only 
one building is covered and non-building features are removed. 
A building image is generated by 3 steps as follows. 
 

(a)aerial image 
 

(b) project Lidar data onto (a)

(c) BR(white) from Lidar data (d) cut (a) using the BR 

(e) a buffer from Lidar data (f) a building image  
 

Figure 1. Steps of a building image generation 
 
Step 1, Data overlay 
In this step, images from different sensors can be processed 
using different strategies of data registration for different 
specific applications. An aerial stereo with orientation 
parameters is used in this study, Lidar points are directly 
projected onto the aerial stereo by collinearity equation. If 
necessary, the orientation parameters can be refined by block 
bundle adjustment. If an orthoimage is used, it can be directly 
overlain by Lidar data, as both spatial references are at the same 
coordinate system. For an image with unknown orientation 
parameters, the overlay between the image and Lidar data can 
be done by a manual co-registration operation. Figure 1 (a) is an 
oriented aerial image, Figure 1 (b) are the results by projecting 
the pre-processed Lidar data onto the aerial image using 
collinearity equation. 
Step 2, Image cutting by a bounding rectangle (BR) 
After a convex hull is constructed based on the projected Lidar 
points in 1 (b), a bounding rectangle (BR) of a building can be 
created based on the convex hull which is shown as a white 
rectangle on the image in 1 (c). The BR should be enlarged with 
a threshold to ensure all the boundaries of a building in the 
aerial image can be fully covered. The result cut from the aerial 
image in 1 (a) using the BR is shown in 1 (d). 
 
Step 3, Image filtered by a buffering zone 
A raster image is generated by interpolating the projected Lidar 
data in Figure 1 (b), and then a buffering image can be created 
shown in Figure 1(e). Figure 1(f) is the result by filtering the 
Figure 1(d) using the buffering zone, in which non-building 
features are removed from the image to get a building image. 
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As a building image is only generated for one building, the 
complexity of image processes is largely reduced. In the 
processes, thresholds are needed for creating a BR and a 
buffering zone determined based on the average point spacing 
of Lidar data, the spatial resolution of imagery and the accuracy 
of data registration. For a building image generation, the top-
left coordinates of each building image need to be properly 
recorded, so that the line segments extracted from a building 
image can be correctly transformed onto the original image. 
 
2.3 Line segments extraction 

2.3.1 Principal orientation determination 

Most of buildings are rectangular buildings, whose boundaries 
have perpendicular structures with two rectilinear axes. These 
two perpendicular axes have the most dominant contexture and 
can be treated as two major principal axes. The dominant 
orientations can be determined from the angle values statistics 
of the line segments. Rau and Chen (2003) proposed a straight 
line detecting method using Hough transform with principal 
axis analysis to speed up the extraction of straight lines and 
improve the accuracy of detecting lines, in which the key issue 
is to obtain the principal orientations of a building using Hough 
transformation in an image space before line segments 
extraction. A few limitations still exist in this method. One of 
the limits shows its sensitive to the principal orientations 
determination of a building in an image analysis. In this process, 
wrong principal orientations may be obtained, especially when 
poor or high repeatedly textures are appeared in the image. 
Another limit occurs at threshold selection, which is needed for 
filtering counting values in accumulative array from a Hough 
transformation to construct an angle-count histogram. The third 
limit is hard to process an image with complicated and irregular 
building layouts. 
In this study, an algorithm is proposed for determining the 
principal orientations of a building. The principal orientations 
can be accurately and robustly determined based on the 
building image and rough principal orientations constraints. The 
building image is generated, and the rough principal 
orientations of a building can be obtained by analyzing the 
segmented building Lidar points. The proposed algorithm 
consists of two steps: rough principal orientation estimation and 
principal orientation determination. 
 (1)Rough principal orientation estimation 
Based on the segmented building points, rough principal 
orientations of a building can be estimated by analyzing the 
Lidar points belonging to the building. A least square approach 
proposed by Chaudhuri and Samal (2007) is usually used to 
determine the directions of major and minor axes of discrete 
points. The method is used to determine the principal 
orientations of a building in this study. Considering the various 
geometric shapes of the buildings, a value range is constructed 
for a rough principal orientation by a threshold, which replaces 
the deterministic value of rough principal orientation in the 
following processes. In most cases, the threshold value is set as 
5. 
(2) Principal orientation determination 
The principle directions are determined by finding maximum 
values in accumulative array from a Hough transformation 
which fall within estimated ranges of rough principle directions. 
There are only two principle directions for a building. Based on 
the rough principal orientation constraints, principal orientation 
determination consists of the following 7 steps. 
 
