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ABSTRACT: 
 
This paper presents a new method for building detection and reconstruction from aerial images. In our approach, we extract the 
useful building location information from the generated disparity map to segment the interested objects and consequently reduce 
unnecessary line segments extracted in low level feature extraction step. Hypothesis selection is carried out by using undirected 
graph, in which close cycles represent complete rooftops hypotheses. By using undirected graph, hypothesis selection becomes a 
simple graph search for close cycles. This significantly improves the performance of the system over the traditional hypothesis 
selection methods. We test the proposed method with the synthetic images generated from Avenches dataset of Ascona aerial images. 
The experiment result shows that our method can be efficiently used for the task of building detection and reconstruction from aerial 
images. 
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1. INTRODUCTION 

The building detection and reconstruction from aerial images is 
one of the challenge tasks in computer vision. It has been used 
widely in various applications including traditional applications 
such as cartography and photo-interpretation and recent 
application including mission planning, urban planning, 
computer graphics and virtual reality. There are two main 
problems needed to solve in any buildings detection approach. 
The interested objects need to be segmented from the 
background, and the fragmented line segments of the interested 
objects should be grouped to human-made structures. These 
tasks are very challenging, because the objects of interest could 
be partly occluded by the presence of vegetation, shadows, road 
and other objects. Moreover, lines and corners of object are 
often fragmented and missed due to the typical failures of low 
level features extraction. 
 
Early approaches tried to use a singe image only (Huertas, 
1988; Lin, 1998). Since the inference of 3D information from 
one image is very difficult and there are still some ambiguities 
in the detected buildings that can be only resolved by feature 
matching in multiple images, the application of the single-
image approach is very limited. In this context, most of the 
recent work in this area has focused on the multiple-view 
analysis (Fischer, 1998;  Noronha, 2001; Collins, 1998). Mohan 
and Nevatia (Mohan, 1989) proposed an approach for detecting 
and describing buildings in aerial image using perceptual 
grouping. They demonstrated the usefulness of the structural 
relationships called collated features which can be explored by 
perceptual organization in complex image analysis. All 
reasonable feature groupings are first detected and the 
candidates are then selected by a constraint satisfaction network. 
But this approach involves all extracted line segments in the 
image. Consequently it costs a big computational effort. It also 
depends on the accurate extraction of line segments. 

Some approaches such as Lin (Lin, 1998) and Noronha 
(Noronha, 2001) used hypothesis and verification paradigm 
based on perceptual grouping. Hypotheses are generated by a 
hierarchical perceptual grouping process and verified by the 
evidence of visible walls and expected shadows. But the system 
needs to make several decisions in the selection and verification 
process based on simplicity and intuitive judgments. In 
monocular analysis, Jaynes (Jaynes, 1994) proposed feature 
relation graph, in which hypothesis selection takes places as a 
graph search problem. This approach improved the performance 
of hypothesis selection step. However, it is limited on 
rectangular buildings and tends to generate false hypotheses in 
complexity images. 
 
In this paper, we extract the suspected building regions in the 
disparity map generated from aerial images and utilize them to 
get the location of interested objects in the image. The 
suspected building regions are areas, where pixel values rapidly 
changes relative to the surround area. This process can reduce 
the unnecessary line segments from the low level feature 
extraction result. Also, we employ perceptual grouping to build 
collated features, which are used to generate rooftop hypotheses. 
This perceptual grouping process removes the unsatisfied line 
segments during the grouping process. Corners and line 
segments in collated features are used to build the undirected 
feature graph, in which close cycles are detected as rooftops. 
With the open connectivity rules between nodes in the graph, 
our approach can effectively detect rectilinear shape buildings. 
 
The remainder of this paper is organized as follow: an overview 
of the system is shown in Section 2. Section 3 describes the 
generation of suspected building region. In Section 4, the 
principle of low level features processing and rooftop 
hypothesis is introduced. Section 5 presents experimental 
results on an aerial image data set. Conclusions are given in 
Section 6. 
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2. SYSTEM OVERVIEW 

Figure 1 shows the main components in our system. The 
epipolar images are generated from the aerial images by 
epipolar resampling process. We obtain the disparity map 
between the epipolar pairs by stereo matching using area-based 
matching with non-parametric technique. From the disparity 
map, we generate the DEM as a 3D terrain model. The building 
location information extracted from disparity map is used to 
remove the unnecessary line segments extracted in the low level 
process. After 2D lines are generated, perceptual grouping is 
applied to the filtered line segments in order to obtain the 
structural relationship features such as parallel line segment 
pairs and U-shapes. These can be used to generate rooftop 
hypotheses. Among the generated hypothesis, the candidate 
rooftop is selected by searching close cycles in the undirected 
graph. Finally, we retrieve 3D buildings by using 3D 
triangulation for each line segment of detected rooftops. 
 
 

 
 

Figure 1.  System Overview 
 
 

3. BUILDING REGION EXTRACTION 

3.1 Stereo Matching 

The goal of stereo matching process is to find a match between 
the pixels in the first (reference) R and second (wrap) W image 
such that the pixel located at (i, j) in the R image and a pixel 
located at (i+I(i, j), j+J(i, j)) in the W image view the same 
point in object space, i.e., W(i+I(i, j), j+J(i, j)) -> R(i, j), where 
I(i, j) is horizontal disparity map, and J(i, j) is vertical disparity 
map. The index i (column index) is measured along scan lines 
and the index j (row index) is measured across scan lines. In 
this paper,  we use epipolar resampled images, and J(i, j) = 0 
for all i and j. This relation can be reduced to W(i+I(i, j), j) -> 
R(i, j). 
 
Considering the correspondence problem, there are two popular 
approaches. The first one is Normalized Cross Correlation 
(NCC) which is one of area-based matching typical metric, and 
the second one is non-parametric technique with census 
transform (Zabih, 1998). We employ the census transform, due 
to its preservation of the edges and computational simplicity. 
 

To find accurate disparity map, we employed a multi-resolution 
scheme, referred to as hierarchical, or pyramid processing. For 
each resolution scheme, the correspondence problem is solved 
by first computing census transformed image and then using 
Hamming distance correlation on the transformed image. The 
census transformation maps the local region surrounding a pixel 
to a bit string represent which pixels have lesser intensities. For 
example, in a window surrounding a pixel, if a particular pixel’s 
value is less than the centre pixel, the corresponding position in 
the bit string will be set to 1, otherwise it is set to 0. After that, 
two census transformed images will be compared using a 
similarity metric based on the Hamming distance which is the 
number of bits that differ in the two correlation window bit 
string. The Hamming distance (Banks, 1997) is summed over 
the window: 
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3.2 Suspected Building Region Extraction 

It is usually difficult to separate interested objects from 2D line 
segments collection obtained in low level features extraction. 
The boundary of interested objects, the buildings, can be partly 
occluded by vegetation, shadows, and other objects. In rooftop 
hypothesis process, these fragmented boundaries and the 
presence of roads, vehicles ... can make false hypotheses 
including unwanted rooftop and wrong shape rooftop. This 
causes not only significant computational effort in processing 
but also wrong final results. To solve this problem, the system 
should be able to detect line segments that are within or near 
buildings in the image. Here, we use suspected building regions 
which extracted from the disparity map. The suspected building 
regions are areas which pixel values changes in comparison 
with the surround area. The different of pixel values between 
suspected building region and surround areas indicates the 
different of elevation values. It indicates the existing of higher 
objects such as buildings, trees ... in those regions. In the other 
words, these regions can give us the information of where the 
buildings are located. 
 
These regions could be extracted by using a simple height 
threshold technique. Their boundaries are extracted by 
convolving the disparity map with a Laplacian-of-Gaussian 
filter then employing connected component analysis to get zero-
crossing pixels’ coordinate in the convolution output. We have 
LoG as an operator or convolution kernel defined as: 
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4. 3D ROOFTOP MODEL GENERATION 

4.1 Low Level Features Extraction 

To detect 2D lines from epipolar image, edge detection is 
carried out first and then 2D lines are formed from edges. We 
employed Canny edge detector, since it is optimal according to 
the criteria where edge is defined and comes up with thin edges. 
To obtain 2D line segment, we use Boldt algorithm (Boldt, 
1989) based on token grouping. The method extracts a basic 
line element, token, in terms of the properties of line A and 
construct 2D line using grouping process. It is efficient in 
detecting 2D lines of large structure appeared in urban image. 
 