Step a: Selecting a building image; 

Step b: Applying Hough transformation on the image, and 
finding the maximum value M in the whole accumulative array; 
Step c: Setting a threshold T=M*t (the initial value of t is set to 
0.9), and keeping those cells in accumulative array with value 
greater than the threshold T; 
Step d: Selecting the range of one rough principle direction; 
Step e: Adding the counting numbers with the same θ value in 
the range. If all the accumulative values equal 0, then 
decreasing the value of t and going back to step c, if t is greater 
than 0; if t equals 0, the whole processing failed. If some 
accumulative values are greater than 0, go to next step; 
Step f: Selecting the range of the other rough principle direction 
and go to step e. If both rough principle directions are processed, 
go to step g. 
Step g: Detecting a peak in each of the two ranges. Each peak 
refers to a principal orientation of a building. 
 
The advantages of the proposed algorithm are in three points. (1) 
Based on the building image, the principal orientation 
determination on any complicated building layouts can be 
easily decomposed into some sub-processes on each individual 
building, which make the principal orientation determination on 
any complex images become possible. (2) To get the principal 
orientations of an image, the peak detection just needs to be 
performed in the specific range of a histogram based on rough 
principal orientations constraint by the proposed algorithm, 
which can improve the robustness of the principal orientation 
determination. (3) The automation degree of principal 
orientations determination is also enhanced because the 
threshold of accumulative array can be determined in self-
adaptive way.  
 
2.3.2 Line segments extraction 

Having compared the most existing edge detectors, Edison 
detector is chosen to perform edge detection. Then the line 
segments are extracted using Hough transformation with 
principal orientations constraint. The line segments extraction 
becomes accurate and robust, because peak detection in the 
accumulative array just needs to be performed on the principal 
orientations. Since the number of line segments in an image is 
unknown, it is necessary to specify conditions to terminate an 
algorithm. A dynamic termination condition usually works 
better than a static one. Adaptive Cluster Detection (ACD) 
algorithm is a classical dynamic method to detect straight lines 
based on Hough Transform. In this study, a modified ACD 
algorithm is proposed by setting the searching priority for peak 
detection according to the principal orientations; the other 
processes are same as ACD algorithm. The thresholds of the 
minimum length of line segment and of the minimum distance 
between line segments are 20 and 20, respectively. Based on the 
determined principal orientations, line segments extraction 
becomes more accurate and robust. A few line segments with 
weak signals (but always important) on principal orientation 
can be extracted robustly with the principal orientations 
constraint, which may be missed by traditional ACD algorithm 
because of ambiguity in peak detection. It avoids missing 
boundary details.  
 