4.2 Grouping and Filtering Processes 

Suspected building regions are used to remove line segment that 
outside or far from interested object boundaries meanwhile the 
needed line segments are still kept for later processing steps. 
 
Then, we group the closely parallel linear segments since they 
usually represent a linear structure of objects in image, like the 
border of a roof or the divider between ground terrain and 
building, by using a “folding space” between two line segments. 
If both line segments are inside the folding space, two line 
segments can be replaced by a single line which orientation is 
the longer line segment orientation and length is total length of 
two segments. After this process, each group of the closely 
overlapping and parallel line segments is represents only by one 
single line. 
 
Figure 2 showed the typical case of closely parallel linear 
segments grouping. These linear segments are or nearly parallel 
lines. So the first condition is the angle between them should be 
from 00 to 100. If two line segments are fragmented lines from 
one edge, these line segments must be close and should be 
inside a folding space created by them. 
 
The U shaped structure in Figure 3 is used to detect candidates 
for rooftop hypothesis generation. Any line segment in a set of 
parallel lines with aligned end is a U shaped structure candidate 
which is kept as input for hypothesis generation, otherwise that 
line segment will be removed. 
 

 
Figure 2. Folding space 

 

 
 

Figure 3 U-structure 

4.3 Corner Detection 

Corner is calculated as intersection of two line segments which 
their angle is from 800 to 1000 and one of them has nearest 
distance to another one. We define four types of corner. They 
are labeled as I, II, III and IV, as shown in Figure 4. Each 
corner has an attribute to indicate whether it is L-junction or T-
junction. This attribute is used to decide whether two different 
corners have a connection or not. For example, if a corner’s 
label is I and type is L-junction, it connects to any type of 
corner. However, it prefers connecting to a corner which label 
is II or IV. If that corner is T-junction, it can only connect to a 
corner which label is II or IV. This rule is used in hypothesis 
generation to build collated features. 
 
With the flexible connection between corners, our method is 
able to detect rectilinear rooftops. Figure 5 show some 
examples of corner detection, A, B, E, F, G are L-junctions 
while C, D are T-junctions. 
 
 

 
 

Figure 4. Corner labeling 
 

 
 

Figure 5. Corner detection 
 

4.4 Rooftop Hypothesis Generation 

A collated feature is a sequence of perceptually grouped corners 
and line segments. Here, collated features are constructed from 
filtered line segments and corners obtained from the filtering 
and grouping process. That reduces computational effort and 
false hypotheses. 
 
Hypotheses are formed by alternation of corners and line 
segments that form collated features. In a collated feature, two 
corners have connectivity only if they satisfy the corner relation 
condition and they are the nearest appropriate corner to each 
other. Beside, every corner connects to only one corner on each 
its line segment direction. Hypothesis generation is performed 
by constructing the feature graph. Construction of the graph can 
be seen as placing corners as nodes and edges between nodes if 
there is the relation between the corresponding corners in the 
collated features. When a node is inserted into the graph, the 
system looks into the remaining nodes whether any node has 
the relation with the inserted node. If some nodes satisfy the 
connectivity relation rules, those nodes are inserted into the 
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graph and the system creates an edge between them. In the 
example shown in Figure 5, C is T-junction, and it can connect 
to D, A and E. Meanwhile, A can connect to B, C and E but C 
is nearer than E towards A on the line segment AE so that A 
only connects to B and C. Consequently there will be two 
collated features ACGB and CEFD in the Figure 5. 
 
4.5 Rooftop hypothesis selection 

The graph is the place to store features and their groupings. 
Feature as corner is node in the graph and relations between 
corners are represented with an edge between the corresponding 
nodes. Closed cycles in the graph represent the rooftop 
candidates. The hypothesis selection can be seen as a simple 
graph search problem. The close cycles in the graph are 
rooftops that we need to detect. Figure 6 show a graph 
constructed from the example in Figure 5. Corner C and corner 
D are T-junctions so that there are two nodes in the graph for 
each corner. Node C1, C2 for corner C and node D1, D2 for 
corner D. There are two close cycles C1 and C2 as shown in 
Figure 6. 
 