2.4 Boundary segments selection 

In this section, the extracted line segments will be automatically 
separated into two sets: boundary segments and non-boundary 
segments. Although the principal orientations constraint is used 
during the line segments extraction, there still exist many non-
boundary segments, especially the line segments of the building 
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rooftops which have the same directions as the boundaries. To 
remove the non-boundary segments, some solutions based on 

Lidar data were proposed 

 

 
(a) a building image 

 

(b) the extracted segments 

 

 
(c) two boxes for each segment

 

(d) the selected segment 
 

Figure 2. Accurate boundary segments selected by our algorithm 
 

 (Schenk & Csatho, 2002; Ma, 2004). The common idea of 
these solutions is to get approximate building boundaries from 
Lidar data, then remove the line segments far from the 
approximate boundaries. The limitations of these solutions are 
mainly in two points. Firstly, the quality of the approximate 
boundaries determined by Lidar data is uncertain, which is 
largely influenced by the quality of Lidar data filtering 
processing. Secondly, how to dynamically select the optimal 
boundaries in a local region is a problem. Sohn and Sampath 
(2003) proposed a different boundary filtering solution on 
IKONOS with Lidar data. However, compared to IKONOS, 
there exist much more possible object segments in a local 
region extracted from very high resolution imagery. In order to 
get an accurate boundary from a very high resolution image, a 
rigor selection rule should be used. An algorithm based on 
Lidar point density analysis and Kmeans clustering is proposed 
to ensure the accuracy of the selected boundary segments in a 
very high resolution image in this study. Figure 2(a) is a 
building image, the extracted line segments in a local region is 
shown in Figure 2(b). Based on the extracted line segments, the 
boundary segments selection algorithm consists of 4 steps as 
follows. 

 
dk means the difference in Lidar point density of a segment. The 
Kmeans clustering algorithm with K=2 is applied to divide the 
data set into two sets, a set with big difference values and a set 
with small difference values. The segments with the data set of 
small difference values will be eliminated. The remaining line 
segments are identifies as the boundary segments. The selected 
boundary segment is demonstrated in Figure 2(d).  
 

3. EVALUATION  

3.1 Data set 

In this study, both aerial stereo pairs and orthoimage can be 
used to test the effect of our approach. Comparing with an 
aerial image, an orthoimage can contain a much larger area and 
more buildings. So a true orthoimage are used to test the effect 
and applicability of our approach shown in Figure 3(a). The 
image is in a size of 7300*8300 pixels, which spatial resolution 
is 5cm. Lidar data in same area have average point spacing of 
1.1m. The image contains a large area and more buildings with 
different orientations, different structures, and different texture 
conditions. As shown in  Figure 3(a), the buildings have 
different orientations, and most of buildings have complex 
geometric shapes. Image texture conditions are also different, 
including simple texture, highly repeated texture, and complex 
texture. The complex texture conditions are formed because the 
trees are so close to the buildings.  

Step 1: Two rectangle boxes with a certain width (3-5 times 
Lidar points spacing) are generated along two orthogonal 
directions of a boundary segment. Two rectangle boxes are 
created for each segment, as shown in Figure 2 (c).  
Step 2: If no Lidar points can be found in both boxes, the line 
segment is removed because the line segment is far from a 
building. If Lidar points are found in both boxes and the density 
values of the two boxes almost equal, the line segment is 
removed because the line segment surrounded by Lidar points 
should locate on the rooftops. The remaining line segments are 
considered as possible boundary segments. The following 
processes are to get the accurate boundary segments from the 
possible object segments. 

 
3.2 Experimental results and discussion 

The line segment extraction algorithm proposed in this study is 
an accurate and robust method for peak detection on 
accumulative space of Hough transformation. It is compared 
with a classical peak detection method based on maximum 
value, max-value method. Figure 3(b) and (c) are the results of 
line segments extraction by max-value method and our 
algorithm, respectively. The results show that the orientations 
of all segments in Figure 3(c) are almost coincided with the 
principle orientations of the building while segments in Figure 
3(b) are not. It also shows that almost all important boundaries 
extracted by max-value method are extracted by our algorithm, 
but a few important boundaries extracted by our algorithm 
successfully are not obtained by the max-value method. It is 
shown in detail by label A, B in the rectangle box in Figure 3(c). 
Compared to the max-value method, our algorithm performs 
better in avoiding missing boundary details. The reason that 
more detailed boundary segments can be detected by our 
algorithm is that peak detection on accumulative space of 
Hough transformation with principal orientation constraint 