 

5. EXPERIMENTAL RESULTS 

The experimental environment was set up based on Ascona 
aerial images of the Avenches area. Since this area’s 3D model 
is supplied as a ground truth data, we can evaluate the 
quantitative accuracy for the 3D rooftop model generated by the 
proposed method. Two aerial images as shown in Figure 7 are 
used as a set of stereo images for experiments. 

 
Figure 6. Feature graph 

 

    
 

Figure 7. Aerial images used as a set of stereo image 
 
The result of epipolar resampling process is shown in Figure 8. 
We generate suspected building regions from the map to reduce 
unnecessary line segments. To find the accurate disparity map, 
we employed the multi-resolution scheme with four different 
resolutions, where scaled image sizes equal to original size 
divided by 2n, n = (0,1,2,3). The corresponding correlation 
window sizes are 3x3, 5x5, 7x7 and 9x9, while the census 

transform window sizes are 3x3, 5x5, 7x7, and 9x9. The final 
disparity map is shown in Figure 9. Figure 10 shows generated 
DEM image and ground truth image. 
 

   
Figure 8. Example of epipolar images 

 

 
 

Figure 9. Example of disparity map 

   
 

Figure 10. Generated DEM image and ground truth image 
 
 

 
 

Figure 11. Example of low level extraction result 
 

Figure 11 shows the line segments obtained from low level 
feature extraction process. The number of extracted line 
segment is about 1425. To remove unnecessary line segments, 
we use the suspected building regions extracted from the 
disparity map as shown in Figure 12. 
 

716

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B3b. Beijing 2008 

 



 

 
 

Figure 12. Example of suspected building regions 
 

 
 
 

Figure 13. Example of filtered line segments 
 
The result of unnecessary line segments removing is shown in 
Figure 13. Remaining line segments are about 405. Now, 
perceptual filtering and grouping process is employed to obtain 
line segments which can be part of any U-structure group. The 
close parallel line segments which are inside their folding space 
of each other will be grouped into one representation line. The 
line segments which are part of a collection of line segments 
forming U-structure will be used to generate hypotheses in the 
next step. Figure 14 shows the line segments forming U-
structures in a collection of line segments. The colors indicate 
which U-structure group that the line segment belongs to. 
 
 

 
 

Figure 14. Example of U-structures 
 
 

 
 

Figure 15. Example of corner detection 
 
The corners are calculated form the intersection of the line 
segments which satisfy two conditions: their angle is from 850 
to 950 and one of them has nearest distance to another one. 
Figure 15 shows extracted corners from the line segments 
collection. 
 
Using the obtained corners and line segments from the previous 
steps, we can build the collated features. In order to have a link 
between each other, two corners must satisfy the connecting 
relation of corner type and the required condition of their 
distance. Another important rule that help to define the corner 
connectivity is on each line segment of a corner, there is only 
one corner has connection with it. Figure 16 shows the collated 
features obtained from the line segments collection. 
 
The collated features are used to construct graph by placing a 
corner as a nodes and line segment two corners as edge between 
two nodes if there is the relation between the corresponding 
corners in the collated features. Closed cycles in the graph 
represent the possible rooftops. Hypothesis selection becomes 
the searching of close cycles in the graph. Figure 17 shows the 
close cycles selected from the line segments collection. 
 
 

 
 

Figure 16. Example of collated features 
 
 

 
 

Figure 17. Example of close cycles 
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Figure 18 shows rooftop detection results of the entire area. 
There is a building located near the border line of the epipolar 
image that the system can not detect correctly due to missing 
line segments in low level extraction step. The remaining 
buildings are accurately extracted. From the detected 3D 
rooftop, we generate a 3D rendering view, as shown in Figure 
19. The 3D view indicates that the detected 3D rooftop 
accurately reflects ground truth 3D model. 
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Figure 18. Example of detected rooftops 

 

 
 

Figure 19. 3D view of building rooftop 
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