Step 3: Grouping the remaining line segments. As the line 
segments are extracted with principal orientations constraint, 
the remaining line segments have two orientations and are 
grouped according to their angles and distances. Three parallel 
object segments in one group can be found in Figure 2 (c). 
Step 4: Two rectangle boxes are also generated for each 
segment in Figure 2 (c). The difference in Lidar point density of 
the two boxes is calculated for each segment. The basic 
principle is that the difference in Lidar point density of an 
accurate boundary is larger than that of an inaccurate boundary. 
A data set of the difference in Lidar point density in a group is 
defined as formula 1.  
 

 { }| || 0,...,kL d k m= =        (1) 

696

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



become more robust, which makes the boundaries with weak 
signals in image can be robustly detected.  
To demonstrate the effectiveness of the proposed algorithm for 
boundary segments selection, it is compared with the result of 
line segments extraction. Figure 3(d) are the results of boundary 
segments selected from Figure 3 (c). Comparing Figure 3(c) and 
(d), the number of line segments reduces from 4141 to 779, 
3362 line segments (81%) have been removed by our selection 
algorithm. The final boundaries in Figure 3(d) are overlain with 
the original image, which shows that all important segments of 
building boundaries are kept; most of irrelative line segments 
(mainly line segments of the rooftops) have been removed. And 
the determined boundaries are detailed and have a highly 
geometric precision. 
To evaluate the quality of the boundaries quantitatively, the 
correctness of the boundaries are estimated. We check the 
distance and angle between a boundary segment and its 
corresponding segment in the original image. If the angle is 
smaller than 3 degrees and the distance is smaller than 5 pixels, 
then the boundary segment is considered as a true one; 
otherwise, it is considered as a wrong one. There are 779 
boundary segments in Figure 3(d), 709 true boundaries are 
found according to the evaluation criterion. To evaluate the 
quality of the boundaries quantitatively, the correctness of the 
boundaries are estimated. We check the distance and angle 
between a boundary segment and its corresponding segment in 
the original image. If the angle is smaller than 3 degrees and the 
distance is smaller than 5 pixels, then the boundary segment is 
considered as a true one; otherwise, it is considered as a wrong 
one. There are 779 boundary segments in Figure 3(d), 709 true 
boundaries are found according to the evaluation criterion. Only 
70 boundaries are determined wrongly by our approach. The 
correctness of the determined boundaries is 91%. By 
overlapping the final boundaries, the original image, and Lidar 
data, it can be found that almost all wrong boundaries are kept 
wrongly because of a local jump of density of Lidar data, and 
most of the wrong boundaries lie in the rooftop of building. 
 

4. CONCLUSIONS 

To automatically obtain detailed building boundaries with 
precise geometric position, a new approach integrated very high 
resolution imagery and Lidar data is proposed in this study. The 
approach consists of a sequence of four steps: pre-processing, 
building image generation, line segments extraction, and 
boundary segments selection. Firstly, the segmented building 
points need to be determined from raw Lidar data. Then, a 
building image is generated by processing an original image 
using a bounding rectangle and a buffering zone, which are 
derived from the segmented building points. Based on the 
building image and rough principal orientations constraints, an 
algorithm is proposed for estimating the principal orientations 
of a building, which ensures the accuracy and robustness of the 
subsequent line segments extraction. Finally, an algorithm 
based on Lidar point density analysis and Kmeans clustering is 
proposed to identify accurate boundary segments from the 
extracted line segments dynamically. All these strategies ensure 
a high correctness (91%) of the determined boundaries. And the 
boundaries are detailed and have a highly geometric precision. 
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(a) true orthoimage and the pre-processed Lidar data 

(b) line segments extracted by max-value method (c) line segments extracted by our algorithm 

 
(d) boundary segments selected from (c)  

  Figure 3. Building boundary determination by a high resolution image(5cm) and Lidar data 

A 

B 
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